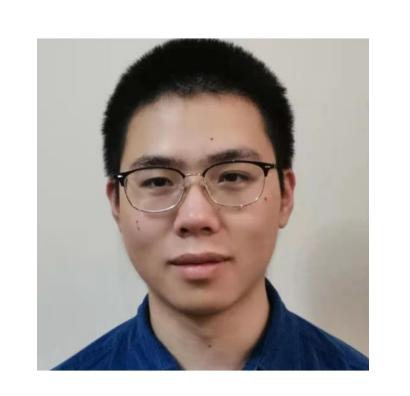
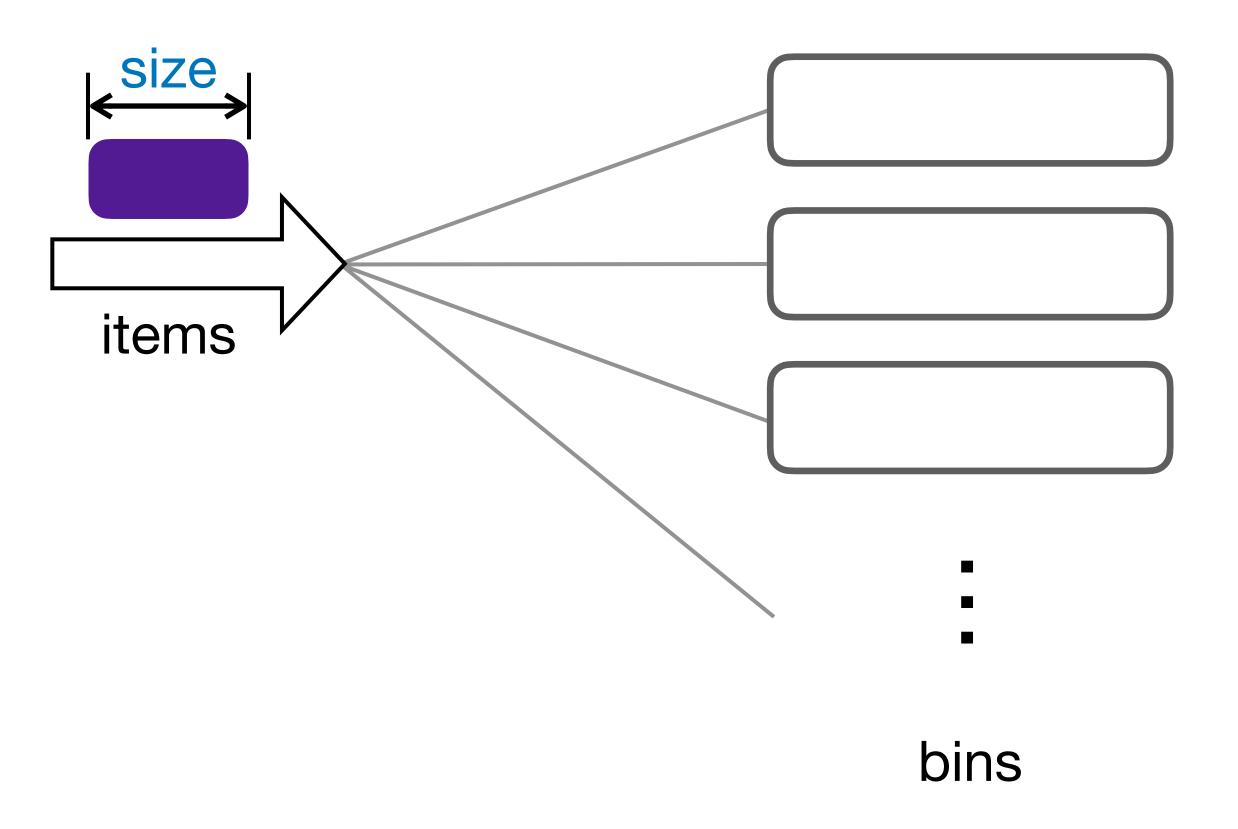
Near-Optimal Stochastic Bin-Packing in Large Service Systems with Time-Varying Item Sizes

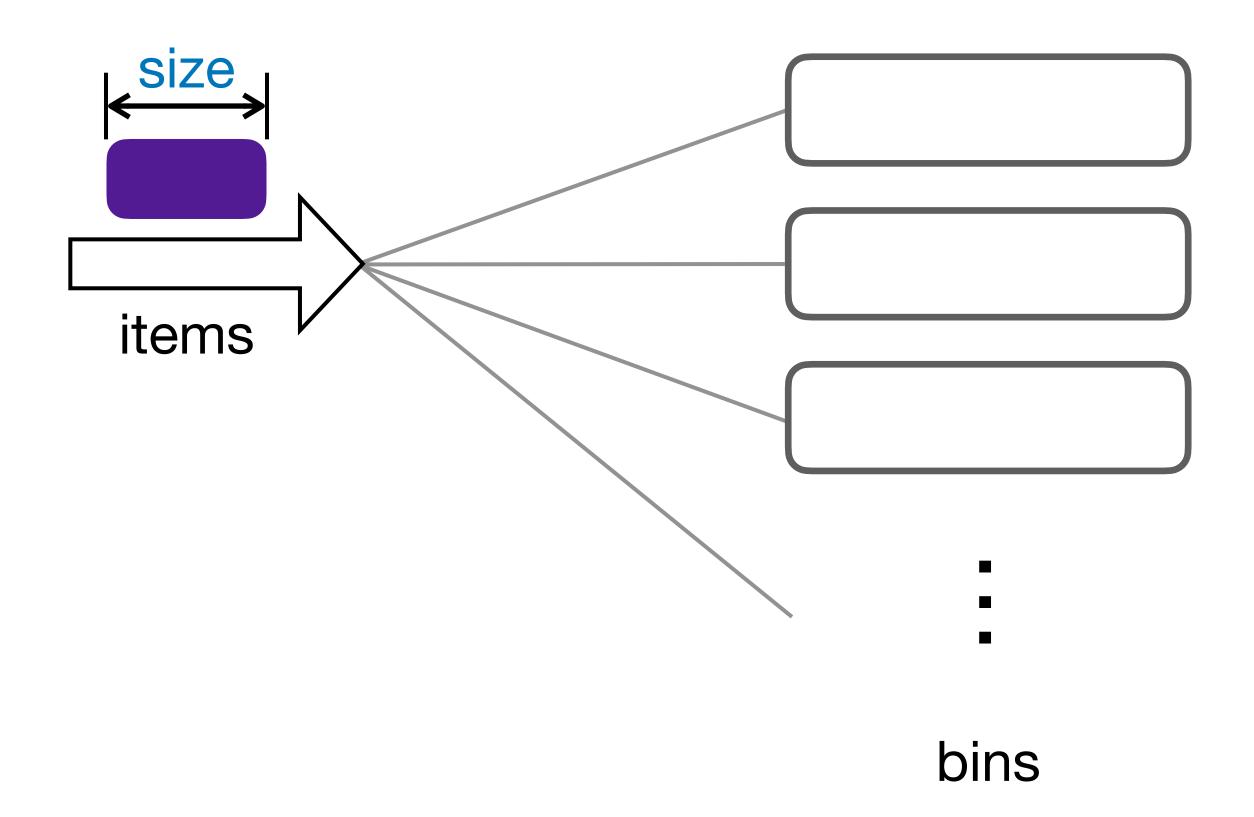


Joint work with Yige Hong (CMU) and Qiaomin Xie (UW-Madison)

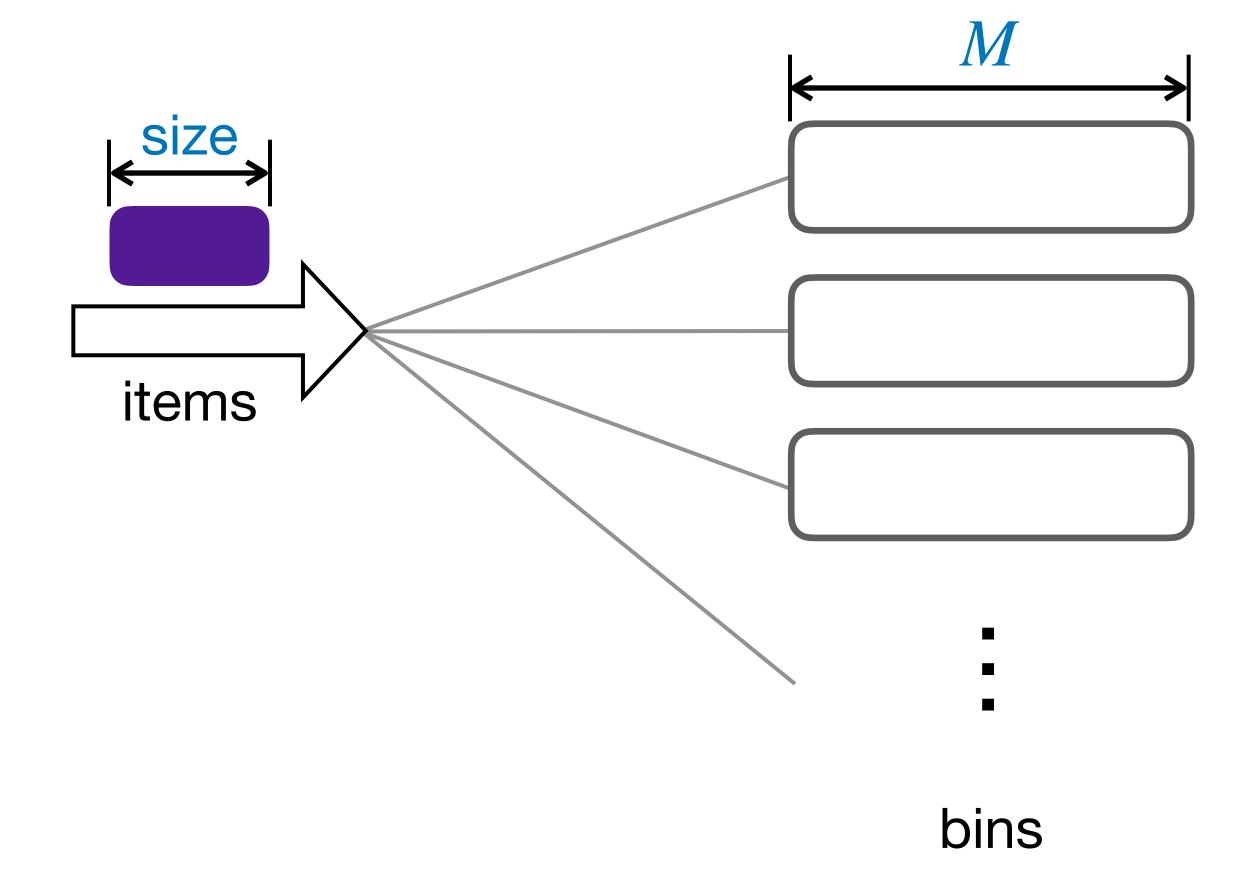
Weina Wang
Carnegie Mellon University



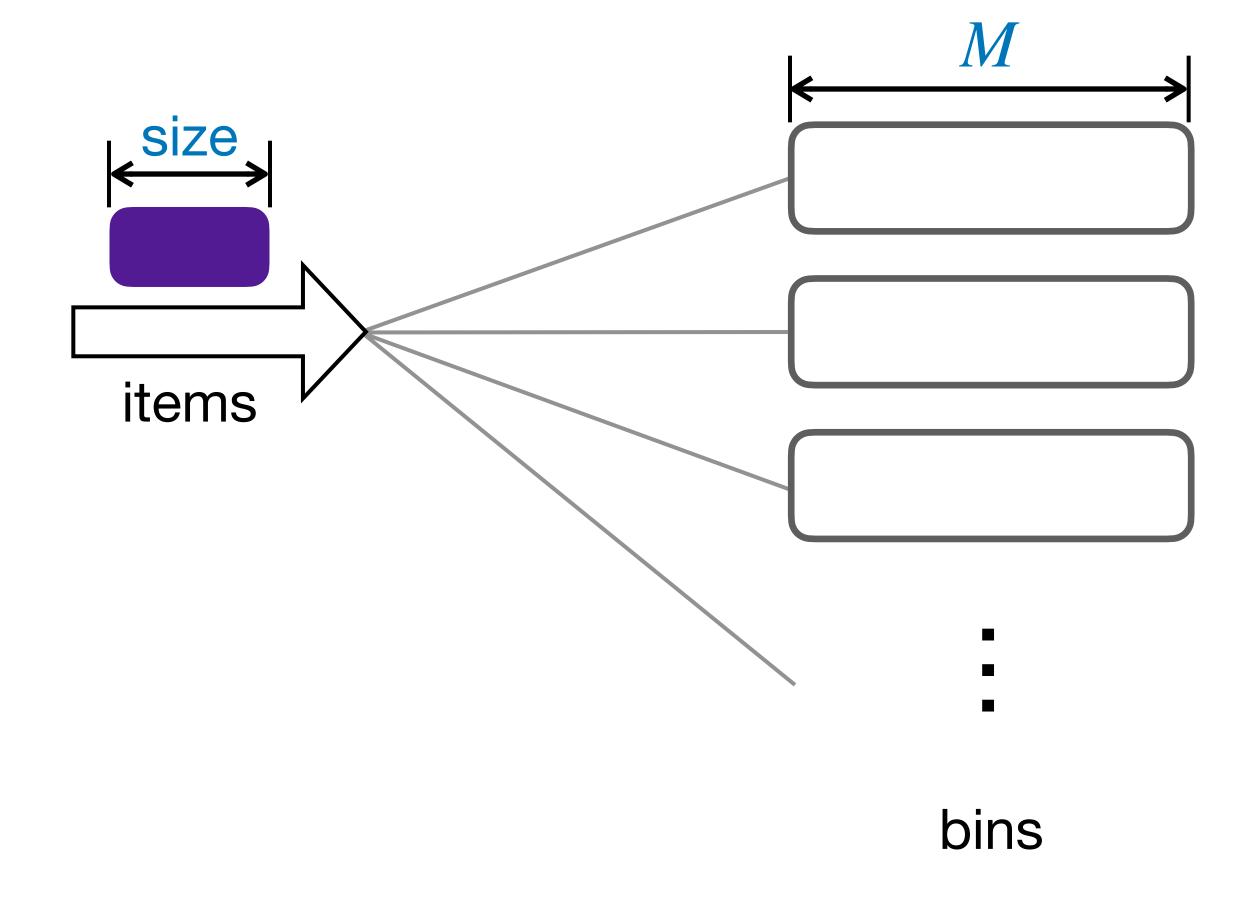
• Each arriving item needs to be assigned to a bin



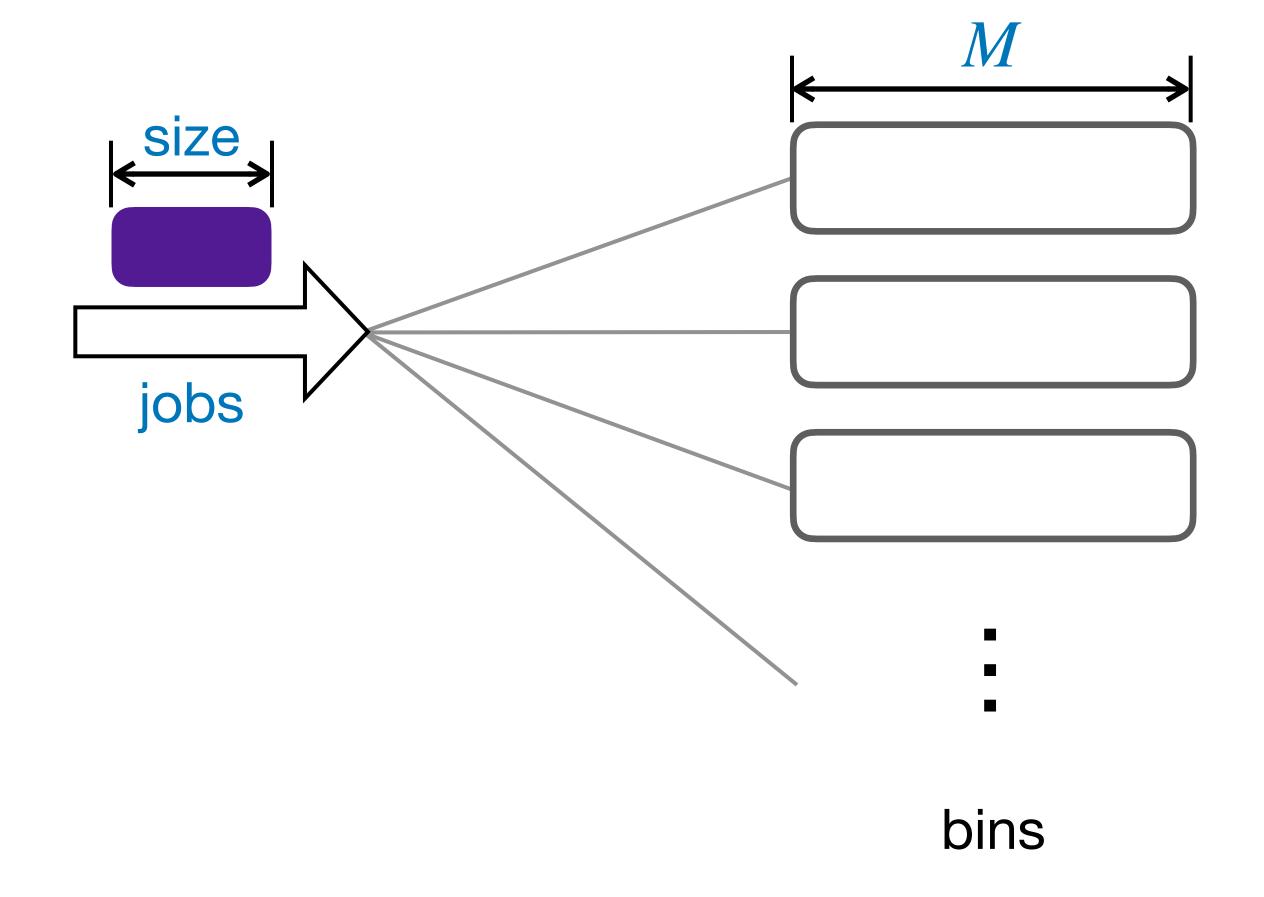
- Each arriving item needs to be assigned to a bin
- Each bin has a capacity M



