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Abstract - The Dempster-Shafer “theory of evidence”
encompasses and extends the Bayes Theorem-based
decision making machinery. Dempster-Shafer’sinnovation
is the introduction of lower and upper bounds, designated
“belief” and “plausibility”, that are attached to probability
estimates. The Dempster-Shafer algebra provides for
propagation of and reasoning about these quantities
according to an algebra whose outcome
phenomenologically mimics human decision making in
many contexts that are laden with quantitative uncertainty.
The approach’s decisions thus seem to be subjective, i.e.,
the product of a sentient mind, vs. objective, i.e., the
mechanical outcome of an immutable algorithm. In this
paper we address the “objective evaluation of subjective
decisions’ in particular with the Dempster-Shafer sort of
“subjective” decision making algorithm in mind. As an
initial baseline approach, we examine the “receiver
operating characteristic’ (ROC) graph. Weregard thisasa
first step towards identifying in advance circumstances
under which Dempster-Shafer-like approaches should and
should not be expected to deliver results that pass the
human “sanity test”.
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1. INTRODUCTION

While superficially the title phrase “objective
evaluation of subjective decisions’ appears to be
oxymoronic, on reflection it is not. People make
subjective decisions all the time: based on my subjective
assessment of traffic density, visibility, my own and the
drivers states-of-mind, etc., | decide that at this
moment it is safe for me to cross the street against the
red light. Whether or not my subjective decisions in
the field of jaywalking are good or bad can be evaluated
objectively: if | do it frequently and | am never injured
or arrested, it is objectively obvious that my subjective
decision making algorithm isindeed effective.

The everyday-language definition of objective in this
context is “uninfluenced by emotions or persona
prejudices; based on observable phenomena; presented
factually’. The term is also used in formal medical
diagnosis with the meaning “based on a symptom or
condition perceived as a sign of disease by someone
other than the person affected”.

In comparison, the everyday-language definition of
subjective is “proceeding from or taking place in a
person's mind rather than the external world; particular
to a given person”, and the corresponding medical
diagnosis is “designating a symptom or condition
perceived by the patient and not by the examiner”.

Extending these definitions to the computer science
domain, it is natural to associate conventional computer
decision-making algorithms with the term objective,
and “soft computing” methodologies with attempts to
synthesize subjective behavior via agorithms that
exhibit human-like interpretation of perceptual data.
We are particularly interested in learning how
objectively to evaluate the performance of algorithms
that exhibit — or that appear to exhibit — subjective
decision-making behavior.

In this paper we adopt, as a basdline approach, the
“receiver operating characterigtic’ (ROC) graph. The
ROC curve was originally developed and applied in the
target identification field; it is now best known in the
medical community, where it is used for characterizing
and understanding the utility diagnostic tests. It
basically analyses the dependence of the numbers or
fractions of {true positives, false positives, true
negatives, fase negatives} yiedded by a particular test
as afunction of the decision threshold or “cut-point”.

The setting for the experimental instantiation of our
work is “context sensing for context-aware computing”,
particularly the sensor fusion challengesthat arisein its
pursuit. The goal of context aware computing — which,
as a practical matter, is synonymous with *“context
aware human computer interaction” — is for computers
subjectively to understand environmental context, and
via this understanding, better to interpret noisy and
ambiguous inputs. The noisy and ambiguous inputs
received from humans communicating via human-
human interaction modalities, e.g., explicit and implicit
gestures, are of particular interest.

The challenges to this program include the
requirements for adaptability to a sensor suite that
changes continuoudy, e.g., due to drift, and abruptly
from time-to-time, e.g., due to failure or substitution,
sensor  system performance that is quantitatively
commensurate with human perception, and artificial



sensing modalities that map qualitatively into the
human senses and perception mechanisms.

We have written previousy [1][2][3] on the
applicability of the Dempster-Shafer “theory of
evidence” to the sensor fusion aspects of this problem
within the decision-making architecture illustrated in
Figure 1. The attraction of the Dempster-Shafer
approach is primarily its built-in  uncertainty
management and inference mechanisms, which exhibit
behaviors reminiscent of human “subjective’ reasoning
processes. The Dempster-Shafer approach was shown
in [1] to be practical and effective for implementing a
general sensor fusion system architecture that was
applied therein explicitly to the fusion of video and
audio sensors that separately and jointly find and track
meeting participants focus-of-attention.
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Figure 1. System architecture for sensor fusion of context-aware
computing.

