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Abstract - The Dempster-Shafer “theory of evidence” 
encompasses and extends the Bayes Theorem-based 
decision making machinery.  Dempster-Shafer’s innovation 
is the introduction of lower and upper bounds, designated 
“belief” and “plausibility”, that are attached to probability 
estimates.  The Dempster-Shafer algebra provides for 
propagation of and reasoning about these quantities 
according to an algebra whose outcome 
phenomenologically mimics human decision making in 
many contexts that are laden with quantitative uncertainty.  
The approach’s decisions thus seem to be subjective, i.e., 
the product of a sentient mind, vs. objective, i.e., the 
mechanical outcome of an immutable algorithm. In this 
paper we address the “objective evaluation of subjective 
decisions” in particular with the Dempster-Shafer sort of 
“subjective” decision making algorithm in mind.  As an 
initial baseline approach, we examine the “receiver 
operating characteristic” (ROC) graph.  We regard this as a 
first step towards identifying in advance circumstances 
under which Dempster-Shafer-like approaches should and 
should not be expected to deliver results that pass the 
human “sanity test”. 
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1. INTRODUCTION 

While superficially the title phrase “objective 
evaluation of subjective decisions”   appears to be 
oxymoronic, on reflection it is not.  People make 
subjective decisions all the time: based on my subjective 
assessment of traffic density, visibility, my own and the 
drivers’ states-of-mind, etc., I decide that at this 
moment it is safe for me to cross the street against the 
red light.  Whether or not my subjective decisions in 
the field of jaywalking are good or bad can be evaluated 
objectively: if I do it frequently and I am never injured 
or arrested, it is objectively obvious that my subjective 
decision making algorithm is indeed effective. 

The everyday-language definition of objective in this 
context is “uninfluenced by emotions or personal 
prejudices; based on observable phenomena; presented 
factually”.  The term is also used in formal medical 
diagnosis with the meaning “based on a symptom or 
condition perceived as a sign of disease by someone 
other than the person affected”. 

In comparison, the everyday-language definition of 
subjective is “proceeding from or taking place in a 
person's mind rather than the external world; particular 
to a given person”, and the corresponding medical 
diagnosis is “designating a symptom or condition 
perceived by the patient and not by the examiner”. 

Extending these definitions to the computer science 
domain, it is natural to associate conventional computer 
decision-making algorithms with the term objective, 
and “soft computing” methodologies with attempts to 
synthesize subjective behavior via algorithms that 
exhibit human-like interpretation of perceptual data.  
We are particularly interested in learning how 
objectively to evaluate the performance of algorithms 
that exhibit – or that appear to exhibit – subjective 
decision-making behavior. 

In this paper we adopt, as a baseline approach, the 
“receiver operating characteristic” (ROC) graph.  The 
ROC curve was originally developed and applied in the 
target identification field; it is now best known in the 
medical community, where it is used for characterizing 
and understanding the utility diagnostic tests.  It 
basically analyses the dependence of the numbers or 
fractions of {true positives, false positives, true 
negatives, false negatives} yielded by a particular test 
as a function of the decision threshold or “cut-point”. 

The setting for the experimental instantiation of our 
work is “context sensing for context-aware computing”, 
particularly the sensor fusion challenges that arise in its 
pursuit.  The goal of context aware computing – which, 
as a practical matter, is synonymous with “context 
aware human computer interaction” – is for computers 
subjectively to understand environmental context, and 
via this understanding, better to interpret noisy and 
ambiguous inputs.  The noisy and ambiguous inputs 
received from humans communicating via human-
human interaction modalities, e.g., explicit and implicit 
gestures, are of particular interest. 

The challenges to this program include the 
requirements for adaptability to a sensor suite that 
changes continuously, e.g., due to drift, and abruptly 
from time-to-time, e.g., due to failure or substitution, 
sensor system performance that is quantitatively 
commensurate with human perception, and artificial 



sensing modalities that map qualitatively into the 
human senses and perception mechanisms. 

We have written previously [1][2][3] on the 
applicability of the Dempster-Shafer “theory of 
evidence” to the sensor fusion aspects of this problem 
within the decision-making architecture illustrated in 
Figure 1.  The attraction of the Dempster-Shafer 
approach is primarily its built-in uncertainty 
management and inference mechanisms, which exhibit 
behaviors reminiscent of human “subjective” reasoning 
processes.  The Dempster-Shafer approach was shown 
in [1] to be practical and effective for implementing a 
general sensor fusion system architecture that was 
applied therein explicitly to the fusion of video and 
audio sensors that separately and jointly find and track 
meeting participants’ focus-of-attention.  
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Figure 1. System architecture for sensor fusion of context-aware 
computing. 