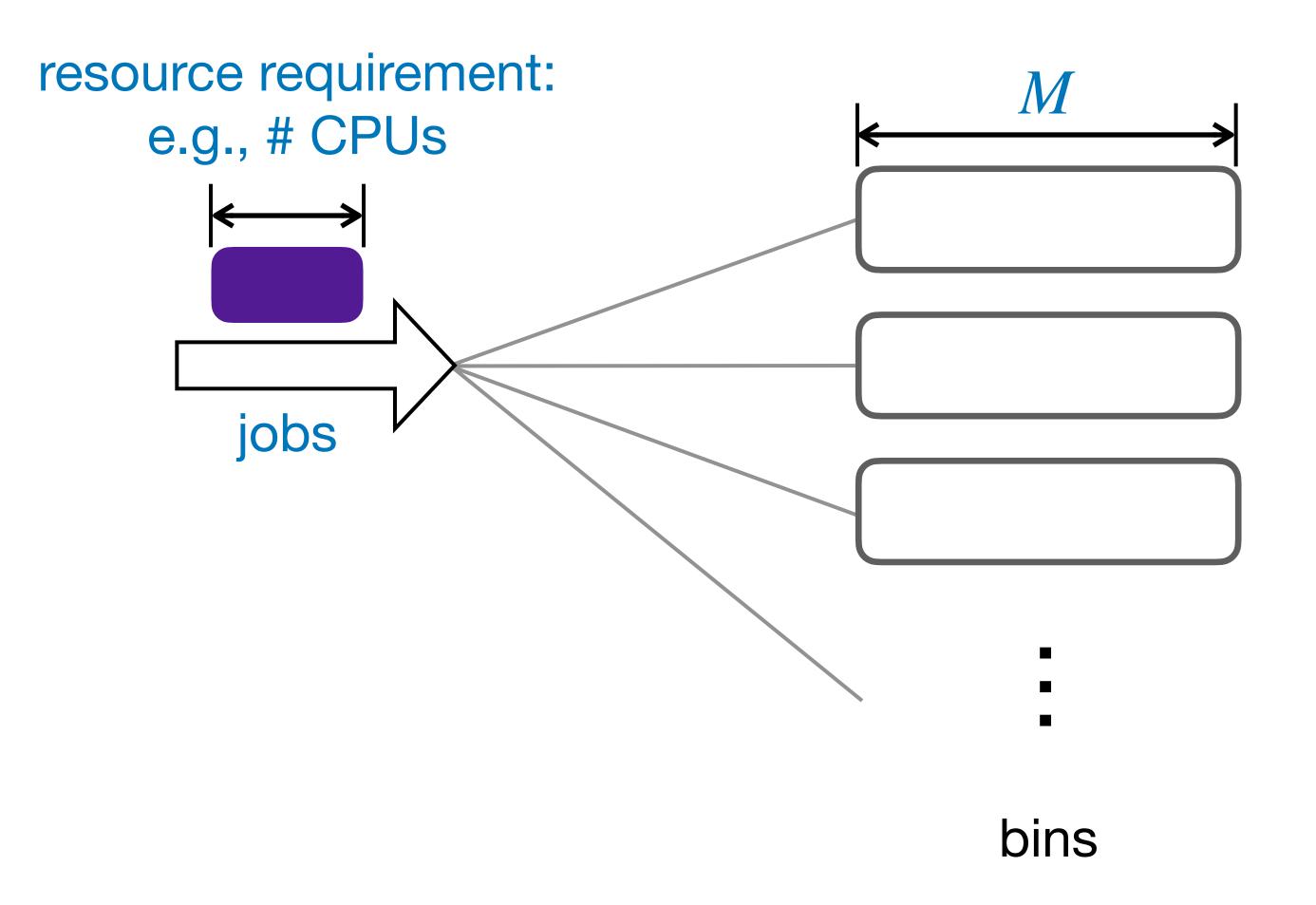
- Each arriving item needs to be assigned to a bin
- Each bin has a capacity M
- Infinite # bins



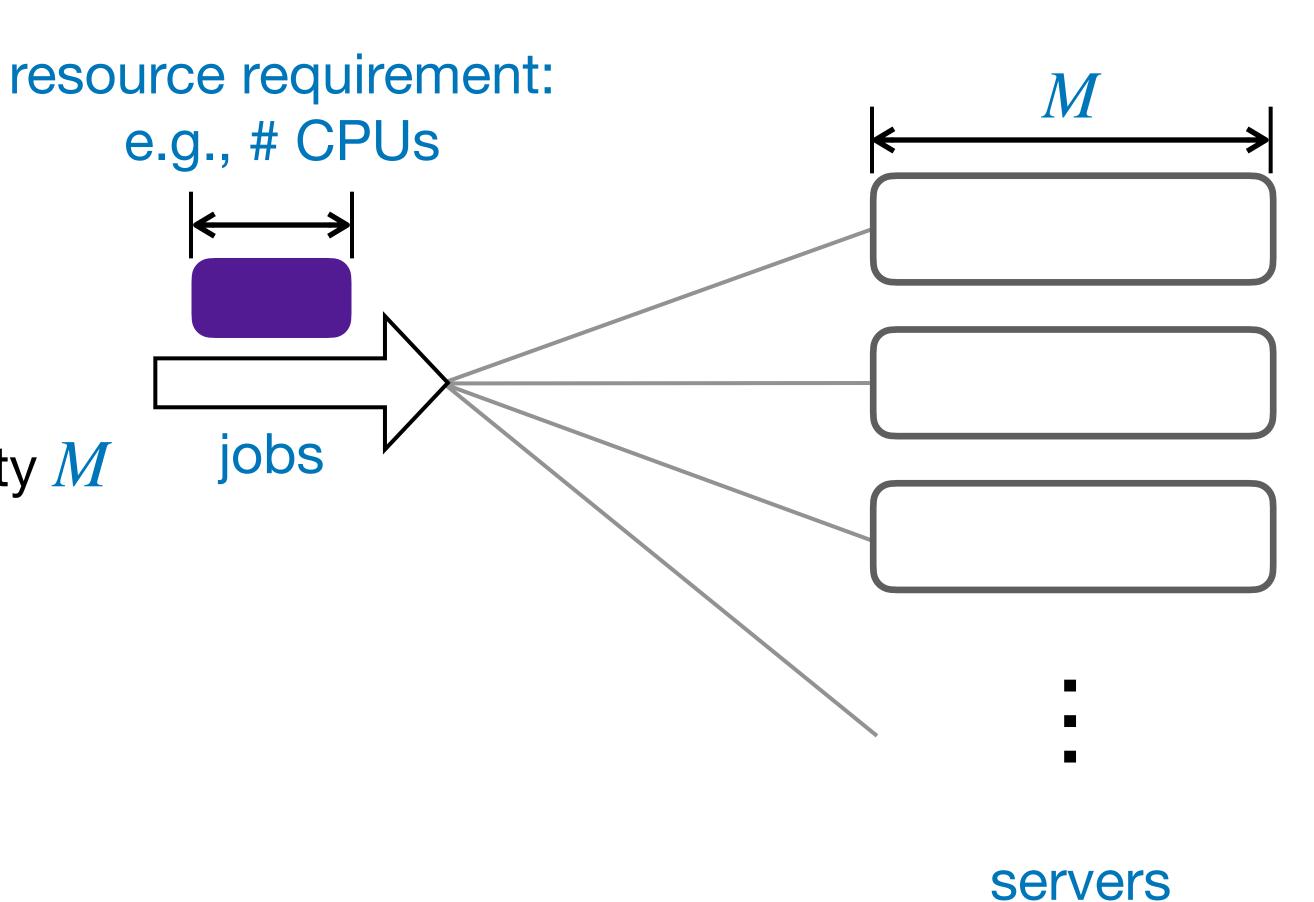
- Each arriving job needs to be assigned to a bin
- Each bin has a capacity M
- Infinite # bins



- Each arriving job needs to be assigned to a bin
- Each bin has a capacity M
- Infinite # bins



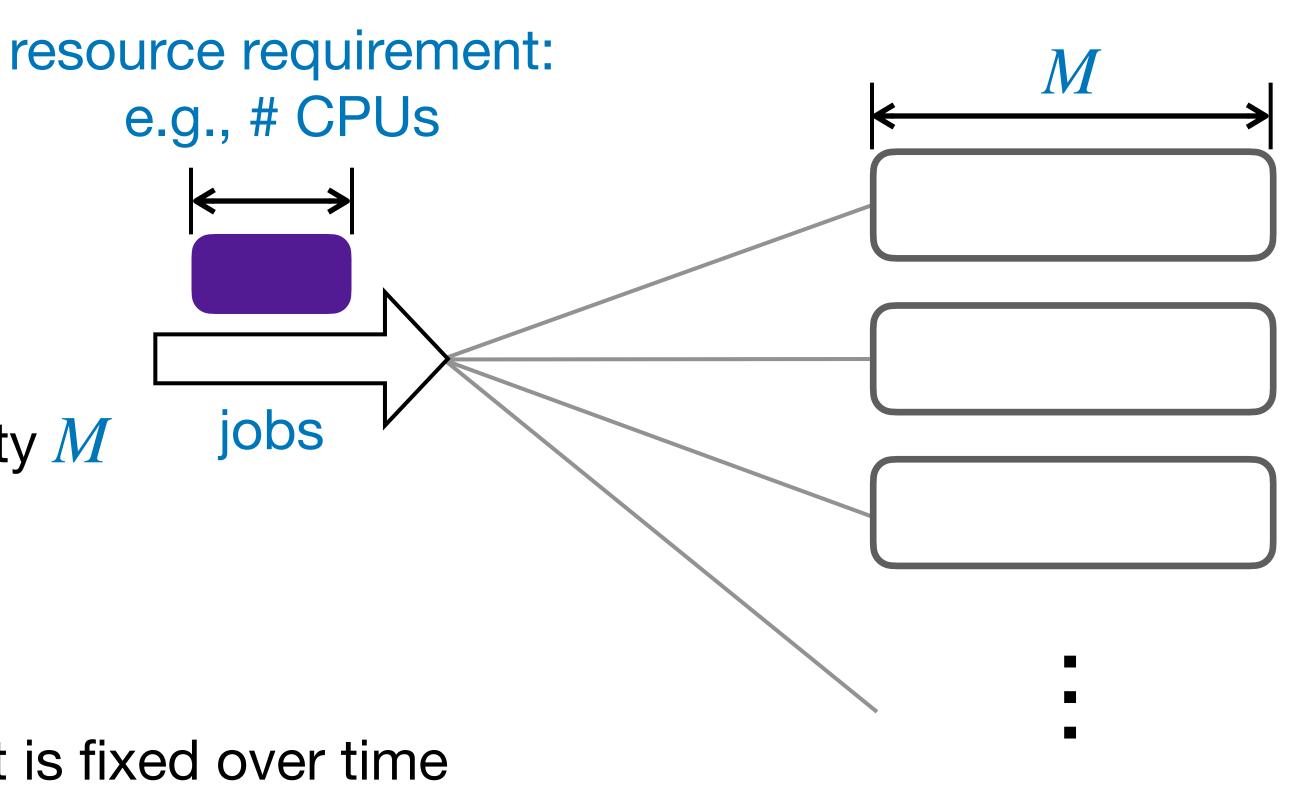
- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

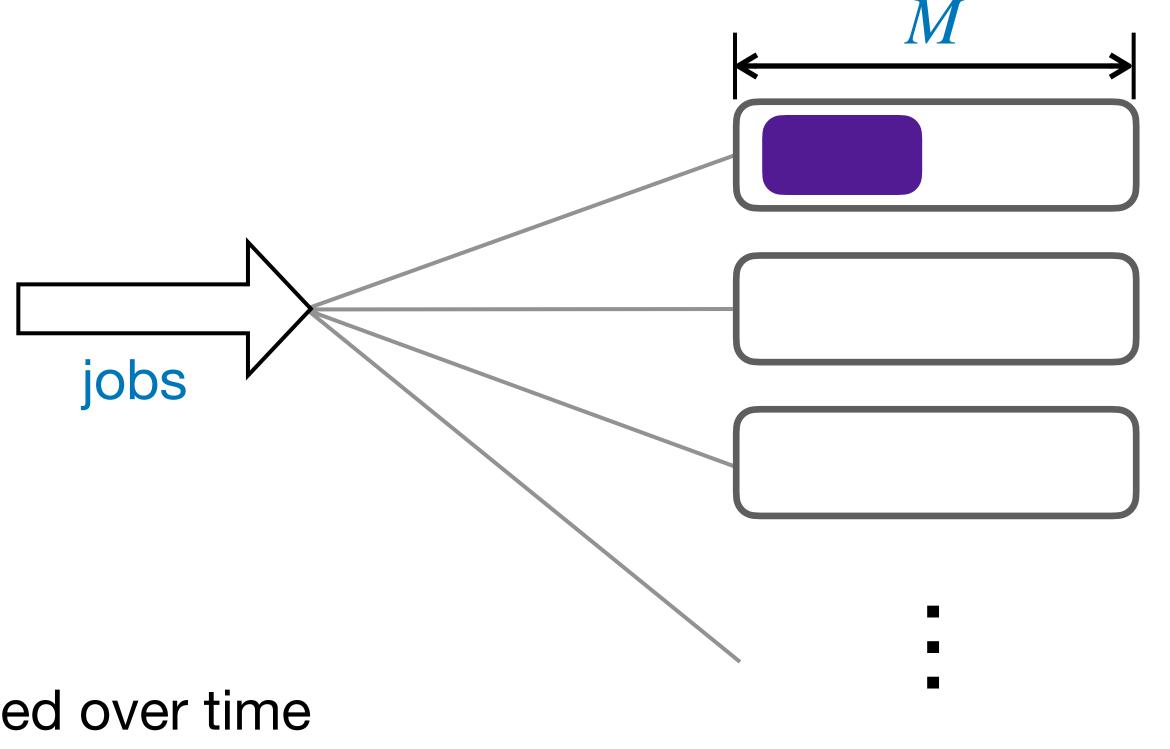
- Each job's resource requirement is fixed over time
- Each job departs after a random time



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

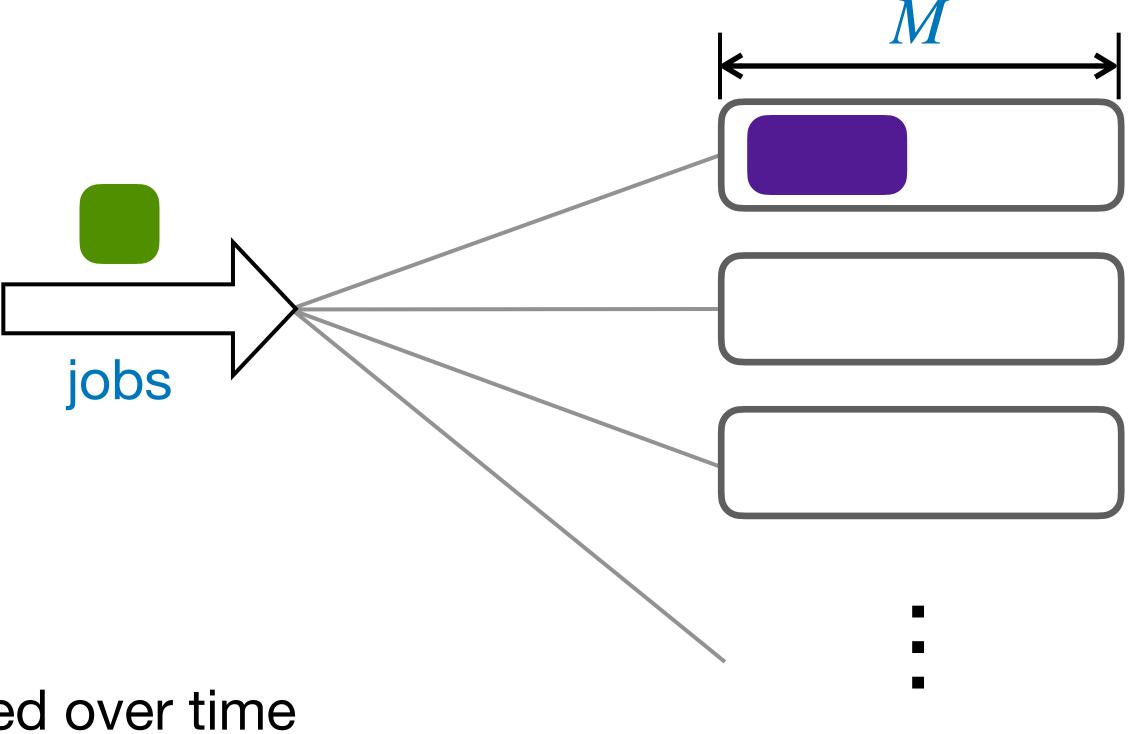
- Each job's resource requirement is fixed over time
- Each job departs after a random time



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

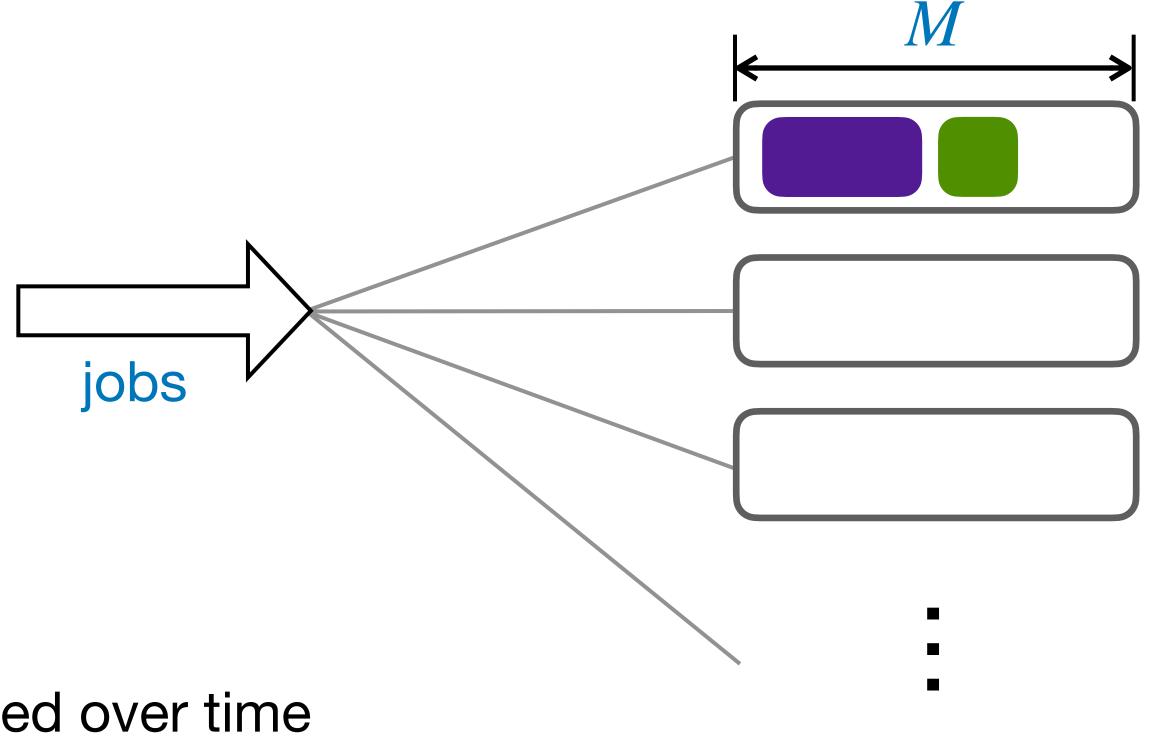
- Each job's resource requirement is fixed over time
- Each job departs after a random time