The conclusion of [2] was that, compared with
previous ad hoc sensor fusion methods used in the
focus-of-attention experiments, the Dempster-Shafer
approach vyields a definite but quantitatively only
marginal improvement in accuracy. This was
furthermore true again when the classical Dempster
Shafer approach was extended to incorporate weights
representative of sensor precision. However in both the
classical and the extended case the Dempster-Shafer
approach vyields a significant improvement in
robustness, e.g., against data packet loss or catastrophic
sensor failure.

The conclusion of [3] isthat accuracy and robustness
are dill further, but once again only marginaly,
improved via a further extended Dempster-Shafer
approach that incorporates a memory mechanism —
similar to Kalman filtering — to compensate for sensor
drift and long-time-constant environmental variations.

The aim of the research program contemplated in
this paper is to use existing and, as necessary, to

develop new objective measures of decision system
performance, especially in instances where the decision
systems involve subjective reasoning mechanisms. At
least two important application classes are foreseen:

(1) Confident resolution of the uncertainty of the reality of
small apparent performance improvements as sensor fusion
algorithms are made “more sophisticated”. Thisisimportant
because if apparent improvements can be proven to be red,
albeit small, it would support continuing to work in the
direction of the particular added “ sophistication”.

(2) Optimization of currently-arbitrary threshold or “cut-
point” parameters within the decision-making machinery.
Whereas in principle this optimization could be done via a
neural network-like iterative training process, the actua
computational expense is too high for this to be practical,
especially if continuous adaptive behavior is required.

The rest of the paper is organized as follows.
Section 2 reviews Dempster-Shafer theory, beginning
with its background in Bayesian inference and carrying
through the classica Dempster-Shafer theory and the
extensions to it that we have introduced: sensor
precision-based weighting and the temporal evolution
of the weights. Section 3 reviews the “receiver
operating characterigtic” (ROC) curve for evaluating
and understanding, from a variety of perspectives, the
utility of classification tests that depend on a threshold
or “cut-point” for dichotomization. Section 4 briefly
discusses the issues involved in optimizing decision-
making algorithms; it's intent is to tie together the
preceding two sections on the Dempster-Shafer “theory
of evidence’ and the ROC curve of decision utility.
Section 5 isabrief concluding section.

2. REVIEW OF DEMPSTER-SHAFER THEORY
2.1. Background: Bayesian Inference

Although it is sometimes regarded by the dtatistical
sub-communities in the social sciences and economics
more as an article of religious faith than a scientific
fact, for physical scientists and engineers, Bayesian
inference is hardly mysterious. It is illustrated by a
simple example in which the data are:

P(M) = probability that an employee is a manager
P(~M) = probability that s/he is not a manager = 1 — P(M)
p(A|M) = probability per year that a manager will have an accident

p(A|~M) = probability per year that a non-manager will have an
accident

We are told there was an accident; we want to know
P(MJA) = probability that the accident victim was a manager
Bayes Theorem says, rather intuitively, that

P(MIA) = P(M)+p(AIM) / (P(M)*p(AIM)+P(~M)*p(A|~M))



2.2. Dempster-Shafer Theory of Evidence

The Dempster-Shafer decision theory [4][5][6], or
“theory of evidence” can be viewed as a generalization
of Bayesian statistical inference. Its new feature is that
it allows distributing support for a proposition (e.g.,
"person in meeting is employee A") to the union of
propositions that include it (e.g., “person in meeting is
likely either employee A or employee B”). In a
Dempster-Shafer reasoning system, all the mutually
exclusive possihilities are enumerated in a "frame-of-
discernment”, denoted ®. For example, if we know
that there is a person in a meeting room, and we want
to recognize whether g'he is employee A, employee B,
or somebody el se, then the “frame of discernment” is:

©={A B, {A B}, {somebody else}}

meaning ghe is certainly one of A, B, either A or B, or
somebody else, i.e., neither A nor B.

Now suppose we have sensors that contribute
additional information. Each sensor § contributes its
observation by assigning its beliefs over ©. This
assignment function is called the “probability mass
function” of S, denoted m. So, according to sensor §'s
perception, the probability that “the detected person is
A” isindicated by a “confidence interval” whose lower
bound is a “belief” and whose upper bound is a
“plausibility”:

[beliefi(A), plausibility;(A)]

beliefi(A) is quantified by all pieces of evidence E that
support the proposition, e.g., that the person isA:

beliefi(A) = Zm(Ek)

E.OA
plausibility;(A) is quantified by all pieces of evidence Ey
that do not rule out the proposition:
plausibilityi(A) = 1= > m(E,)
E nA=¢

These definitions are reasonably intuitive if we
interpret “plausibility” to mean “what we would believe
if al the missing data that could support the
proposition actually does turn out to support it”.