The conclusion of [2] was that, compared with 
previous ad hoc sensor fusion methods used in the 
focus-of-attention experiments, the Dempster-Shafer 
approach yields a definite but quantitatively only 
marginal improvement in accuracy.  This was 
furthermore true again when the classical Dempster 
Shafer approach was extended to incorporate weights 
representative of sensor precision.  However in both the 
classical and the extended case the Dempster-Shafer 
approach yields a significant improvement in 
robustness, e.g., against data packet loss or catastrophic 
sensor failure. 

The conclusion of [3] is that accuracy and robustness 
are still further, but once again only marginally, 
improved via a further extended Dempster-Shafer 
approach that incorporates a memory mechanism – 
similar to Kalman filtering – to compensate for sensor 
drift and long-time-constant environmental variations. 

The aim of the research program contemplated in 
this paper is to use existing and, as necessary, to 

develop new objective measures of decision system 
performance, especially in instances where the decision 
systems involve subjective reasoning mechanisms.  At 
least two important application classes are foreseen:  

(1) Confident resolution of the uncertainty of the reality of 
small apparent performance improvements as sensor fusion 
algorithms are made “more sophisticated”.  This is important 
because if apparent improvements can be proven to be real, 
albeit small, it would support continuing to work in the 
direction of the particular added “sophistication”. 

(2) Optimization of currently-arbitrary threshold or “cut-
point” parameters within the decision-making machinery.  
Whereas in principle this optimization could be done via a 
neural network-like iterative training process, the actual 
computational expense is too high for this to be practical, 
especially if continuous adaptive behavior is required. 

The rest of the paper is organized as follows.  
Section 2 reviews Dempster-Shafer theory, beginning 
with its background in Bayesian inference and carrying 
through the classical Dempster-Shafer theory and the 
extensions to it that we have introduced: sensor 
precision-based weighting and the temporal evolution 
of the weights.  Section 3 reviews the “receiver 
operating characteristic” (ROC) curve for evaluating 
and understanding, from a variety of perspectives, the 
utility of classification tests that depend on a threshold 
or “cut-point” for dichotomization.  Section 4 briefly 
discusses the issues involved in optimizing decision-
making algorithms; it’s intent is to tie together the 
preceding two sections on the Dempster-Shafer “theory 
of evidence” and the ROC curve of decision utility.  
Section 5 is a brief concluding section. 

2. REVIEW OF DEMPSTER-SHAFER THEORY 

2.1. Background: Bayesian Inference 

Although it is sometimes regarded by the statistical 
sub-communities in the social sciences and economics 
more as an article of religious faith than a scientific 
fact, for physical scientists and engineers, Bayesian 
inference is hardly mysterious.  It is illustrated by a 
simple example in which the data are: 
P(M) = probability that an employee is a manager 
P(~M) = probability that s/he is not a manager = 1 – P(M) 
p(A|M) = probability per year that a manager will have an accident 
p(A|~M) = probability per year that a non-manager will have an 
accident 

We are told there was an accident; we want to know 

P(M|A) = probability that the accident victim was a manager 

Bayes Theorem says, rather intuitively, that 

P(M|A) = P(M)•p(A|M) / (P(M)•p(A|M)+P(~M)•p(A|~M)) 

 



2.2. Dempster-Shafer Theory of Evidence 

The Dempster-Shafer decision theory [4][5][6], or 
“theory of evidence” can be viewed as a generalization 
of Bayesian statistical inference.  Its new feature is that 
it allows distributing support for a proposition (e.g., 
"person in meeting is employee A") to the union of 
propositions that include it (e.g., “person in meeting is 
likely either employee A or employee B”).  In a 
Dempster-Shafer reasoning system, all the mutually 
exclusive possibilities are enumerated in a "frame-of-
discernment", denoted Θ.  For example, if we know 
that there is a person in a meeting room, and we want 
to recognize whether s/he is employee A, employee B, 
or somebody else, then the “frame of discernment” is: 

}}elsesomebody {},,{,,{ BABA=Θ  

meaning s/he is certainly one of A, B, either A or B, or 
somebody else, i.e., neither A nor B. 

Now suppose we have sensors that contribute 
additional information.  Each sensor Si contributes its 
observation by assigning its beliefs over Θ.  This 
assignment function is called the “probability mass 
function” of Si, denoted mi.  So, according to sensor Si’s 
perception, the probability that “the detected person is 
A” is indicated by a “confidence interval” whose lower 
bound is a “belief” and whose upper bound is a 
“plausibility”: 

[beliefi(A), plausibilityi(A)] 

beliefi(A) is quantified by all pieces of evidence Ek that 
support the proposition, e.g., that the person is A: 
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plausibilityi(A) is quantified by all pieces of evidence Ek 
that do not rule out the proposition: 

plausibilityi(A) = ∑
=∩

−
φAE

ki

k

Em )(1  

These definitions are reasonably intuitive if we 
interpret “plausibility” to mean “what we would believe 
if all the missing data that could support the 
proposition actually does turn out to support it”. 