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

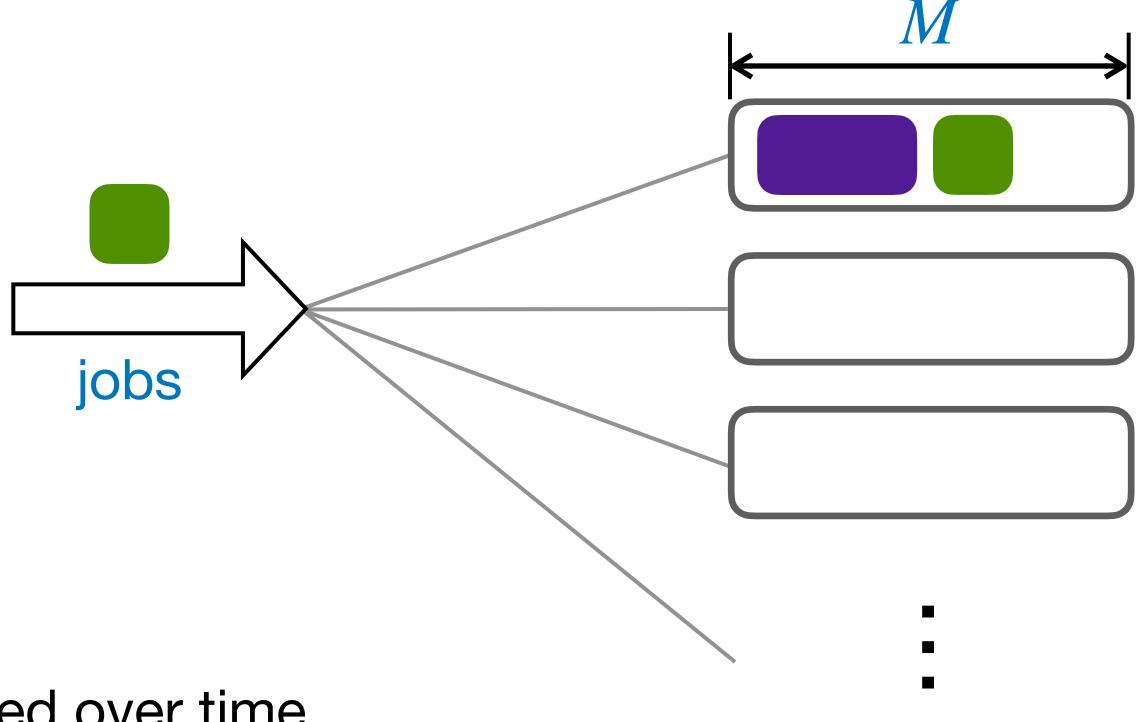
- Each job's resource requirement is fixed over time
- Each job departs after a random time



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

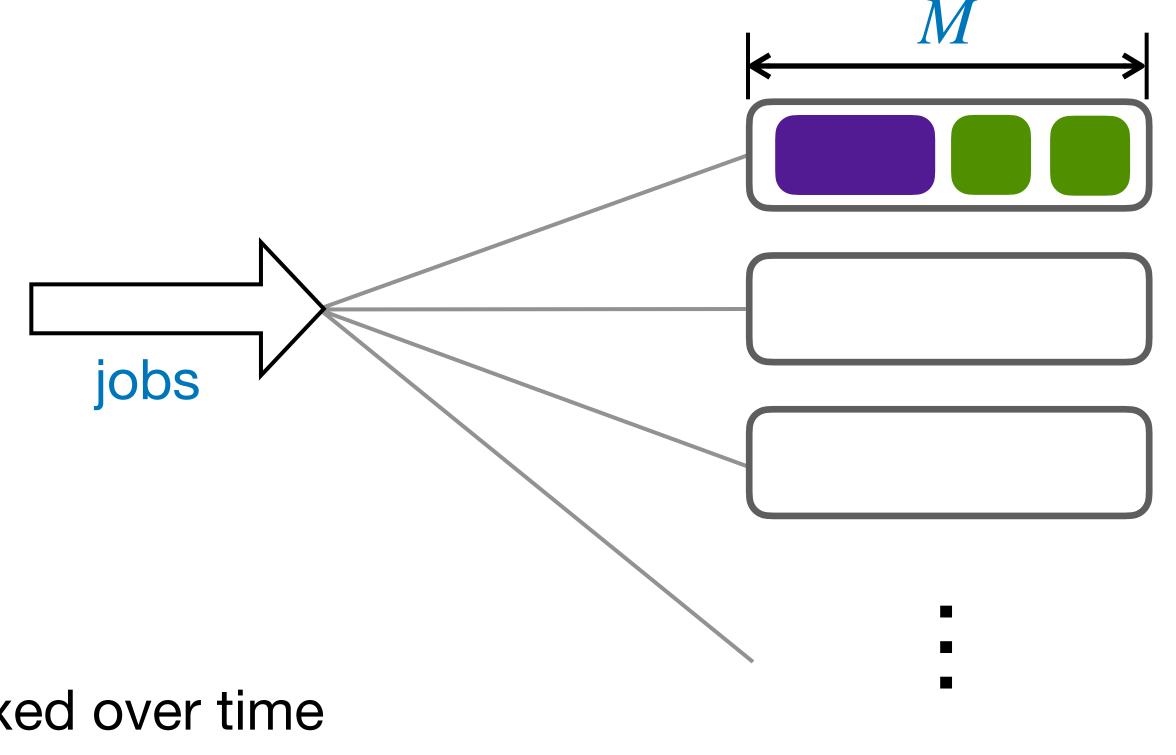
- Each job's resource requirement is fixed over time
- Each job departs after a random time



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

- Each job's resource requirement is fixed over time
- Each job departs after a random time

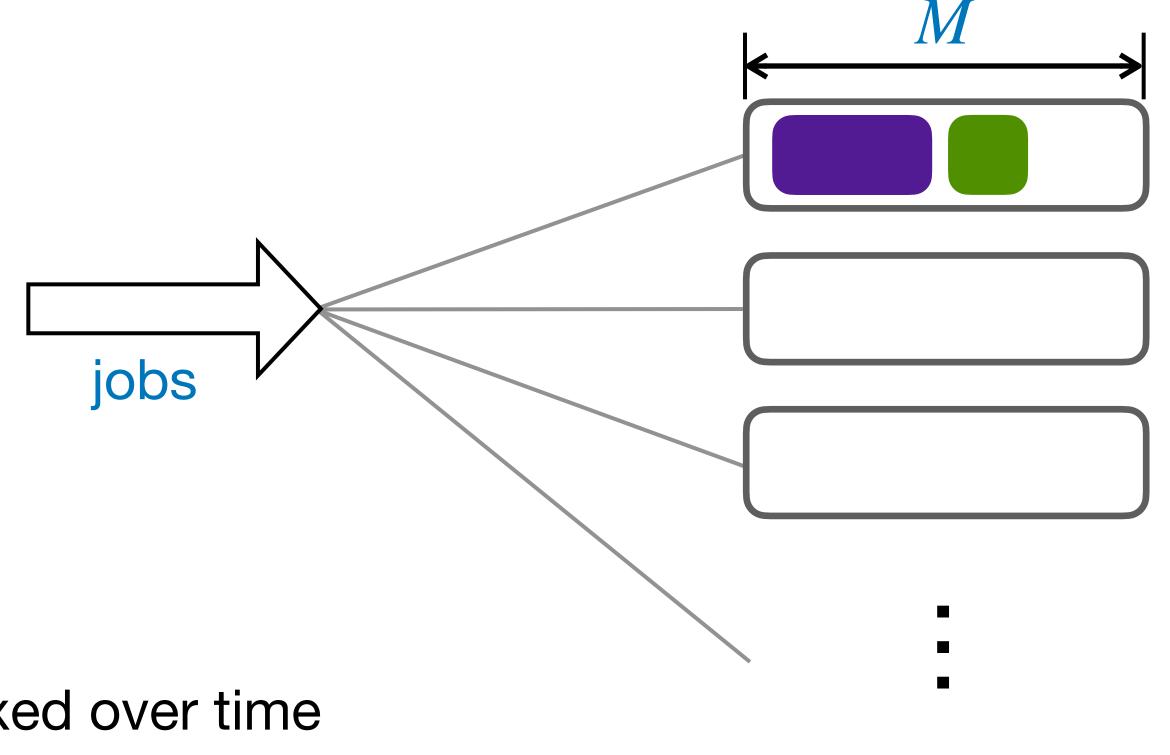


- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

Weina Wang (CMU)

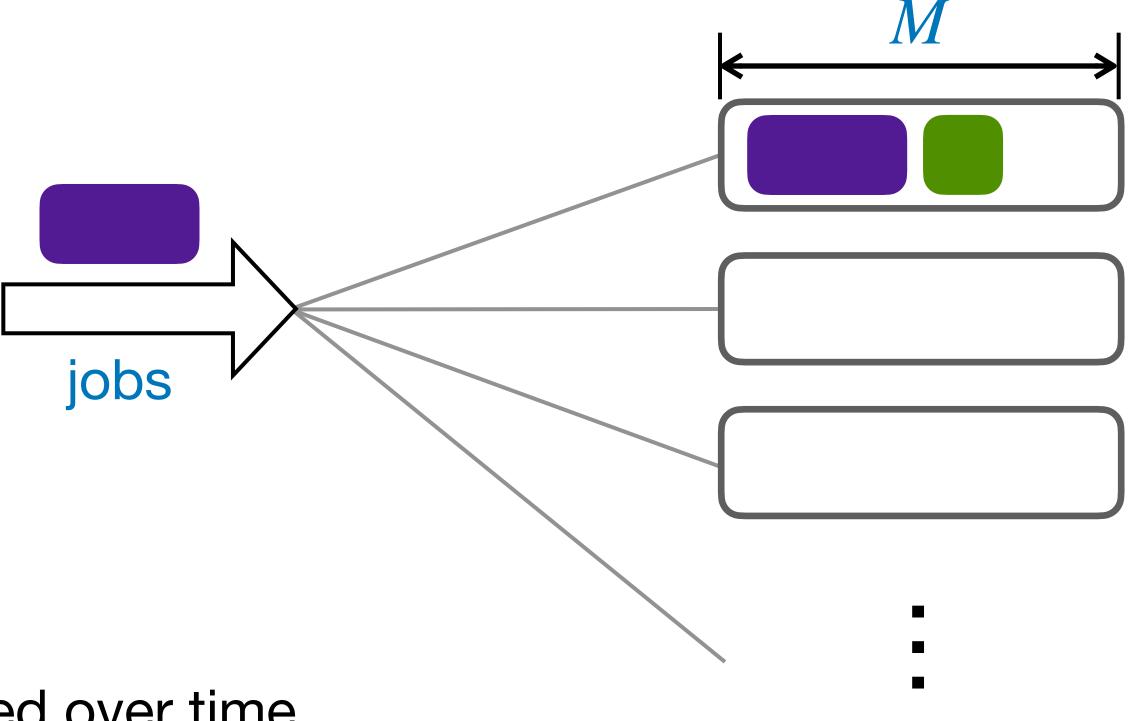
- Each job's resource requirement is fixed over time
- Each job departs after a random time



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

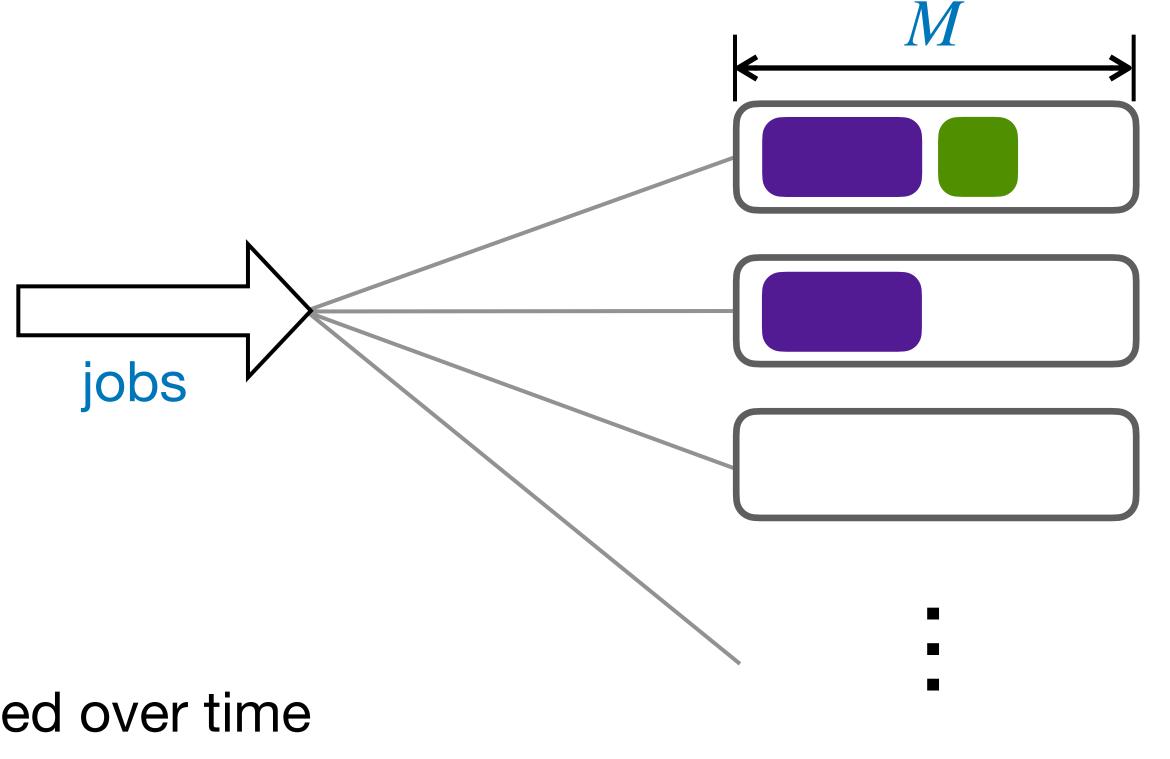
- Each job's resource requirement is fixed over time
- Each job departs after a random time



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

- Each job's resource requirement is fixed over time
- Each job departs after a random time

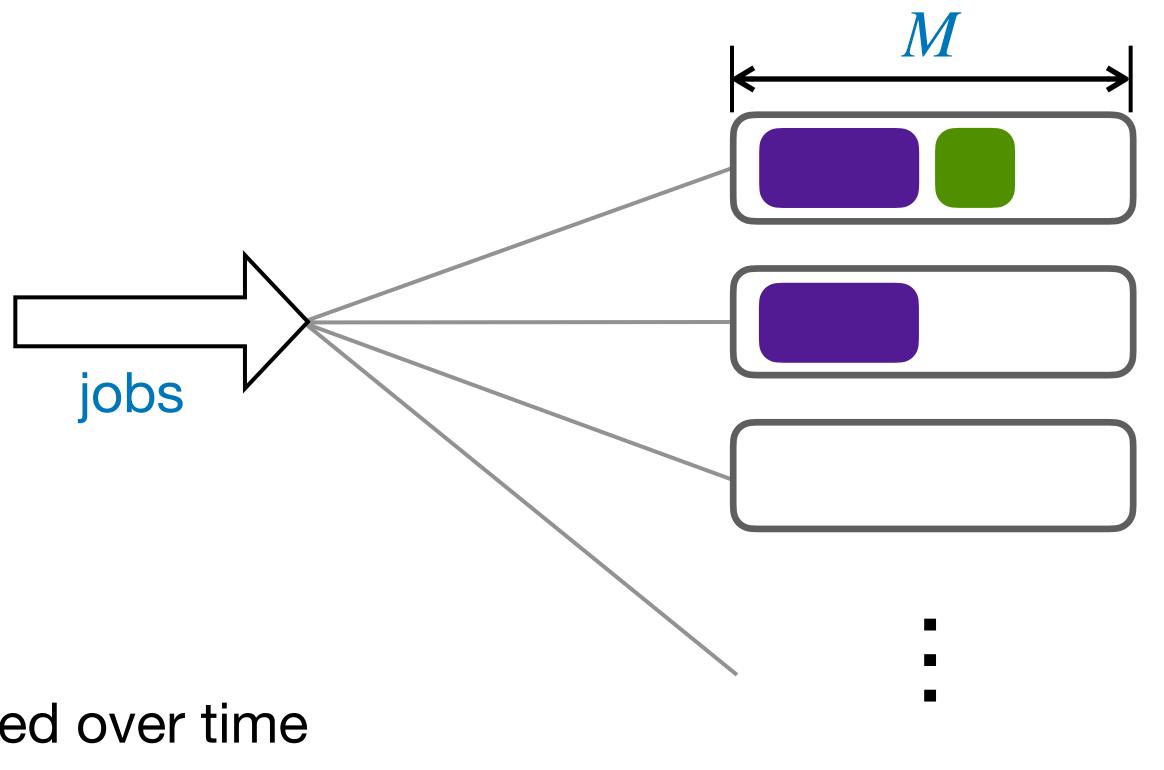


- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

Traditional job model:

- Each job's resource requirement is fixed over time
- Each job departs after a random time

Goal: minimize minimize [# active servers]



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

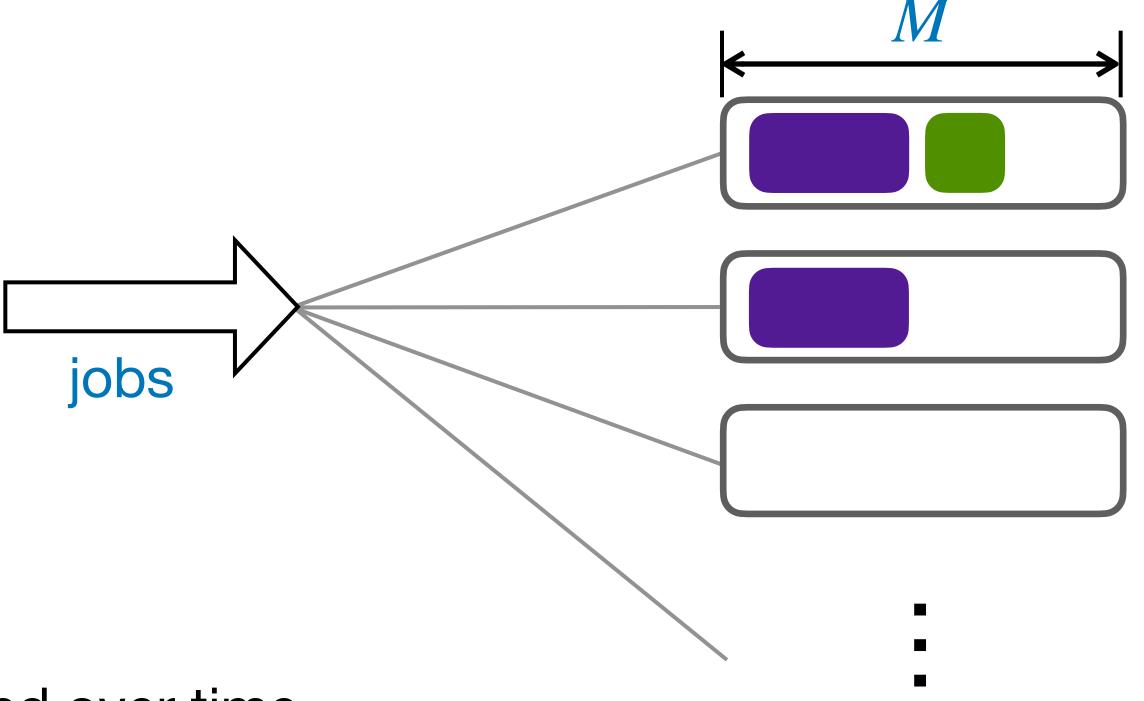
Traditional job model:

- Each job's resource requirement is fixed over time
- Each job departs after a random time

Goal: minimize job assigning policy

E # active servers

servers



"Stochastic bin-packing in service systems"

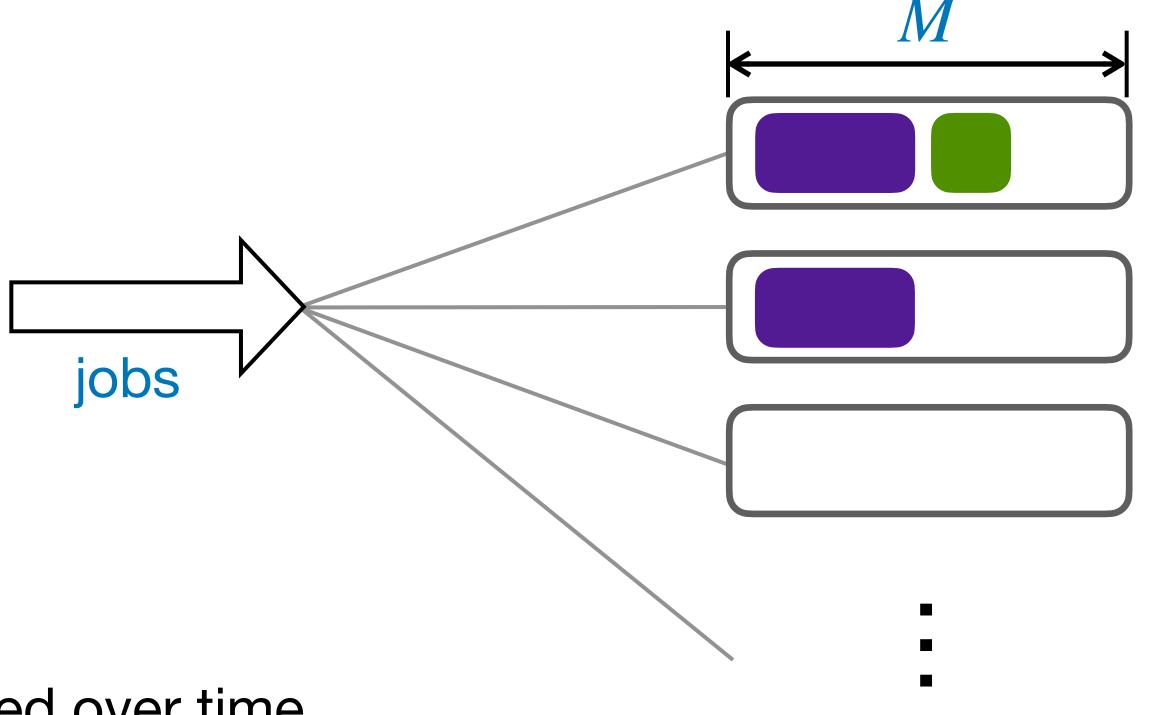
- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

A new job model:

- Each job's resource requirement is fixed over time
- Each job departs after a random time

Goal: minimize job assigning policy E [# active servers]

servers



"Stochastic bin-packing in service systems"

- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

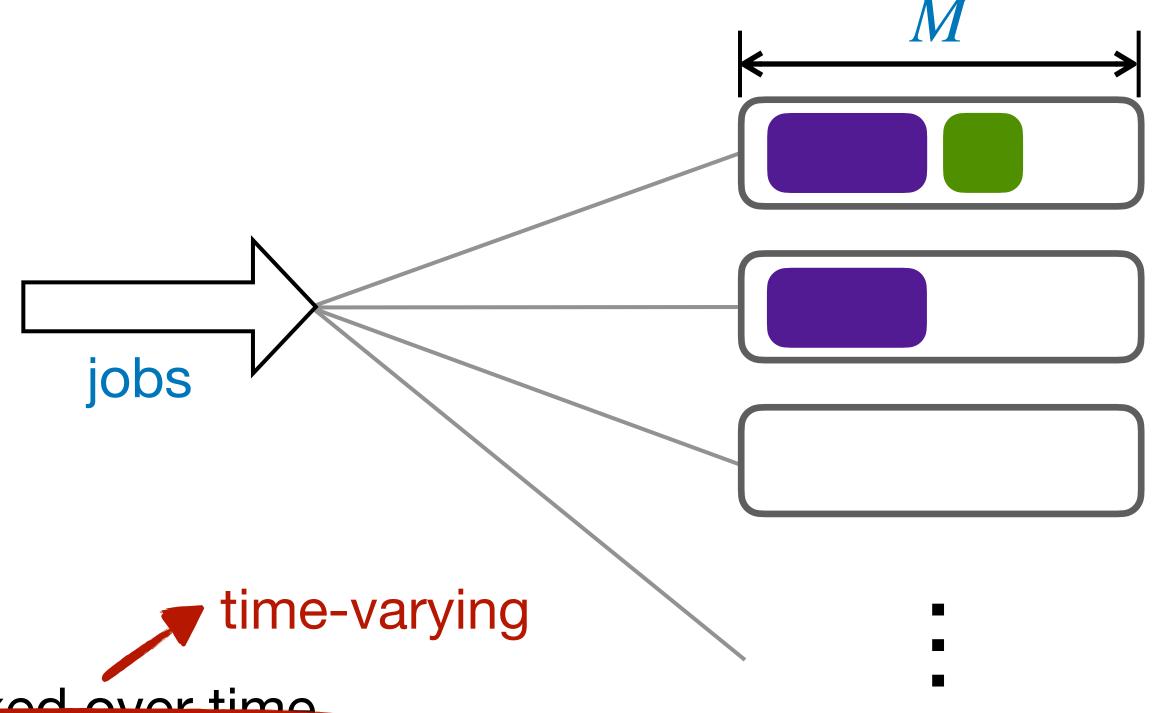
A new job model:

- Each job's resource requirement is fixed ever time
- Each job departs after a random time

Goal: minimize job assigning policy

E [# active servers]

"Stochastic bin-packing in service systems"



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

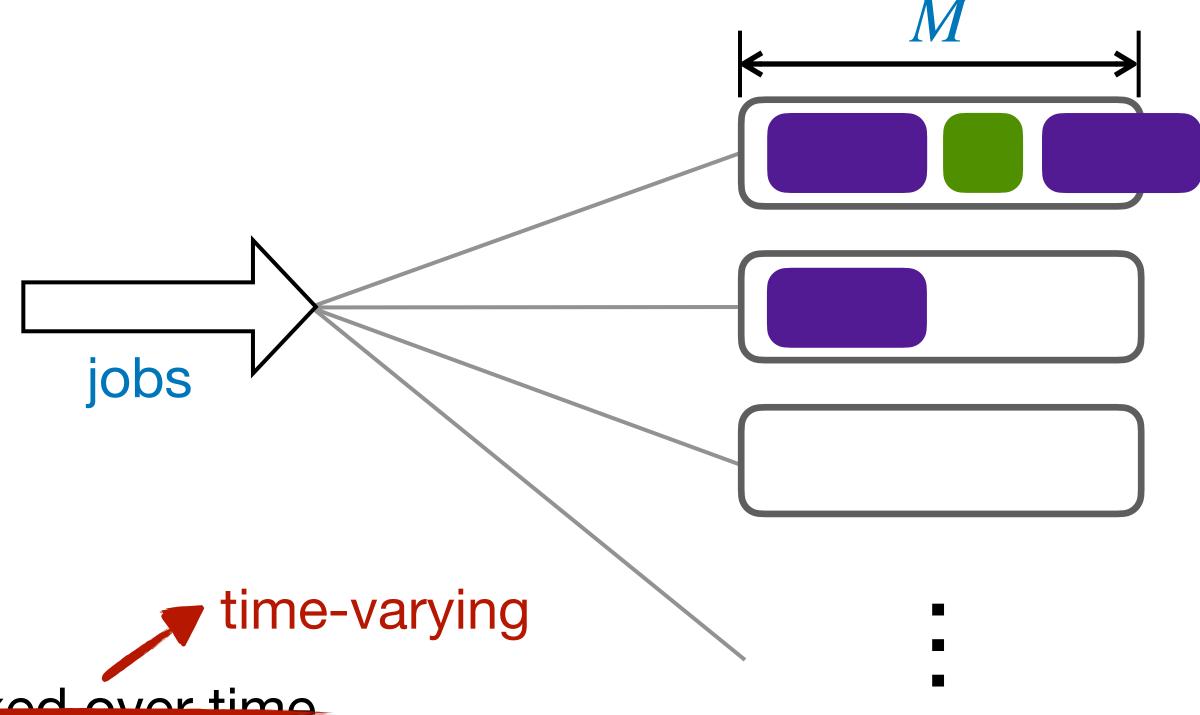
A new job model:

- Each job's resource requirement is fixed over time
- Each job departs after a random time

Goal: minimize job assigning policy

E [# active servers]

"Stochastic bin-packing in service systems"



- Each arriving job needs to be assigned to a server
- Each server has a resource capacity M
- Infinite # servers

A new job model:

- Each job's resource requirement is fixed over time
- Each job departs after a random time

servers "Stochastic bin-packing

M

in service systems"

Goal:

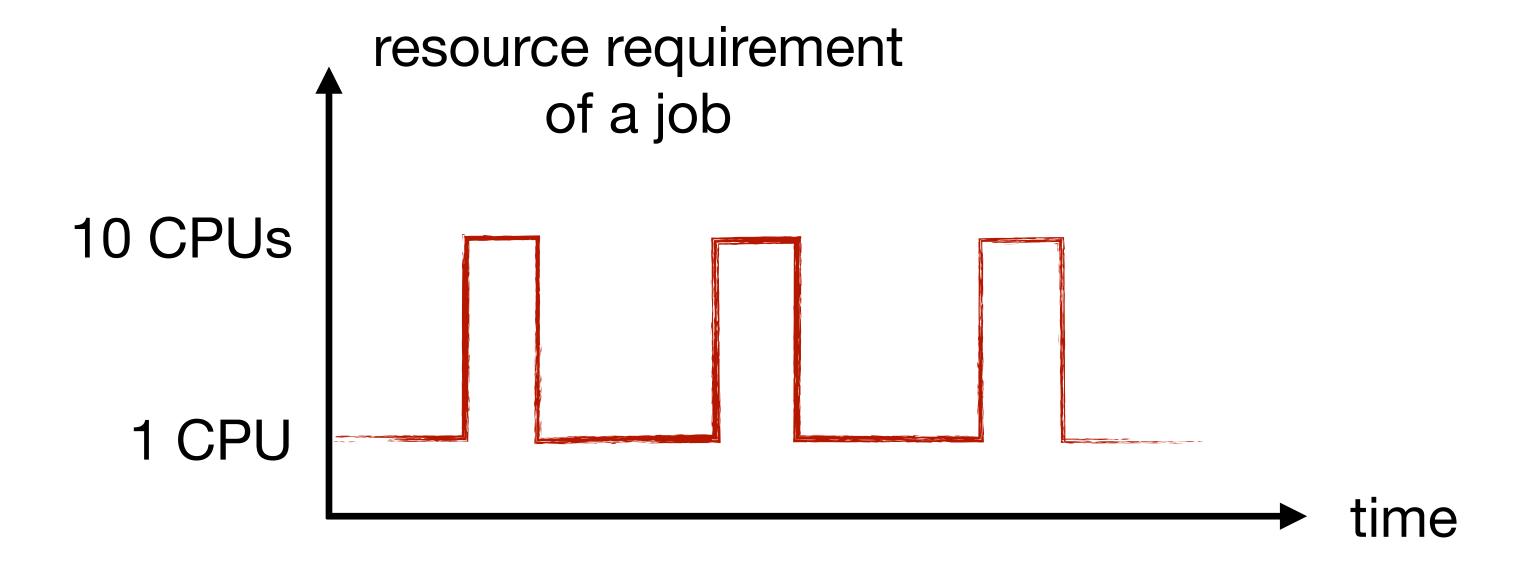
minimize job assigning policy E [# active servers]