For each proposition in ©, e.g., A, Dempster-Shafer
theory gives a rule for combining sensor S’s
observation m and sensor §'s observation my:

Z m (Ex) m; (Ey)

E nEg=A

1- Z m (Ey) m; (E¢)

E.nE =@

(m Om;)(A)=

Obvioudly thisrule can be chained straightforwardly.

By associating "bdief" with the lower end of a
probability range and "plausibility" with its upper end,
the Dempster-Shafer approach manages to capture
some features characteritic of the human perception-
reasoning process. In contrast, the Bayesian approach
provides no mechanism for dealing quantitatively with
the ranges of "belief* and "plausibility" that humans
characteristically attach to their estimates of likelihood.

2.2.1. Adding realistic sensors

The fundamental Dempster-Shafer combination rule
implies that we trust sensors § and § equaly.
Misplaced trust can produce counterintuitive outcomes,
e.g., if two observers agree that there is an arbitrarily
small possibility of X, but they agree on no other
possibility, Dempster-Shafer will say X is the only
possible conclusion. Nor isthis scenario far-fetched, as
in many Dempster-Shafer applications the frame-of-
discernment, and the numerical values of “bdief” and
“plausibility”, are essentially educated guesses supplied
by human experts. The human tendency to hedge a bet
by assigning a small probability to an unlikely
alternative conclusion expands the overall frame-of-
discernment. It thus becomes easy for two experts
individual frames-of-discernment to share only one
outcome, albeit one that both experts think is unlikely.
The result is a catastrophe: the Dempster-Shafer
algorithm decides that the small area of agreement is
the only possible conclusion. Despite the usually
intuitive behavior of the Dempster-Shafer algorithm, in
this sort of caseits conclusion is counter-intuitive.

But in sensor-based systems we should be able to do
better, eg., by quantitatively invoking technical
knowledge about each sensor's expected performance,
ground-truth knowledge about each sensor's current
actual performance, and historical knowledge about the
evolution of their performance, e.g., as the sensors age.

This sort of differential trust can be accounted for by
a simple modification to the Dempster-Shafer formula
in which the observations m are weighted by trust
factors w derived from the corresponding expectations.
These expectations might be based on, e.g., the sensor
manufacturer's specifications, calibration experiments,
or histories that capture a data stream of occasiona
ground-truth observations of the corresponding sensor
S's performance. The weighting process is expressed
formally by inserting the weights w; as factors that
multiply the probability mass functions, i.e, the
observations m:



> [wm (E) v, m; (E,)]
(m O mj)(A)zl_k kz: [wm (E,) O; m; (E,)]

EnEe=g

When the weight factors w; are functions of time, the
approach is reminiscent of Kalman filtering. A smple
practical implementation is to define

W(t) = Zozotow C(t =N 1"
c(t — n 4t) = n-th_previous correct ?1: 0
r={0...1}
where the remnace (our coined term) r, range 0. to 1., is
a parameter that controls how rapidly past performance
is discounted.

3. RECEIVER OPERATING
CHARACTERISTIC (ROC)

The receiver operating characteristic (ROC) graph
was originally developed in the field of military target
analysis to characterize ratios like signal to signal-plus-
noise as a function of discriminator threshold. ROC
curves have since been adopted and further developed
primarily in the medical diagnostic test community.

Consider a sensor S that examines a person and
delivers a numerical output ns, that we believe
increases monotonically with a classification of interest,
e.g., if ngis above a threshold value Ts then thereis a
high probability that the person under observation is a
computer scientist.  Increasing the threshold Ts
increases the probability that an individual identified as
a computer scientist really is a computer scientist and
decreases the probability that an individual identified as
a computer scientist is not really a computer scientist,
and vice versa.