For each proposition in Θ, e.g., A, Dempster-Shafer 
theory gives a rule for combining sensor Si’s 
observation mi and sensor Sj’s observation mj: 
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Obviously this rule can be chained straightforwardly. 

By associating "belief" with the lower end of a 
probability range and "plausibility" with its upper end, 
the Dempster-Shafer approach manages to capture 
some features characteristic of the human perception-
reasoning process.  In contrast, the Bayesian approach 
provides no mechanism for dealing quantitatively with 
the ranges of "belief" and "plausibility" that humans 
characteristically attach to their estimates of likelihood. 

2.2.1. Adding realistic sensors 

The fundamental Dempster-Shafer combination rule 
implies that we trust sensors Si and Sj equally.  
Misplaced trust can produce counterintuitive outcomes, 
e.g., if two observers agree that there is an arbitrarily 
small possibility of X, but they agree on no other 
possibility, Dempster-Shafer will say X is the only 
possible conclusion.  Nor is this scenario far-fetched, as 
in many Dempster-Shafer applications the frame-of-
discernment, and the numerical values of “belief” and 
“plausibility”, are essentially educated guesses supplied 
by human experts.  The human tendency to hedge a bet 
by assigning a small probability to an unlikely 
alternative conclusion expands the overall frame-of-
discernment.  It thus becomes easy for two experts' 
individual frames-of-discernment to share only one 
outcome, albeit one that both experts think is unlikely.  
The result is a catastrophe: the Dempster-Shafer 
algorithm decides that the small area of agreement is 
the only possible conclusion.  Despite the usually 
intuitive behavior of the Dempster-Shafer algorithm, in 
this sort of case its conclusion is counter-intuitive. 

But in sensor-based systems we should be able to do 
better, e.g., by quantitatively invoking technical 
knowledge about each sensor's expected performance, 
ground-truth knowledge about each sensor's current 
actual performance, and historical knowledge about the 
evolution of their performance, e.g., as the sensors age. 

This sort of differential trust can be accounted for by 
a simple modification to the Dempster-Shafer formula 
in which the observations mi are weighted by trust 
factors wi derived from the corresponding expectations.  
These expectations might be based on, e.g., the sensor 
manufacturer's specifications, calibration experiments, 
or histories that capture a data stream of occasional 
ground-truth observations of the corresponding sensor 
Si's performance.  The weighting process is expressed 
formally by inserting the weights wi as factors that 
multiply the probability mass functions, i.e., the 
observations mi: 
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When the weight factors wi are functions of time, the 
approach is reminiscent of Kalman filtering.  A simple 
practical implementation is to define 

w(t) = ΣΣΣΣn=0 to ∞ c(t – n∆t) rn 
c(t – n ∆t) = n-th_previous_correct ? 1 : 0 

r = {0 … 1} 

where the remnace (our coined term) r, range 0. to 1., is 
a parameter that controls how rapidly past performance 
is discounted. 

3. RECEIVER OPERATING 
CHARACTERISTIC (ROC) 

The receiver operating characteristic (ROC) graph 
was originally developed in the field of military target 
analysis to characterize ratios like signal to signal-plus-
noise as a function of discriminator threshold.  ROC 
curves have since been adopted and further developed 
primarily in the medical diagnostic test community. 

Consider a sensor S that examines a person and 
delivers a numerical output nS, that we believe 
increases monotonically with a classification of interest, 
e.g., if nS is above a threshold value TS then there is a 
high probability that the person under observation is a 
computer scientist.  Increasing the threshold TS 
increases the probability that an individual identified as 
a computer scientist really is a computer scientist and 
decreases the probability that an individual identified as 
a computer scientist is not really a computer scientist, 
and vice versa. 

A separate test, regarded as “ground truth” or a 
“gold standard”, provides performance characterization 
of the test as a function of the discriminator threshold 
in terms of four fractions: TP, the number (or fraction) 
of true positives, i.e., computer scientists for whom nS > 
Ts, FP, the number (or fraction) of false positives, i.e., 
non-computer scientists for whom nS > Ts, TN, the 
number (or fraction) of true negatives, i.e., non-
computer scientists for whom nS < Ts, and FN, the 
number (or fraction) of false negatives, i.e., computer 
scientists for whom nS < Ts.  This is summarized in 
Table 2. 