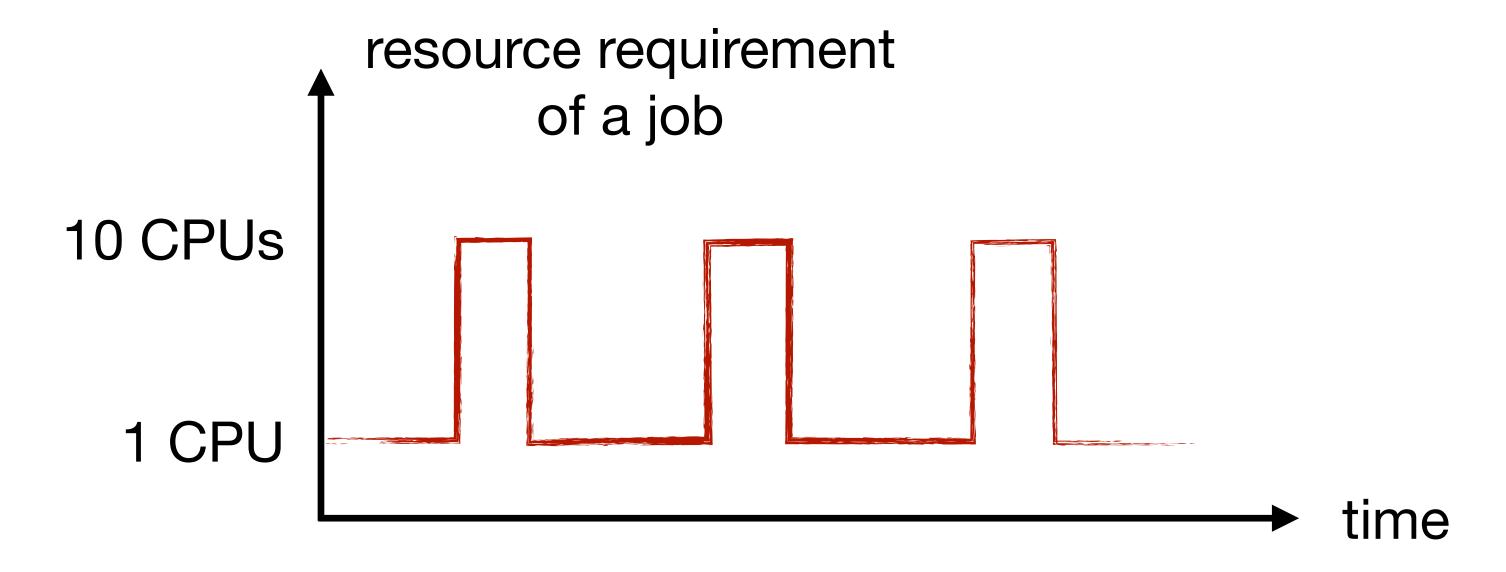
jobs

cost (resource contention) ≤ budget

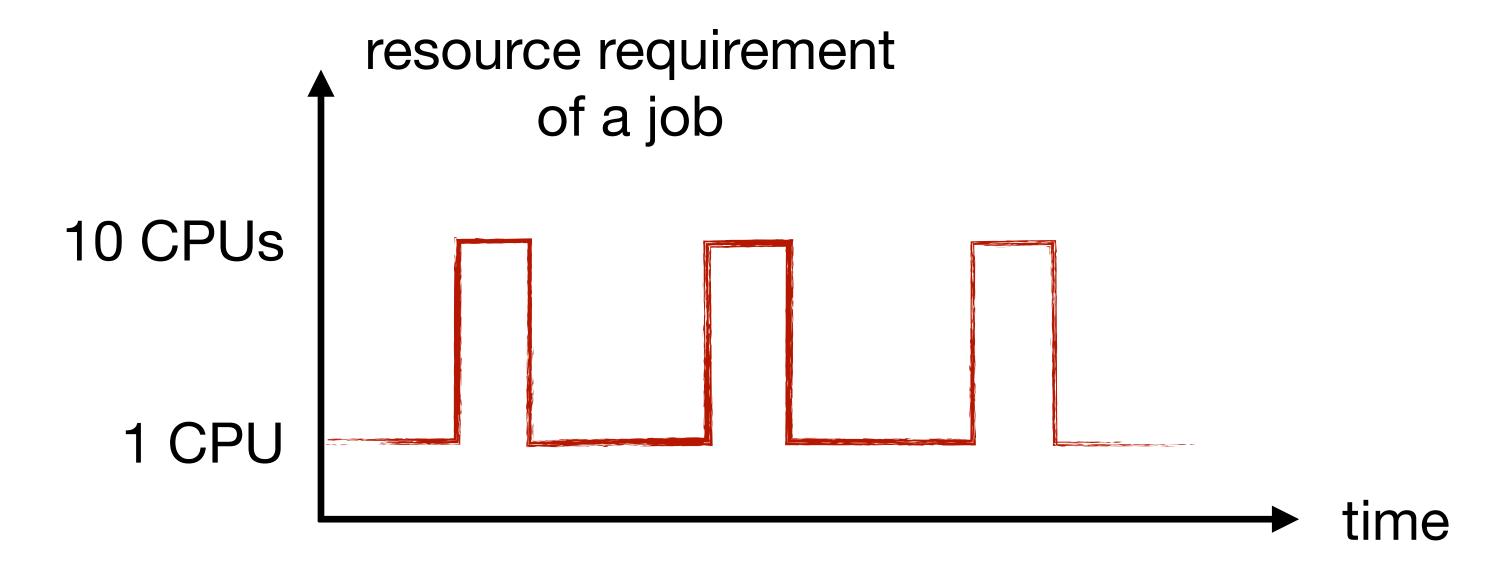
time-varying

subject to

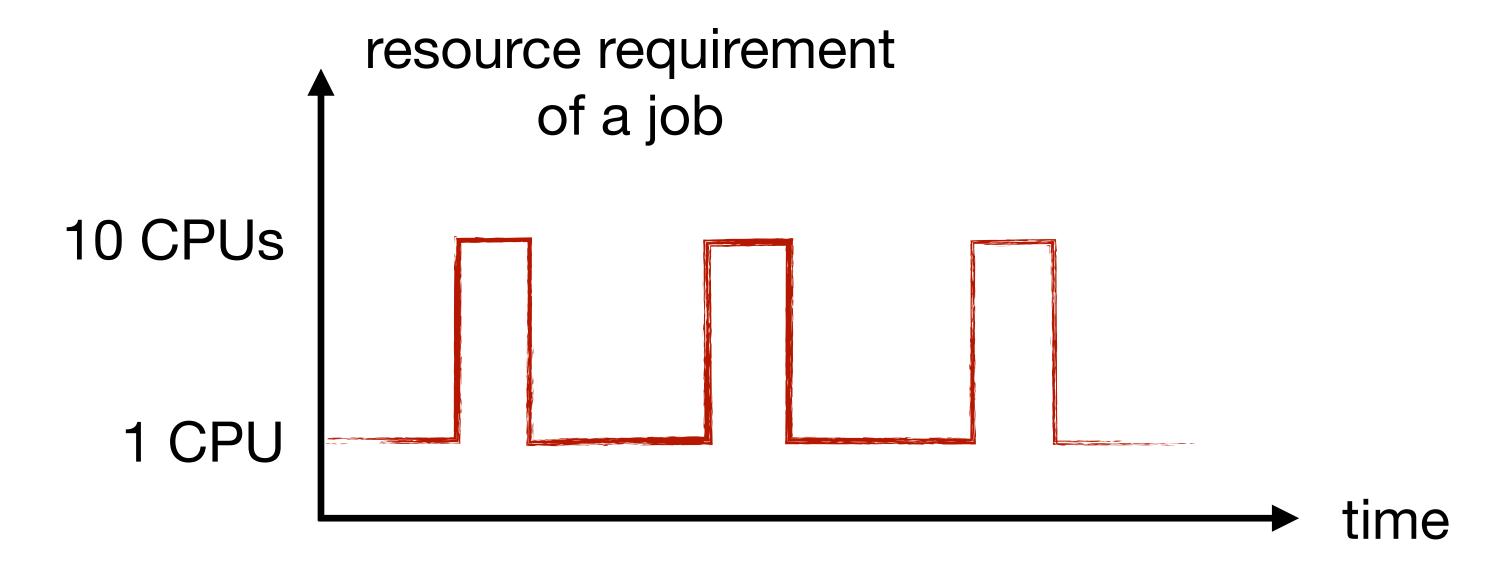




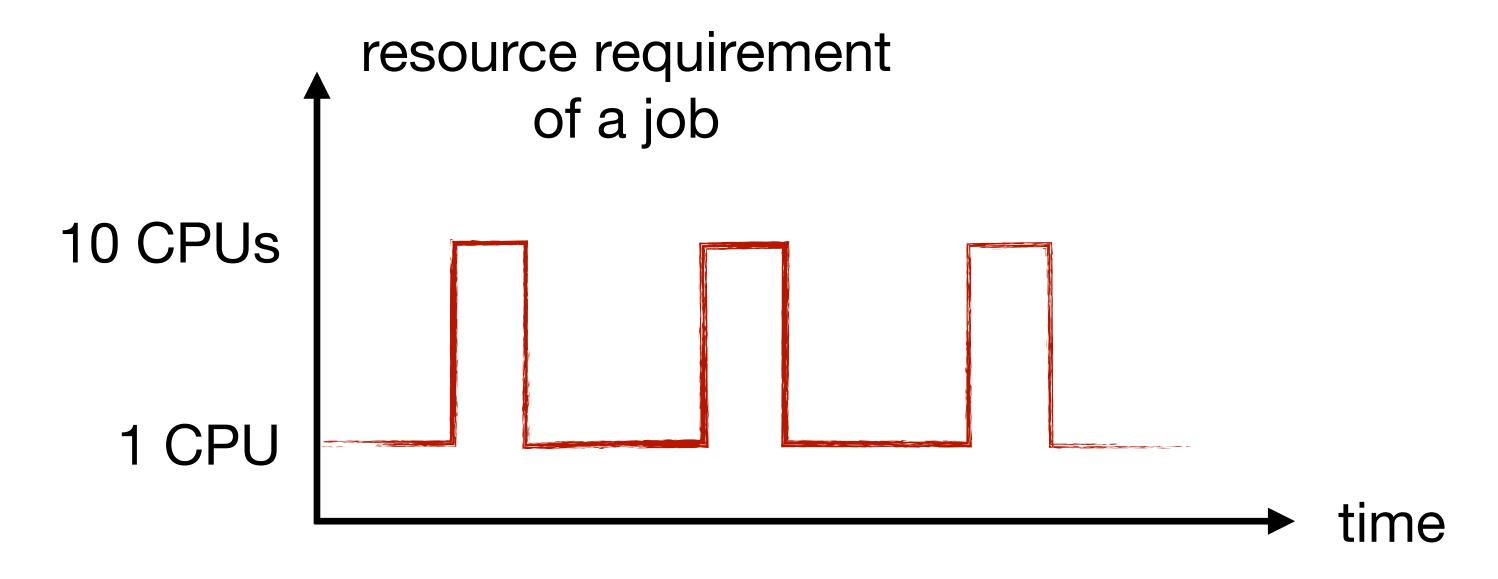
Reserve resources based on peak requirement



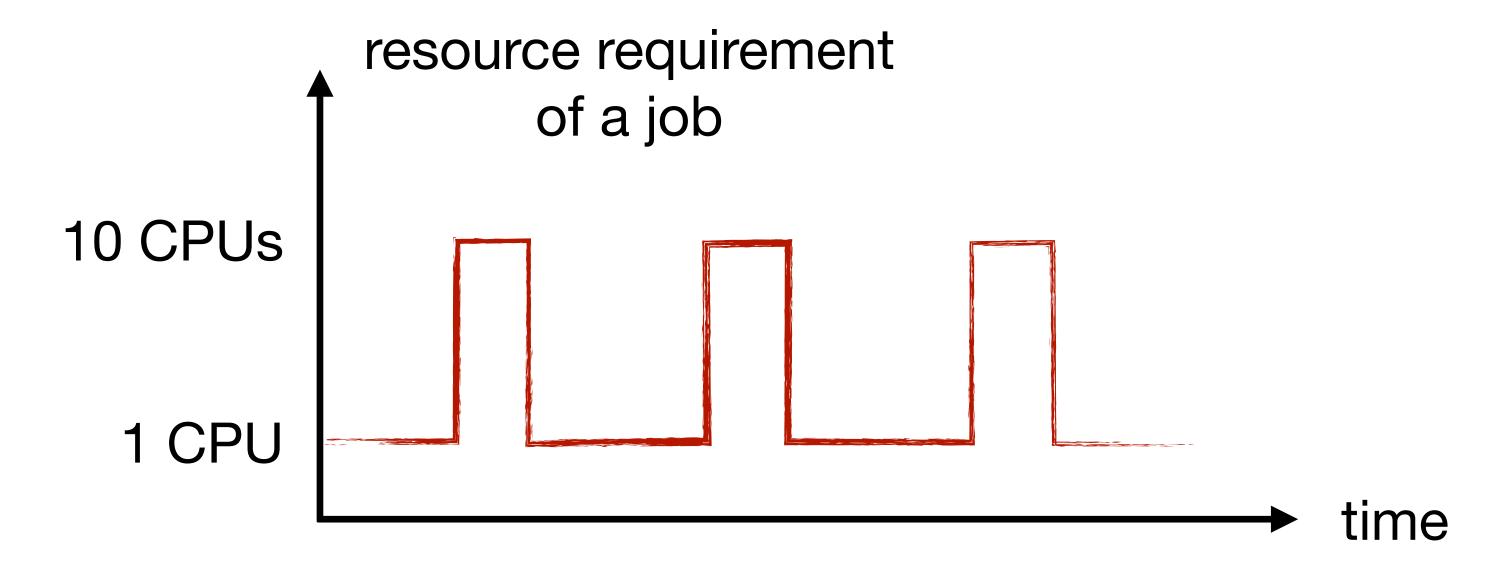
- Reserve resources based on peak requirement
 - low resource utilization on a server



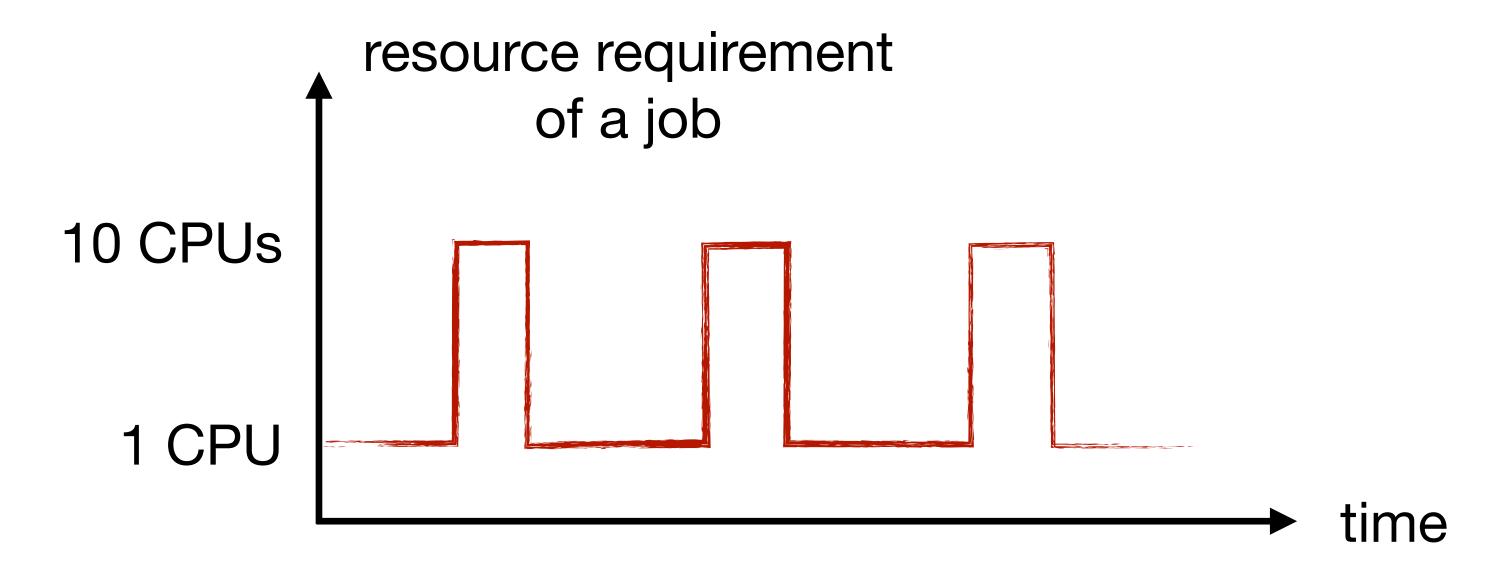
- Reserve resources based on peak requirement
 - low resource utilization on a server
 - larger # active servers



- Reserve resources based on peak requirement
 - low resource utilization on a server
 - larger # active servers
- Overcommit resources on a server

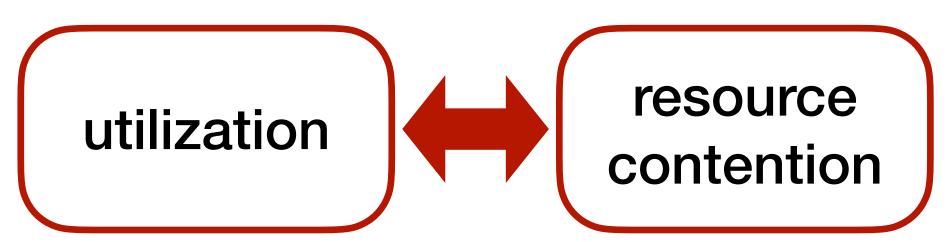


- Reserve resources based on peak requirement
 - low resource utilization on a server
 - larger # active servers
- Overcommit resources on a server
 - possible resource contention



- Reserve resources based on peak requirement
 - low resource utilization on a server
 - larger # active servers
- Overcommit resources on a server
 - possible resource contention

Our formulation captures:



Stochastic bin-packing in service systems

- Stochastic bin-packing in service systems
 - Traditional job model: Asymptotic optimality, no convergence rate

[Stolyar 2013], [Stolyar and Zhong 2013, 2015, 2021], [Ghaderi, Zhong, and Srikant 2014], [Stolyar 2017]

- Stochastic bin-packing in service systems
 - Traditional job model: Asymptotic optimality, no convergence rate
 [Stolyar 2013], [Stolyar and Zhong 2013, 2015, 2021], [Ghaderi, Zhong, and Srikant 2014], [Stolyar 2017]
 - Finite-server model: Maximizing throughput/reward, heavy-traffic optimality, loss model

[Maguluri, Srikant, and Ying 2012], [Maguluri and Srikant 2013], [Xie et al. 2015], [Ghaderi 2016], [Psychas and Ghaderi 2017, 2018, 2019, 2021, 2021], ...

- Stochastic bin-packing in service systems
 - Traditional job model: Asymptotic optimality, no convergence rate
 [Stolyar 2013], [Stolyar and Zhong 2013, 2015, 2021], [Ghaderi, Zhong, and Srikant 2014], [Stolyar 2017]
 - Finite-server model: Maximizing throughput/reward, heavy-traffic optimality, loss model

[Maguluri, Srikant, and Ying 2012], [Maguluri and Srikant 2013], [Xie et al. 2015], [Ghaderi 2016], [Psychas and Ghaderi 2017, 2018, 2019, 2021, 2021], ...

Stochastic bin-packing without job departures

[Courcoubetis and Weber 1986, 1990], [Csirik et al. 2006], [Freund and Banerjee 2019], [Gupta and Radovanović 2020], ...

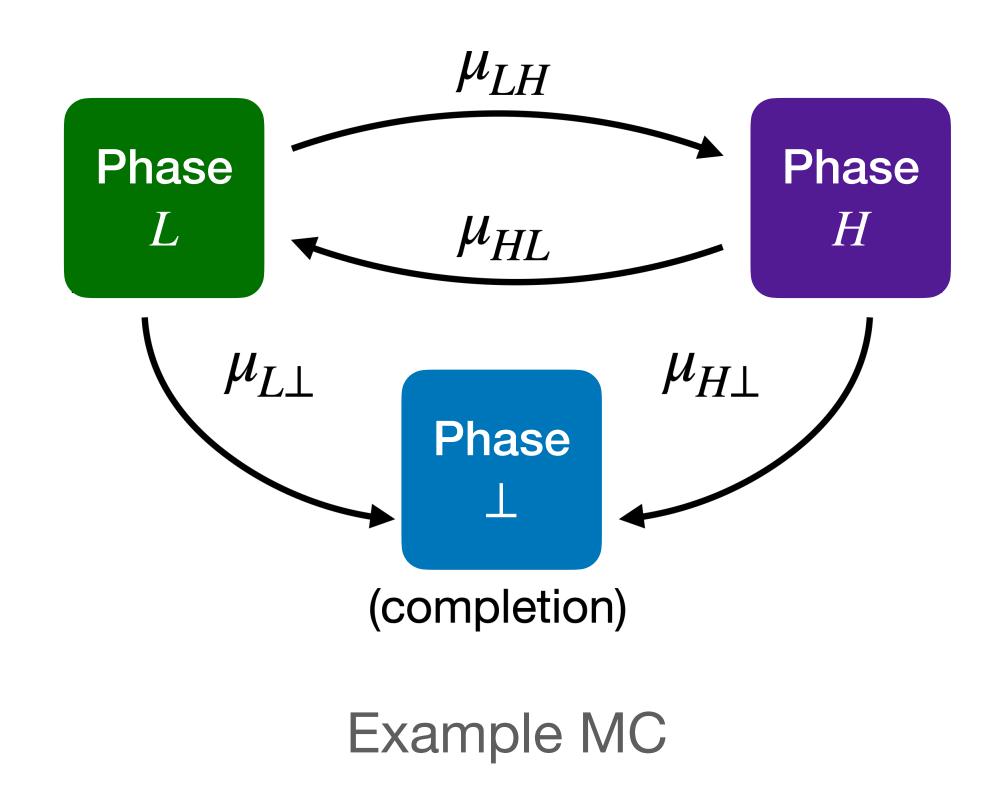
- Stochastic bin-packing in service systems
 - Traditional job model: Asymptotic optimality, no convergence rate
 [Stolyar 2013], [Stolyar and Zhong 2013, 2015, 2021], [Ghaderi, Zhong, and Srikant 2014], [Stolyar 2017]
 - Finite-server model: Maximizing throughput/reward, heavy-traffic optimality, loss model

[Maguluri, Srikant, and Ying 2012], [Maguluri and Srikant 2013], [Xie et al. 2015], [Ghaderi 2016], [Psychas and Ghaderi 2017, 2018, 2019, 2021, 2021], ...

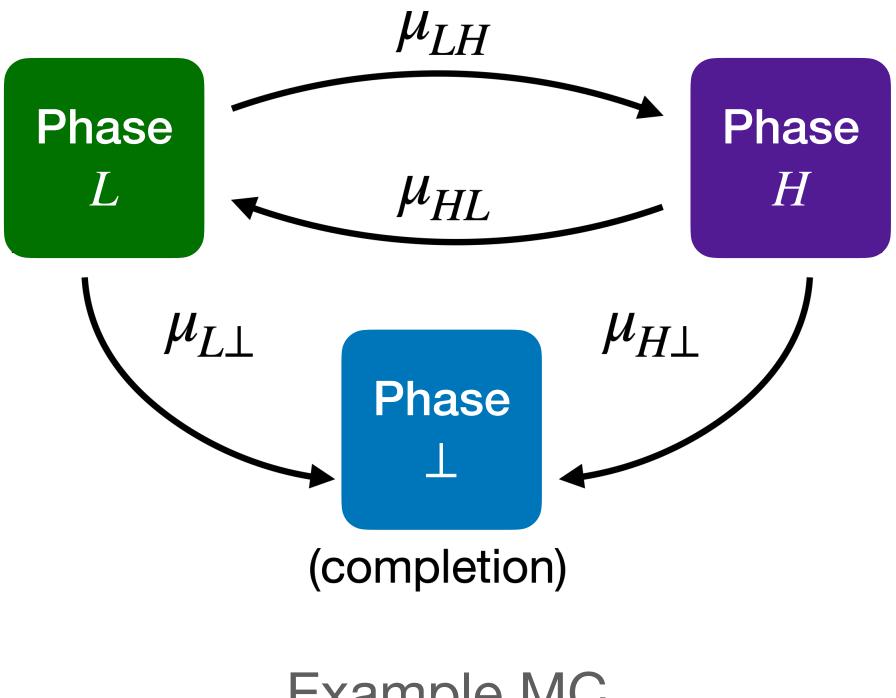
Stochastic bin-packing without job departures

[Courcoubetis and Weber 1986, 1990], [Csirik et al. 2006], [Freund and Banerjee 2019], [Gupta and Radovanović 2020], ...