A separate test, regarded as “ground truth” or a
“gold standard”, provides performance characterization
of the test as a function of the discriminator threshold
in terms of four fractions: TP, the number (or fraction)
of true positives, i.e., computer scientists for whom ng >
Ts, FP, the number (or fraction) of false positives, i.e,
non-computer scientists for whom ns > Tg, TN, the
number (or fraction) of true negatives, i.e, non-
computer scientists for whom ns < Ts, and FN, the
number (or fraction) of false negatives, i.e., computer
scientists for whom ng < Te. This is summarized in
Table 2.

sensor/class in class not in class
ns>Ts true false
positives positives
Nns<Tg false true
negatives negatives

Table 2. True/False Positives/Negatives

The sensitivity of the classification is defined as the
ratio TP/(TP+FN); it is the ratio of members of the
class correctly identified by the test to the actua
members of the class.  The specificity of the
classification is defined as the ratio TN/(FP+TN); it is
the ratio of non-members of the class correctly
identified by the test to the actual non-members of the
class. Many other ratios of various combinations of TR,
TN, FR, and FN are defined and named in the medical
literature — poditive/negative predictive  value,
positive/negative likdihood ratio, etc.. Sensitivity and
specificity are the only ones we need now.

The ROC curve is the plot of sensitivity vs. (1-
specificity) as the discrimination threshold is scanned
through the output range of the sensor. A test is
reliable if thereis at least one threshold value for which
there are no false positives and no false negatives. If
this holds for al non-zero thresholds then the test is
described as ideal or perfect: the ROC curve is then
made up of the left and top sides of the unit square. A
useless test has an ROC curve that is the diagonal of
the unit square. Useful real tests have ROC curves that
fal in between these extremes. A commonly used
quality-index is the area under the ROC curve: unit
areaisideal, area 0.5 isusdess. These possibilities are
illustrated in Figure 2.
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Figure 2: ROC curves. (a) reliable;
(b) typical; (dotted) ideal; (dashed) useless.



4. OPTIMIZING SUBJECTIVE DECISION-
MAKING

As discussed in detail in [1],[2], and[3], a large set
of focus-of-attention data have been collected in
meetings of several participants. The data consist of
video streams that have been analyzed by a gaze-
direction algorithm, audio streams that have been
analyzed by a voice origin algorithm, and nominal
ground-truth that has been decided by human analysis
of the video. The ground-truth is identified as nominal
because it has a subjective component, e.g., two human
observers do not aways agree on which meeting
participant is the focus-of-attention at any instant. The
video and audio are objective at the raw data level, but
must be considered subjective by the time they have
been algorithmically abstracted to focus-of-attention.

Several sensor fusion algorithms have been used to
combine the video and audio focus-of-attention reports:
an ad hoc linear combination algorithm [1], a classical
Dempster-Shafer algorithm [1], a Dempster-Shafer
algorithm incorporating fixed sensor weights [2], and a
Dempster-Shafer algorithm incorporating time-varying
sensor weights that compensate for sensor drift [3].
The agreement between the output of the sensor fusion
algorithm and the nominal ground truth shows a small
but we believe real trend toward improvement with
increasing sophistication of the Dempster-Shafer based
sensor fusion algorithm.

However none of the algorithms has been formally
optimized by variation of the decision-making
parameters with atraining data set. The discrimination
parameters have rather been informally and arbitrarily
set by the respective algorithm coders. ROC curve
analysis will be undertaken to more precisely evaluate
the relative performance of the different sensor fusion
algorithms, with the intent of demonstrating
conclusively whether or not the apparent improvement
with increasing sensor fusion algorithm sophistication
is indeed real and significant. Outcome of the
anticipated analysis and optimization will be presented
at the conference.

5. CONCLUSION

We have raised the question of “objective evaluation of
subjective decisions’. While at first-hearing the phrase
seems to be sdf-contradictory, on  thoughtful
examination it is seen in fact to be possible, and
recognized that in our everyday lives we do it al the
time. The paper extends our consideration from the
realm of everyday human decisions to the realm of
decision-making algorithms that exhibit “subjective’
behaviors.

We consider specifically the relative performance of
a sequence of sensor fusion algorithms each of which
combines in a qualitatively and quantitatively more
sophisticated way the output of two “focus-of-attention
sensors’ in different perceptual modalities. Increased
accuracy, i.e., agreement with ground truth generated
by a human observer, seems to accompany increased
sophigtication, but the improvement is marginal, and
perhaps of questionable statistical significance.

We consider improved tests to decide whether the
apparent improvements are real, hence whether the
corresponding evolutionary directions are worth
pursuing. As a starting point, and as a baseline with
which to compare future tests, we propose receiver
operating characteristic (ROC) curve analysis. This
approach will allow quantitative objective comparison
of alternative sensor fusion algorithms. Furthermore,
inasmuch as the ROC curve is a parametric plot in
which the parameter is the tests cut-point, ROC curve
analysis may provide a systematic mechanism for
optimizing the currently arbitrary thresholds
incorporated in the individual sensor output algorithms.
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