 

 

 

 

sensor/class in class not in class 

nS > TS true 
positives 

false 
positives 

nS < TS false 
negatives 

true 
negatives 

Table 2. True/False Positives/Negatives 

The sensitivity of the classification is defined as the 
ratio TP/(TP+FN); it is the ratio of members of the 
class correctly identified by the test to the actual 
members of the class.  The specificity of the 
classification is defined as the ratio TN/(FP+TN); it is 
the ratio of non-members of the class correctly 
identified by the test to the actual non-members of the 
class.  Many other ratios of various combinations of TP, 
TN, FP, and FN are defined and named in the medical 
literature – positive/negative predictive value, 
positive/negative likelihood ratio, etc..  Sensitivity and 
specificity are the only ones we need now. 

The ROC curve is the plot of sensitivity vs. (1-
specificity) as the discrimination threshold is scanned 
through the output range of the sensor.  A test is 
reliable if there is at least one threshold value for which 
there are no false positives and no false negatives.  If 
this holds for all non-zero thresholds then the test is 
described as ideal or perfect: the ROC curve is then 
made up of the left and top sides of the unit square.  A 
useless test has an ROC curve that is the diagonal of 
the unit square.  Useful real tests have ROC curves that 
fall in between these extremes.  A commonly used 
quality-index is the area under the ROC curve: unit 
area is ideal, area 0.5 is useless.  These possibilities are 
illustrated in Figure 2. 

 

Figure 2: ROC curves. (a) reliable; 
(b) typical; (dotted) ideal; (dashed) useless. 

 



4. OPTIMIZING SUBJECTIVE DECISION-
MAKING 

As discussed in detail in [1],[2], and[3], a large set 
of focus-of-attention data have been collected in 
meetings of several participants.  The data consist of 
video streams that have been analyzed by a gaze-
direction algorithm, audio streams that have been 
analyzed by a voice origin algorithm, and nominal 
ground-truth that has been decided by human analysis 
of the video.  The ground-truth is identified as nominal 
because it has a subjective component, e.g., two human 
observers do not always agree on which meeting 
participant is the focus-of-attention at any instant.  The 
video and audio are objective at the raw data level, but 
must be considered subjective by the time they have 
been algorithmically abstracted to focus-of-attention. 

Several sensor fusion algorithms have been used to 
combine the video and audio focus-of-attention reports: 
an ad hoc linear combination algorithm [1], a classical 
Dempster-Shafer algorithm [1], a Dempster-Shafer 
algorithm incorporating fixed sensor weights [2], and a 
Dempster-Shafer algorithm incorporating time-varying 
sensor weights that compensate for sensor drift [3].  
The agreement between the output of the sensor fusion 
algorithm and the nominal ground truth shows a small 
but we believe real trend toward improvement with 
increasing sophistication of the Dempster-Shafer based 
sensor fusion algorithm. 

However none of the algorithms has been formally 
optimized by variation of the decision-making 
parameters with a training data set.  The discrimination 
parameters have rather been informally and arbitrarily 
set by the respective algorithm coders.  ROC curve 
analysis will be undertaken to more precisely evaluate 
the relative performance of the different sensor fusion 
algorithms, with the intent of demonstrating 
conclusively whether or not the apparent improvement 
with increasing sensor fusion algorithm sophistication 
is indeed real and significant.  Outcome  of the 
anticipated analysis and optimization will be presented 
at the conference. 

5. CONCLUSION 

We have raised the question of “objective evaluation of 
subjective decisions”.  While at first-hearing the phrase 
seems to be self-contradictory, on thoughtful 
examination it is seen in fact to be possible, and 
recognized that in our everyday lives we do it all the 
time.  The paper extends our consideration from the 
realm of everyday human decisions to the realm of 
decision-making algorithms that exhibit “subjective” 
behaviors. 

We consider specifically the relative performance of 
a sequence of sensor fusion algorithms each of which 
combines in a qualitatively and quantitatively more 
sophisticated way the output of two “focus-of-attention 
sensors” in different perceptual modalities.  Increased 
accuracy, i.e., agreement with ground truth generated 
by a human observer, seems to accompany increased 
sophistication, but the improvement is marginal, and 
perhaps of questionable statistical significance. 

We consider improved tests to decide whether the 
apparent improvements are real, hence whether the 
corresponding evolutionary directions are worth 
pursuing.  As a starting point, and as a baseline with 
which to compare future tests, we propose receiver 
operating characteristic (ROC) curve analysis.  This 
approach will allow quantitative objective comparison 
of alternative sensor fusion algorithms.  Furthermore, 
inasmuch as the ROC curve is a parametric plot in 
which the parameter is the tests cut-point, ROC curve 
analysis may provide a systematic mechanism for 
optimizing the currently arbitrary thresholds 
incorporated in the individual sensor output algorithms. 
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