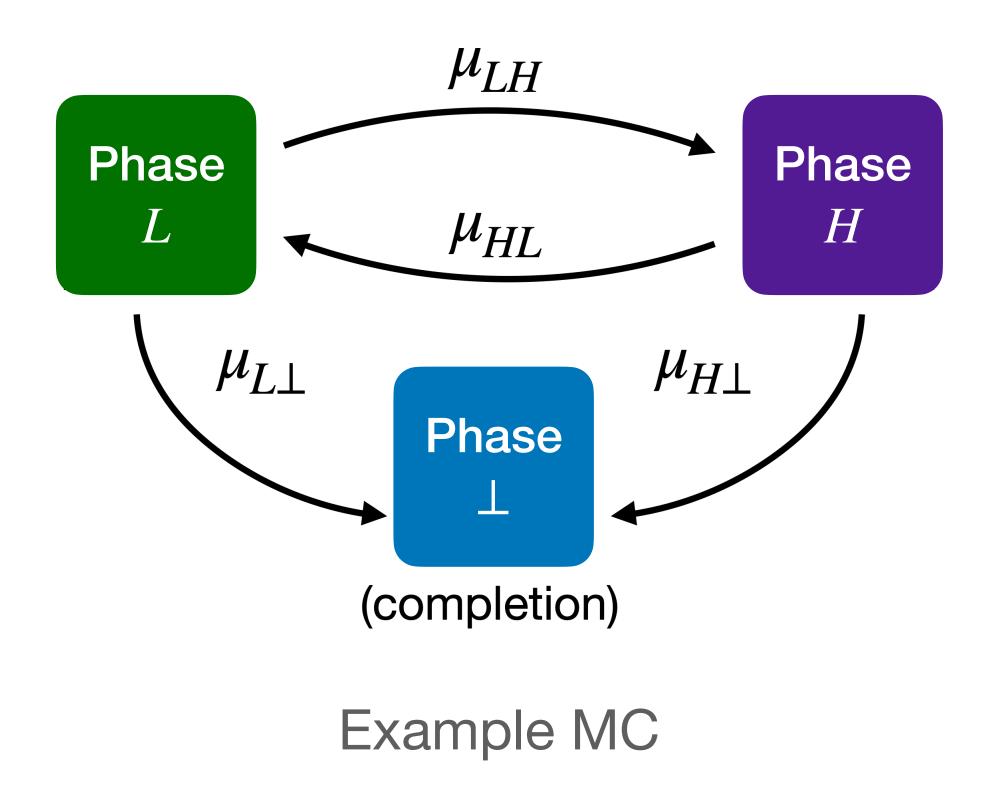
Classical bin-packing: Vast literature



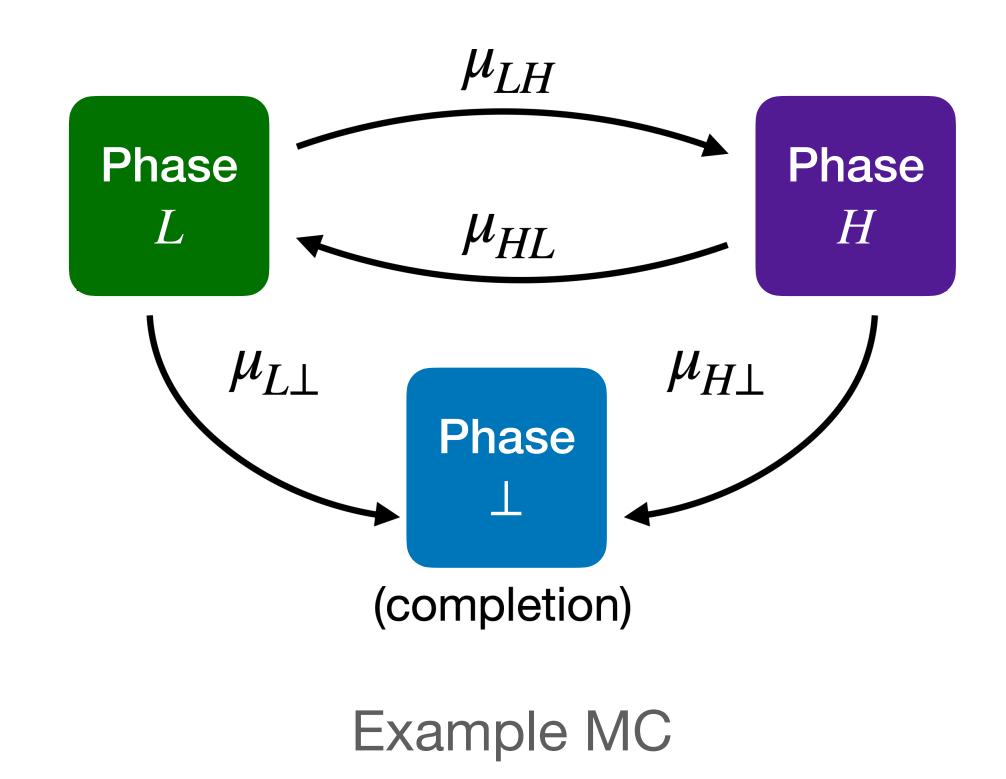
Resource requirement of a job evolves over time following a Markov chain



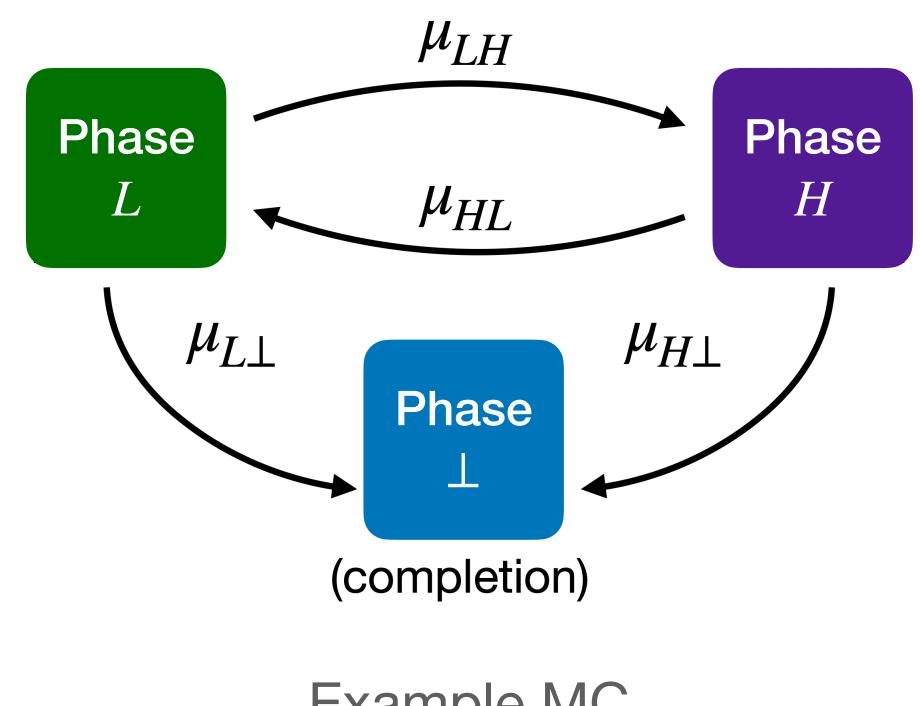
- Resource requirement of a job evolves over time following a Markov chain
- Initial job type follows an initial distribution



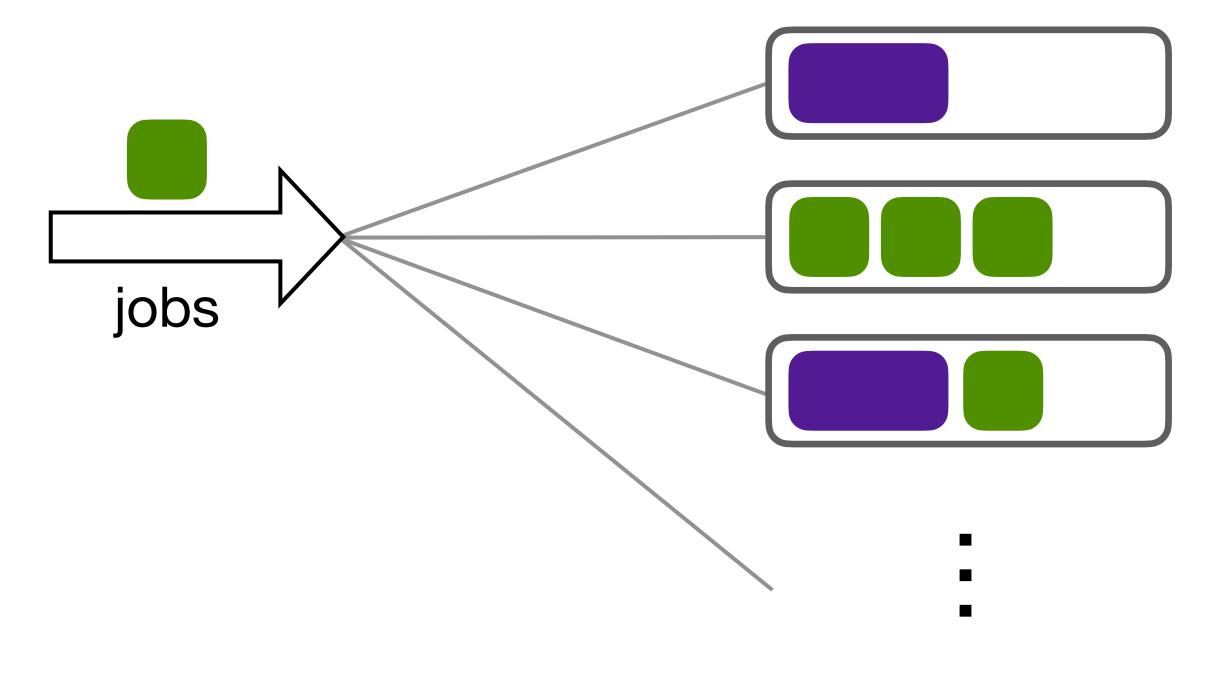
- Resource requirement of a job evolves over time following a Markov chain
- Initial job type follows an initial distribution
- MCs of jobs are independent of each other, and they are exogenous (not affected by resource contention)



- Resource requirement of a job evolves over time following a Markov chain
- Initial job type follows an initial distribution
- MCs of jobs are independent of each other, and they are exogenous (not affected by resource contention)
- Jobs arrive following a Poisson process

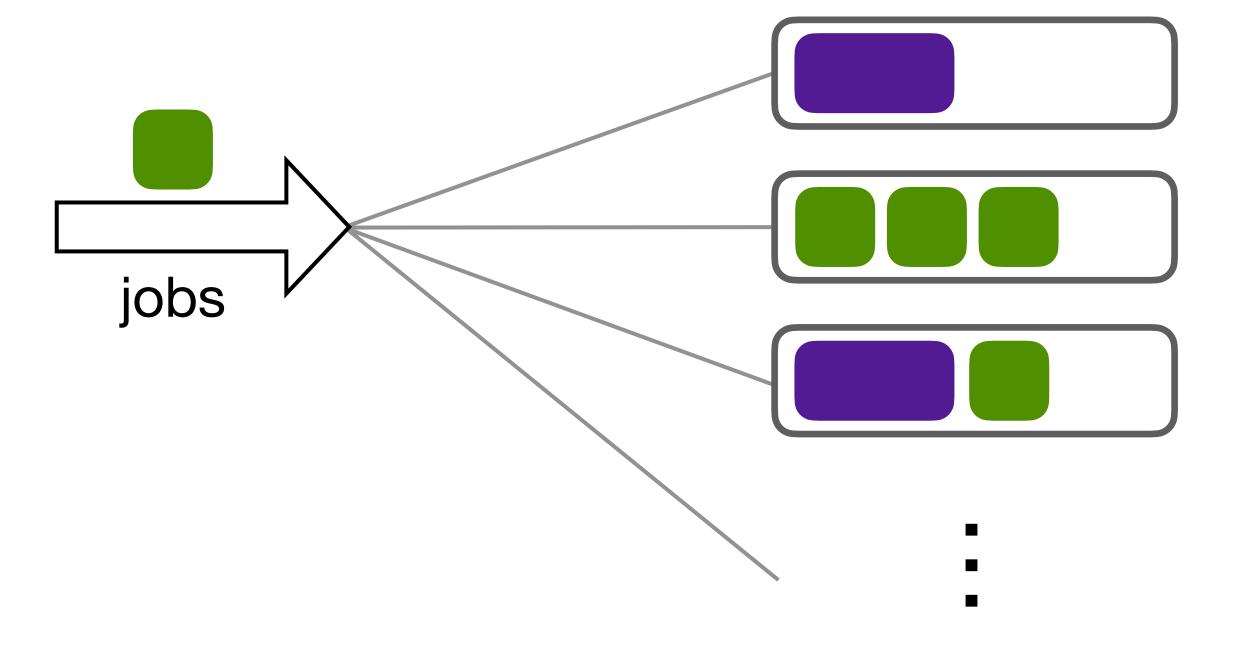


Example MC



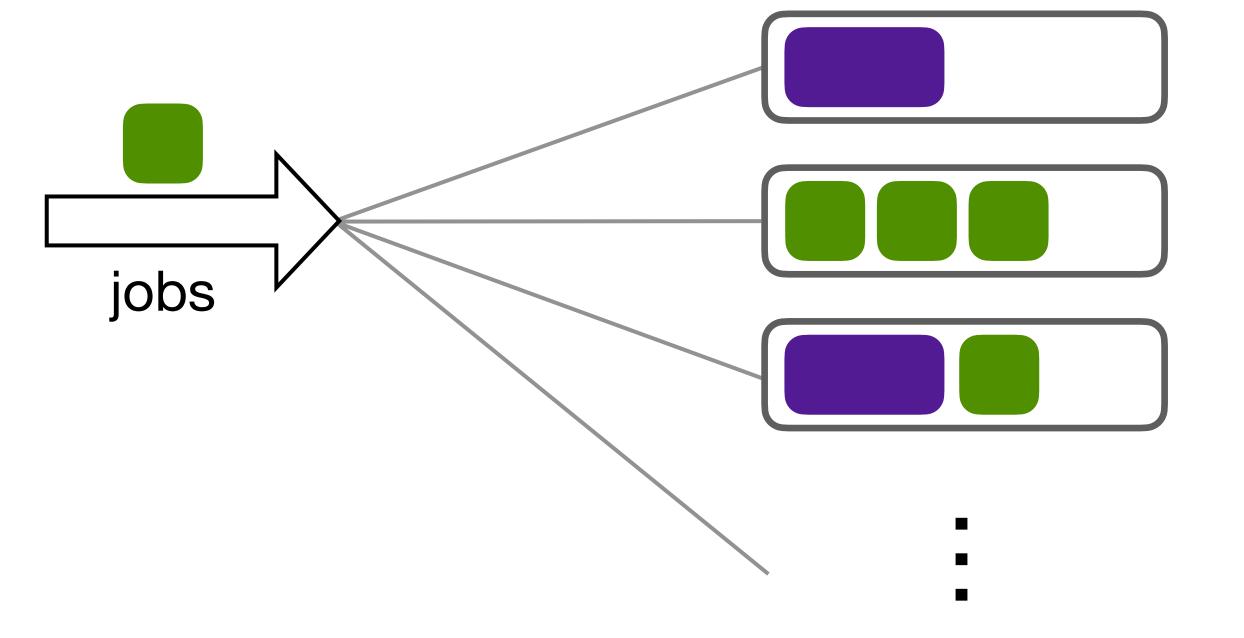
servers

state: # jobs of each type on each server



state space is large!

state: # jobs of each type on each server



state space is large!

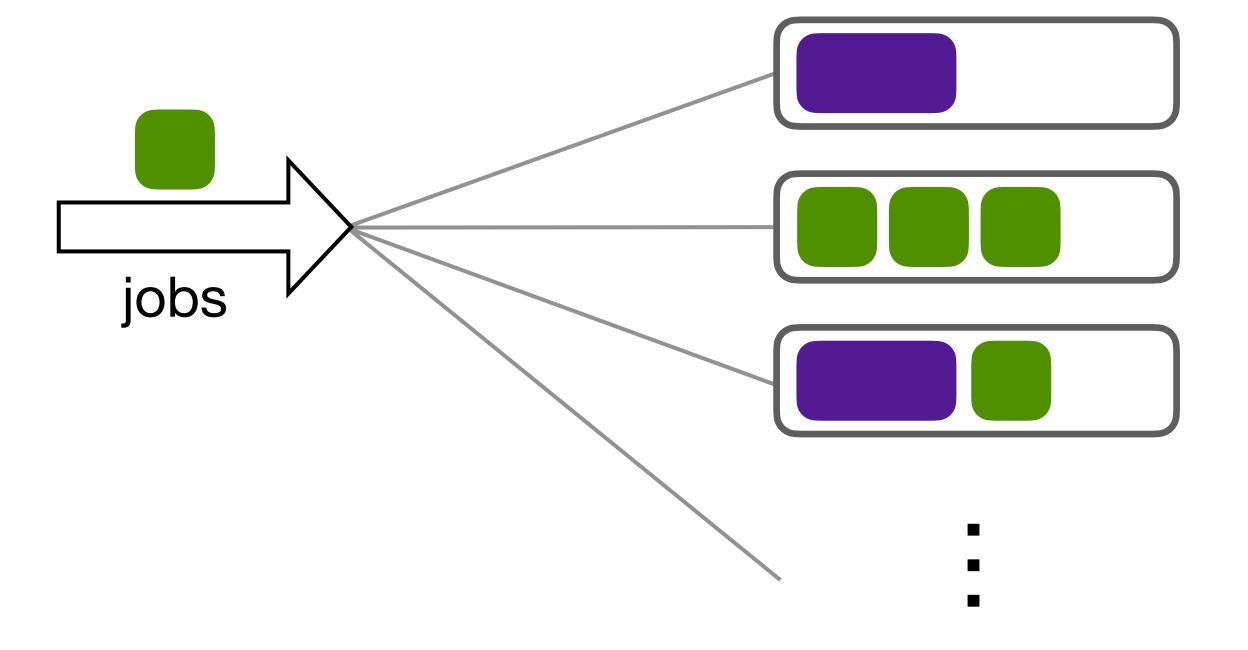
state: # jobs of each type on each server



state space is large!

state: # jobs of each type on each server

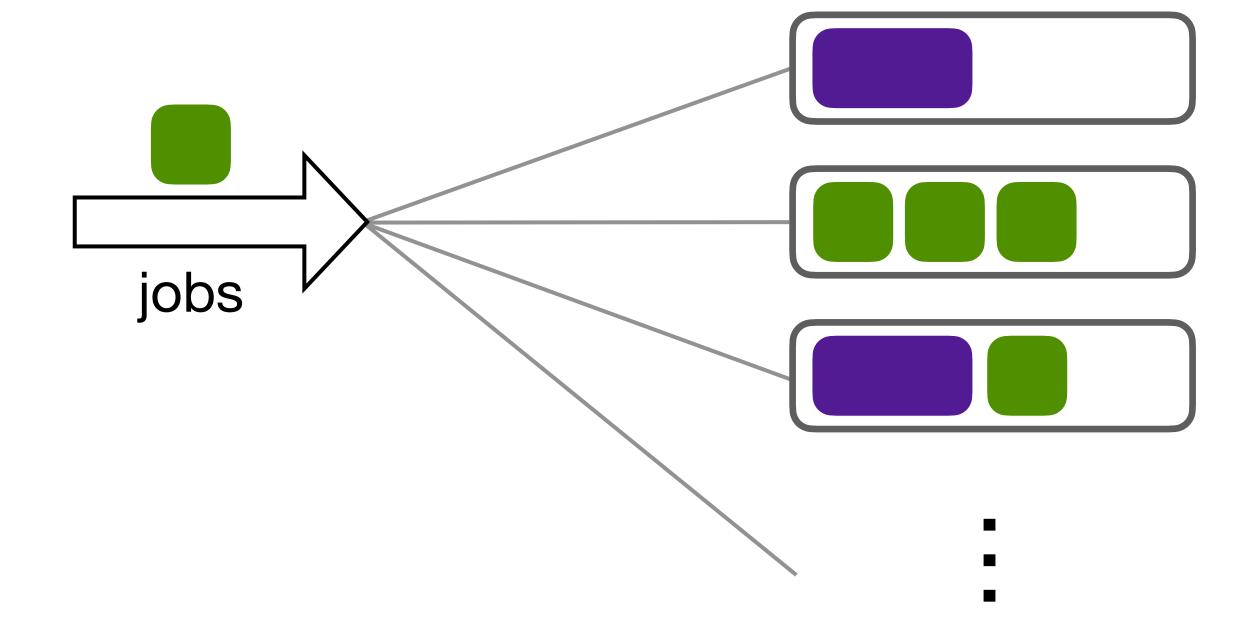
Server-by-server evaluation:



state space is large!

state: # jobs of each type on each server

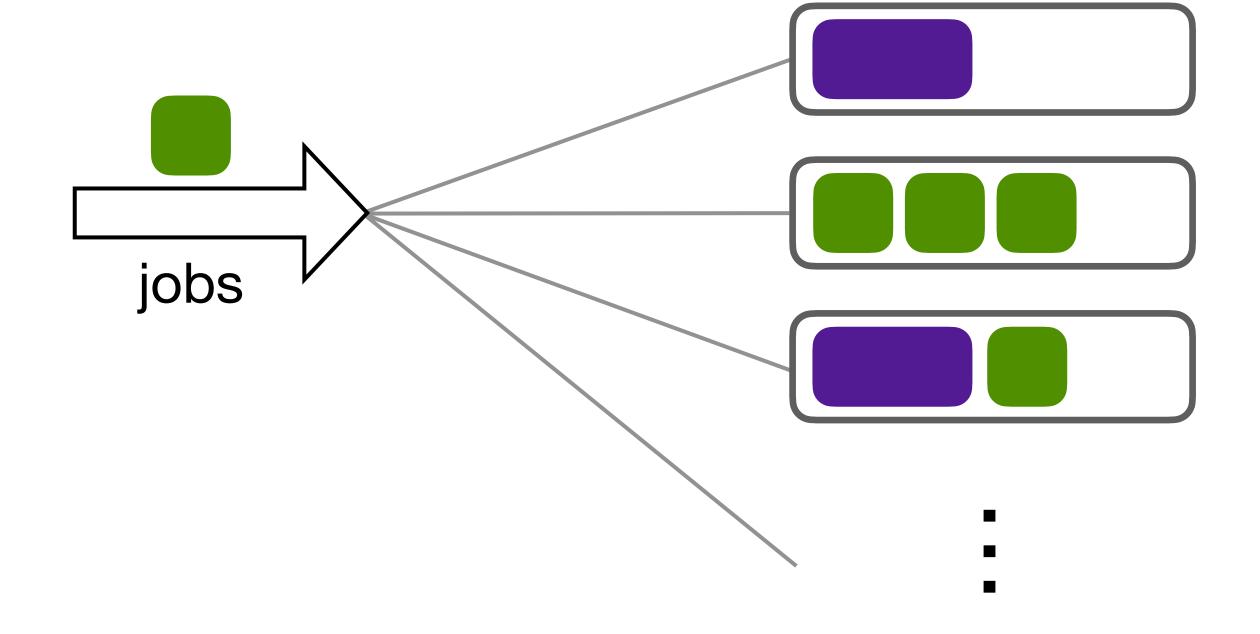
- Server-by-server evaluation:
 - How to evaluate each server?



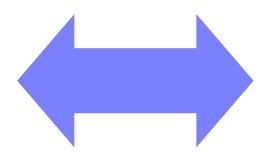
state space is large!

state: # jobs of each type on each server

- Server-by-server evaluation:
 - How to evaluate each server?
 - How to relate to E[# active servers]?

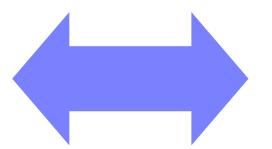


Policies in the ∞-server system



Policies in a single-server system

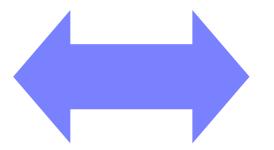
Policies in the ∞-server system



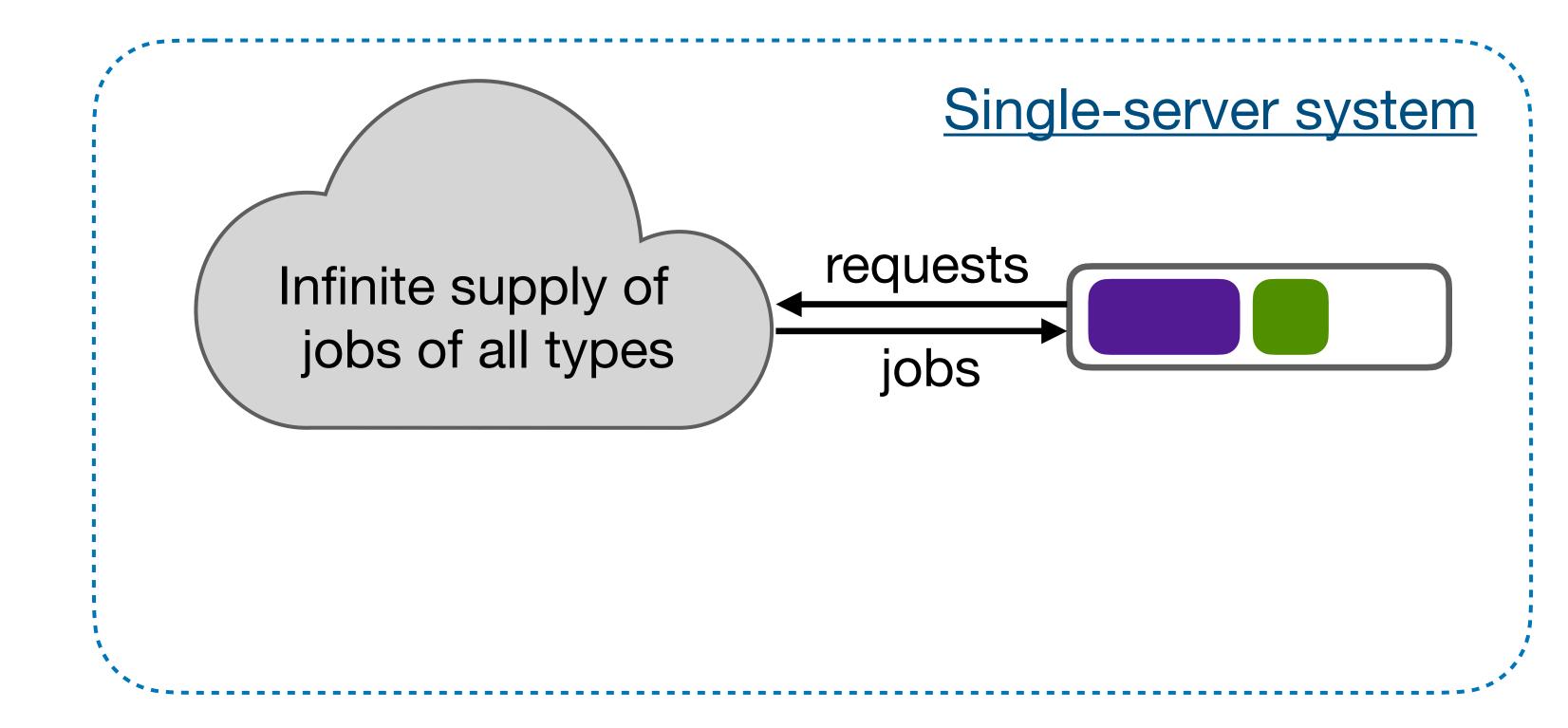
Policies in a single-server system

Single-server system

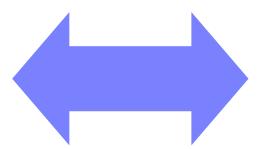
Policies in the ∞-server system



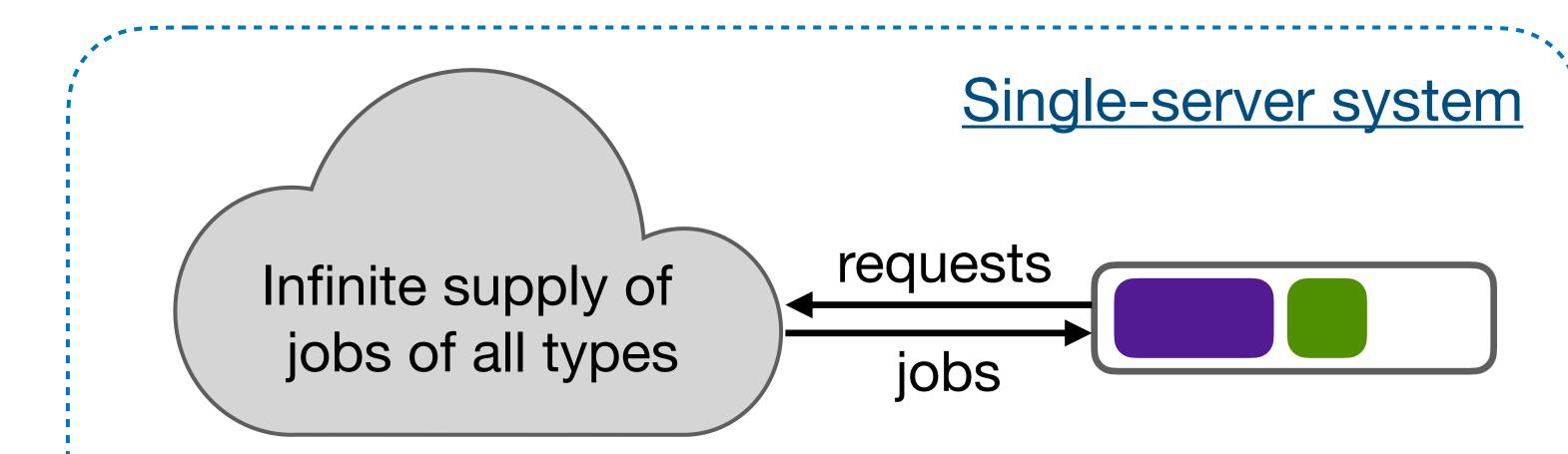
Policies in a single-server system



Policies in the ∞-server system



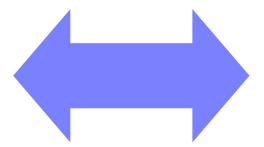
Policies in a single-server system



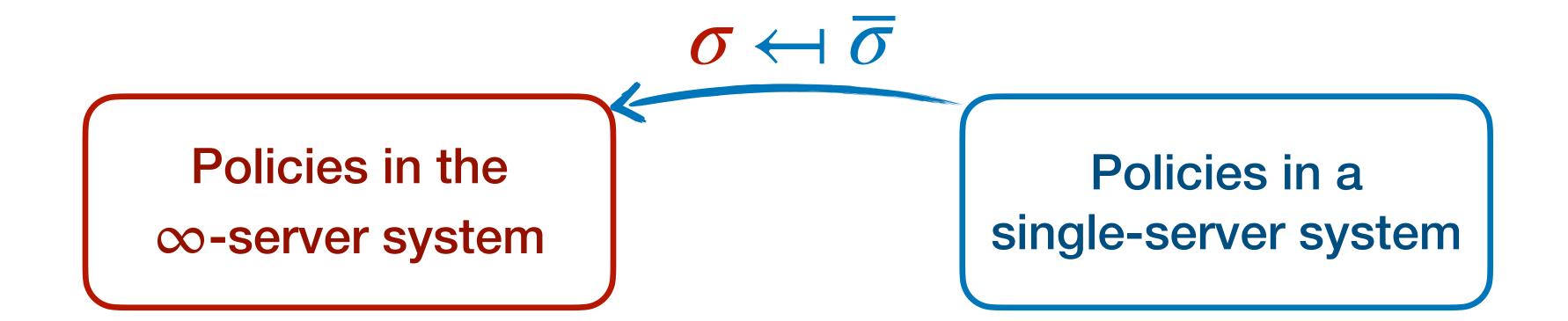
A policy $\overline{\sigma}$ decides when to request what types of jobs to: maximize throughput

subject to **cost** (resource contention) ≤ budget

Policies in the ∞-server system



Policies in a single-server system



- Use to tell how to evaluate each server
- Performance of σ is related to properties of $\overline{\sigma}$

Policies in the ∞-server system

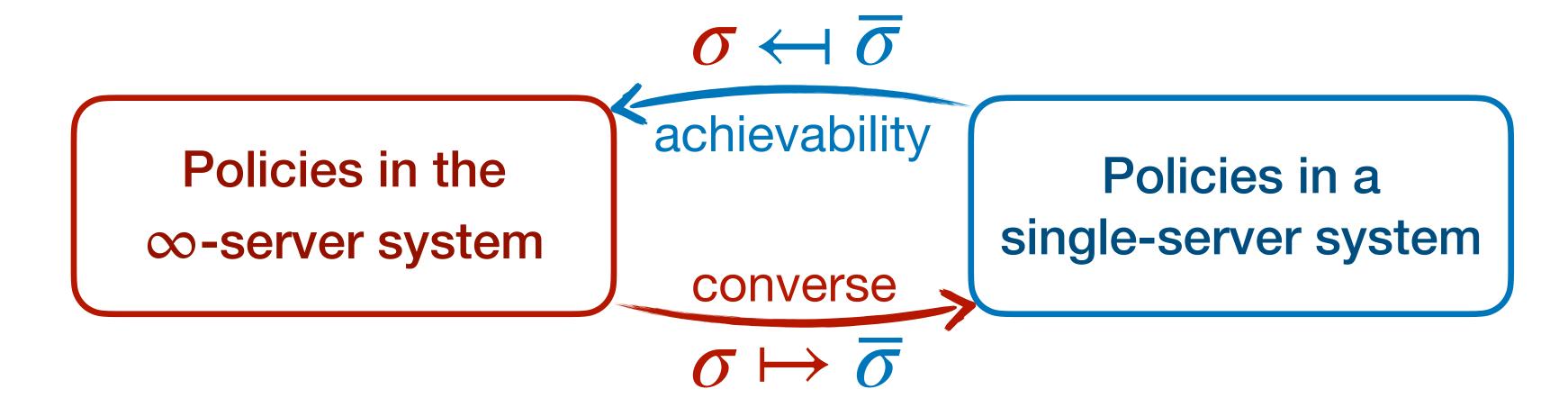
Policies in a single-server system

- Use $\overline{\sigma}$ to tell how to evaluate each server
- Performance of σ is related to properties of $\overline{\sigma}$

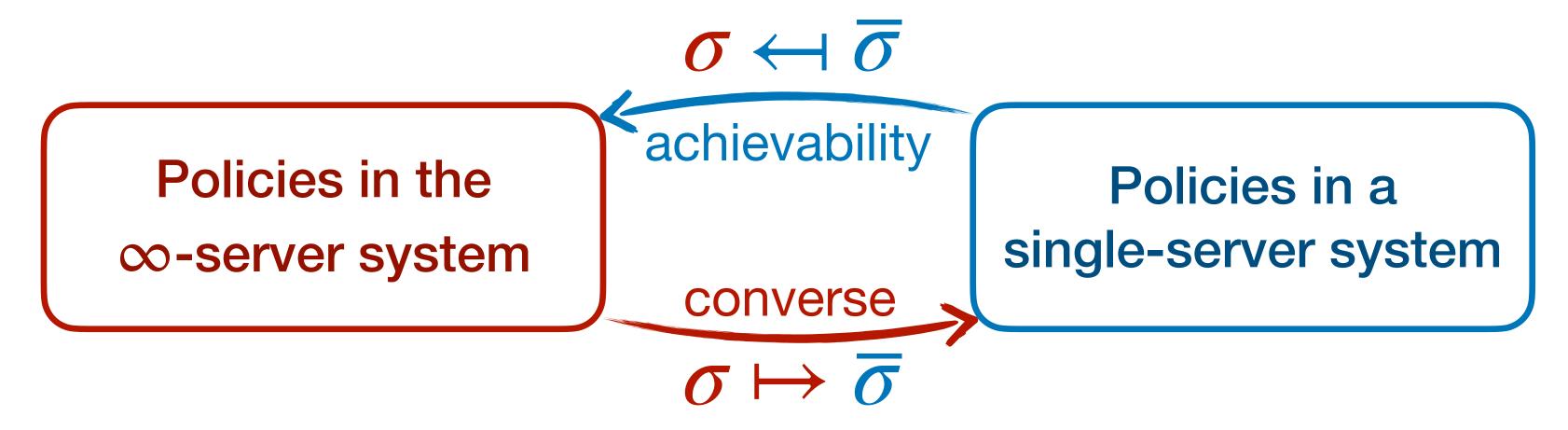
Policies in the ∞-server system achievability

Policies in a single-server system

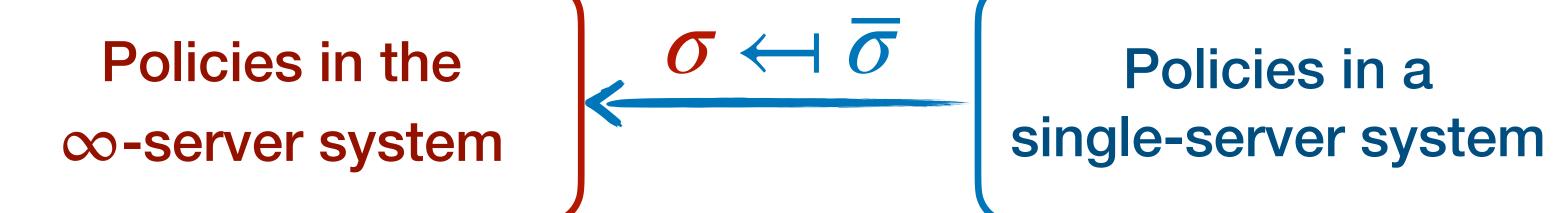
- Use to tell how to evaluate each server
- Performance of σ is related to properties of $\overline{\sigma}$



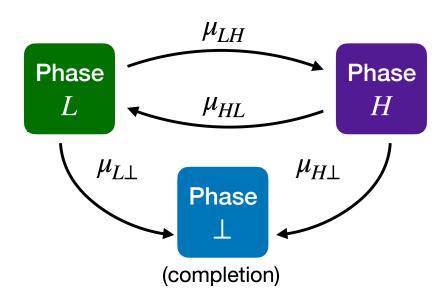
- Use $\overline{\sigma}$ to tell how to evaluate each server
- Performance of σ is related to properties of $\overline{\sigma}$

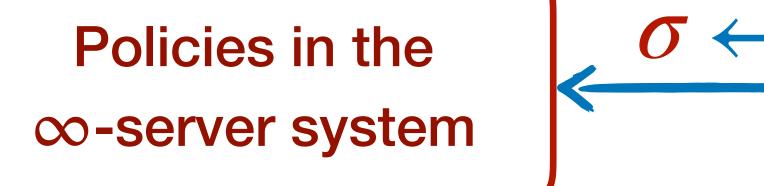


 Allows us to obtain lower bound on E[# active servers] Policies in the ∞ -server system Policies in a single-server system



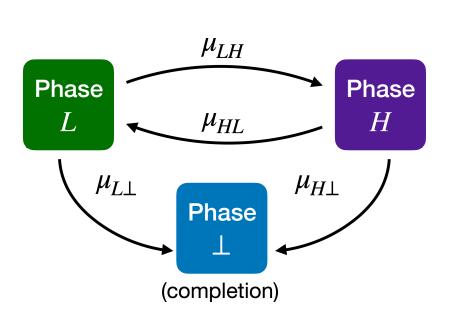
• Arrival rates: $r \cdot (\lambda_L, \lambda_H)$

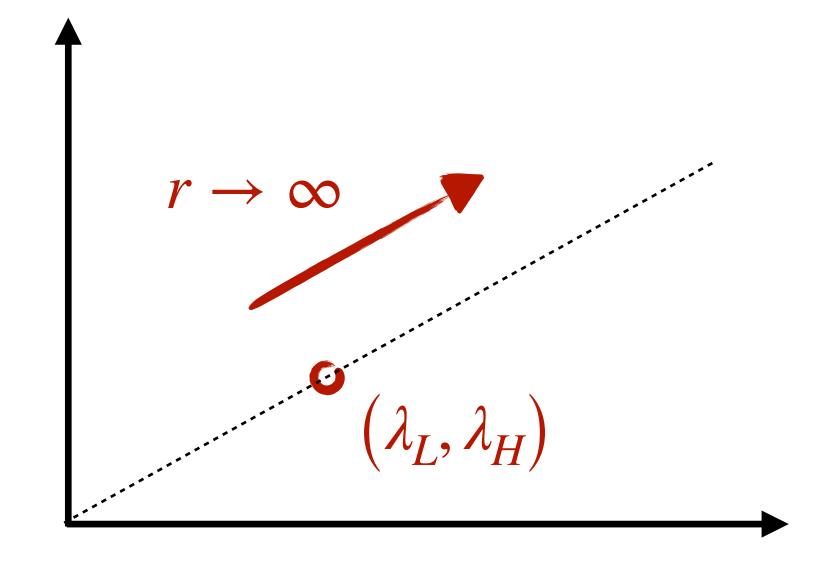




Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to +\infty$





- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to +\infty$

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to + \infty$

Policy of

$$\overline{N} \cdot \left(\mathbf{throughput}_L, \mathbf{throughput}_R \right) = r \cdot \left(\lambda_L, \lambda_H \right)$$

$$\mathbf{cost} \ (\mathbf{resource} \ \mathbf{contention}) \leq \mathbf{budget}$$

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to + \infty$

Policy $\overline{\sigma}$

 $\overline{N} \cdot \left(\mathbf{throughput}_L, \mathbf{throughput}_R \right) = r \cdot \left(\lambda_L, \lambda_H \right)$ cost (resource contention) \leq budget

 \overline{N} 's intuitive meaning: number of servers needed to satisfy arrival demand

convert

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to + \infty$

Policy <u>o</u>

 $\overline{N} \cdot \left(\mathbf{throughput}_L, \mathbf{throughput}_R \right) = r \cdot \left(\lambda_L, \lambda_H \right)$ $\mathbf{cost} \ (\mathbf{resource} \ \mathbf{contention}) \leq \mathbf{budget}$

Policy σ

N's intuitive meaning: number of servers needed to satisfy arrival demand

convert

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to + \infty$

Policy $\overline{\sigma}$

 $\overline{N} \cdot \left(\mathbf{throughput}_L, \mathbf{throughput}_R \right) = r \cdot \left(\lambda_L, \lambda_H \right)$ cost (resource contention) \leq budget

Policy σ

E [# active servers]
$$\leq \left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}$$

N's intuitive meaning: number of servers needed to satisfy arrival demand

 $\sigma \leftarrow \overline{\sigma}$

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to + \infty$

Policy $\overline{\sigma}$

 $\overline{N} \cdot \left(\mathbf{throughput}_L, \mathbf{throughput}_R \right) = r \cdot \left(\lambda_L, \lambda_H \right)$ $\mathbf{cost} \ (\mathbf{resource} \ \mathbf{contention}) \leq \mathbf{budget}$

Policy σ

$$\textbf{E} \ [\text{\# active servers}] \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \overline{N}$$

$$\textbf{cost (resource contention)} \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \text{budget}$$

N's intuitive meaning: number of servers needed to satisfy arrival demand

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to +\infty$

Policy $\overline{\sigma}^*$

 $N^* \cdot (\text{throughput}_L, \text{throughput}_R) = r \cdot (\lambda_L, \lambda_H)$ cost (resource contention) ≤ budget

Policy
$$\sigma^*$$

E [# active servers]
$$\leq$$
 $\left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}^*$

$$\textbf{E} \ [\text{\# active servers}] \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \overline{N}^*$$

$$\textbf{cost (resource contention)} \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \text{budget}$$

 $\sigma \leftarrow \overline{\sigma}$

Policies in a single-server system

- Arrival rates: $r \cdot (\lambda_L, \lambda_H)$
- Asymptotic regime: $r \to + \infty$

Policy $\overline{\sigma}^*$

 $\overline{N}^* \cdot \left(\text{throughput}_L, \text{throughput}_R \right) = r \cdot \left(\lambda_L, \lambda_H \right)$ $\text{cost (resource contention)} \leq \text{budget}$

Policy σ^*

$$\textbf{E} \ [\text{\# active servers}] \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \overline{N}^*$$

$$\textbf{cost (resource contention)} \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \text{budget}$$

 $\overline{\sigma}^*$ maximizes the throughput and thus achieves the minimum \overline{N}^*

Policies in a single-server system

Main Results:

Policy $\overline{\sigma}^*$

 $\sqrt[7]* \cdot (\mathsf{throughput}_L, \mathsf{throughput}_R) = r \cdot (\lambda_L, \lambda_H)$ cost (resource contention) ≤ budget

 $\textbf{E} \ [\text{\# active servers}] \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \overline{N}^*$ $\textbf{cost (resource contention)} \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \text{budget}$

 $\overline{\sigma}^*$ maximizes the throughput and thus achieves the minimum \overline{N}^*

Policies in a single-server system

Main Results:

• $E[\# active servers] \ge \overline{N}^*$ under any policy

Policy

*

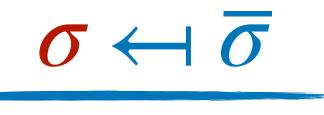
 $\overline{N}^* \cdot \left(\text{throughput}_L, \text{throughput}_R \right) = r \cdot \left(\lambda_L, \lambda_H \right)$ $\text{cost (resource contention)} \leq \text{budget}$

Policy σ^*

$$\textbf{E} \ [\text{\# active servers}] \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \overline{N}^*$$

$$\textbf{cost (resource contention)} \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \text{budget}$$

 $\overline{\sigma}^*$ maximizes the throughput and thus achieves the minimum \overline{N}^*



Policies in a single-server system

Main Results:

- E[# active servers] $\geq \overline{N}^*$ under any policy
- The policy σ^* converted from $\overline{\sigma}^*$ is asymptotically optimal

Policy

*

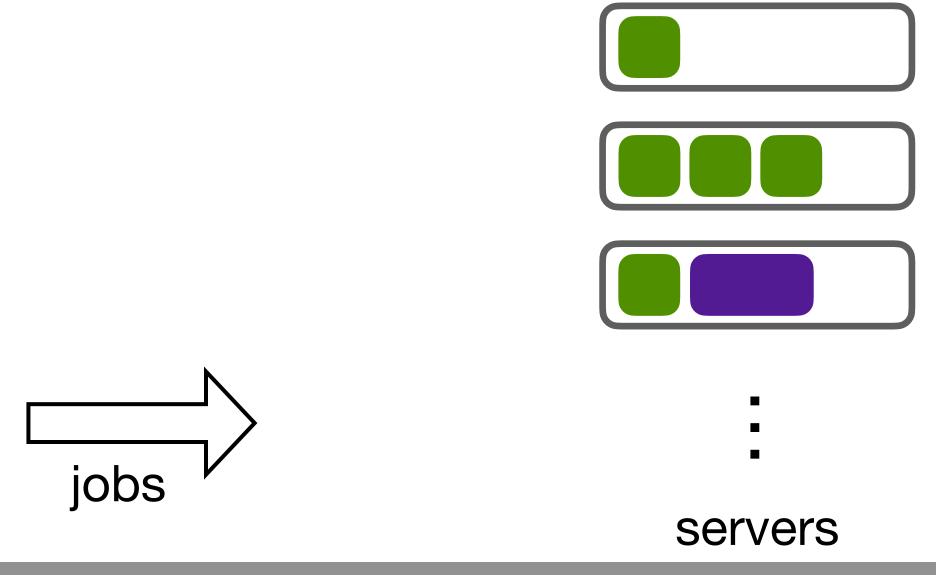
 $\overline{N}^* \cdot \left(\mathbf{throughput}_L, \mathbf{throughput}_R \right) = r \cdot \left(\lambda_L, \lambda_H \right)$ $\mathbf{cost} \left(\mathbf{resource} \ \mathbf{contention} \right) \leq \mathbf{budget}$

Policy σ^*

$$\textbf{E} \ [\text{\# active servers}] \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \overline{N}^*$$

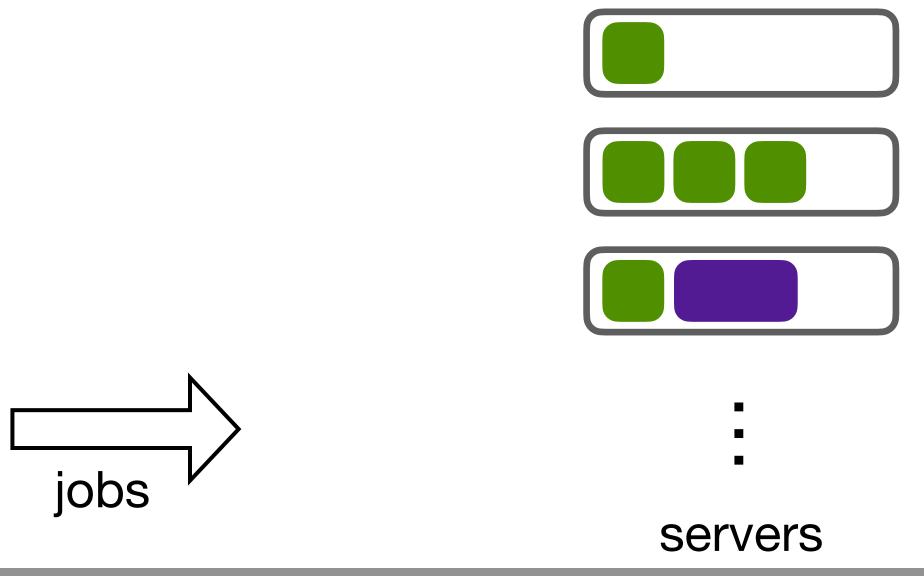
$$\textbf{cost (resource contention)} \leq \left(1 + O \left(r^{-0.5} \right) \right) \cdot \text{budget}$$

 $\overline{\sigma}^*$ maximizes the throughput and thus achieves the minimum \overline{N}^*



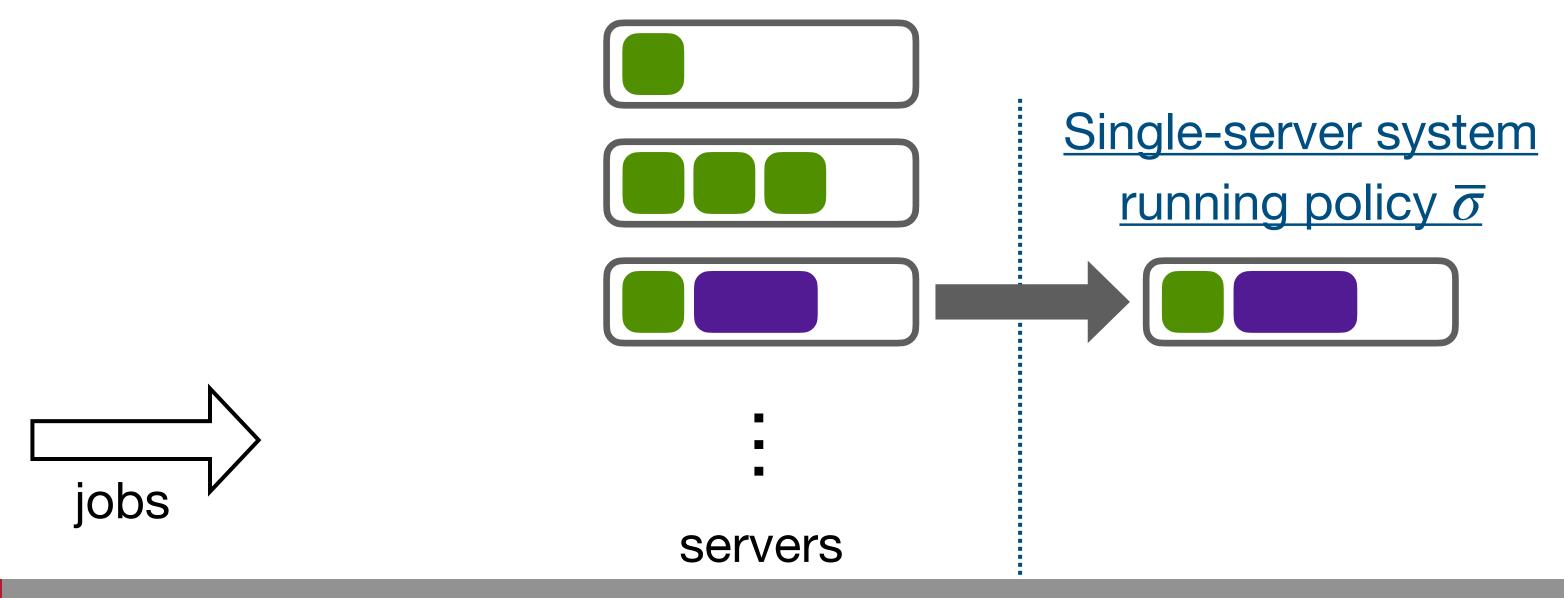
Meta-algorithm: Join-Requesting-Server ($\overline{\sigma}$)

• For each server, run a single-server policy $\overline{\sigma}$

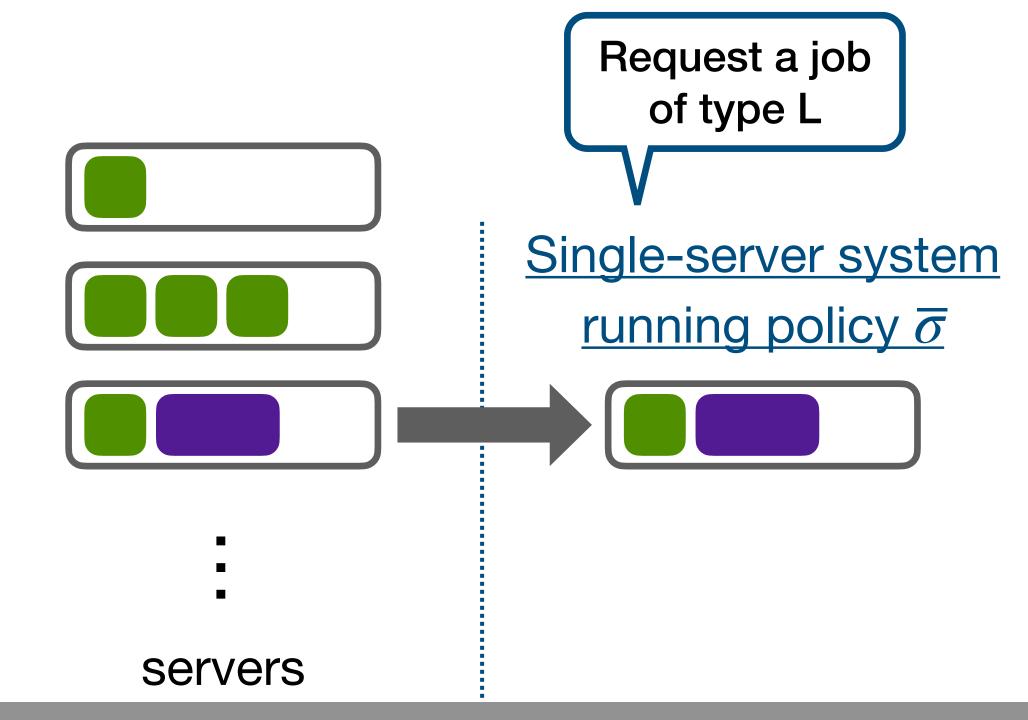


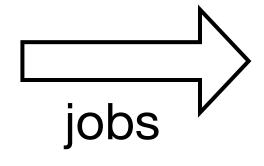
Meta-algorithm: Join-Requesting-Server ($\overline{\sigma}$)

• For each server, run a single-server policy $\overline{\sigma}$

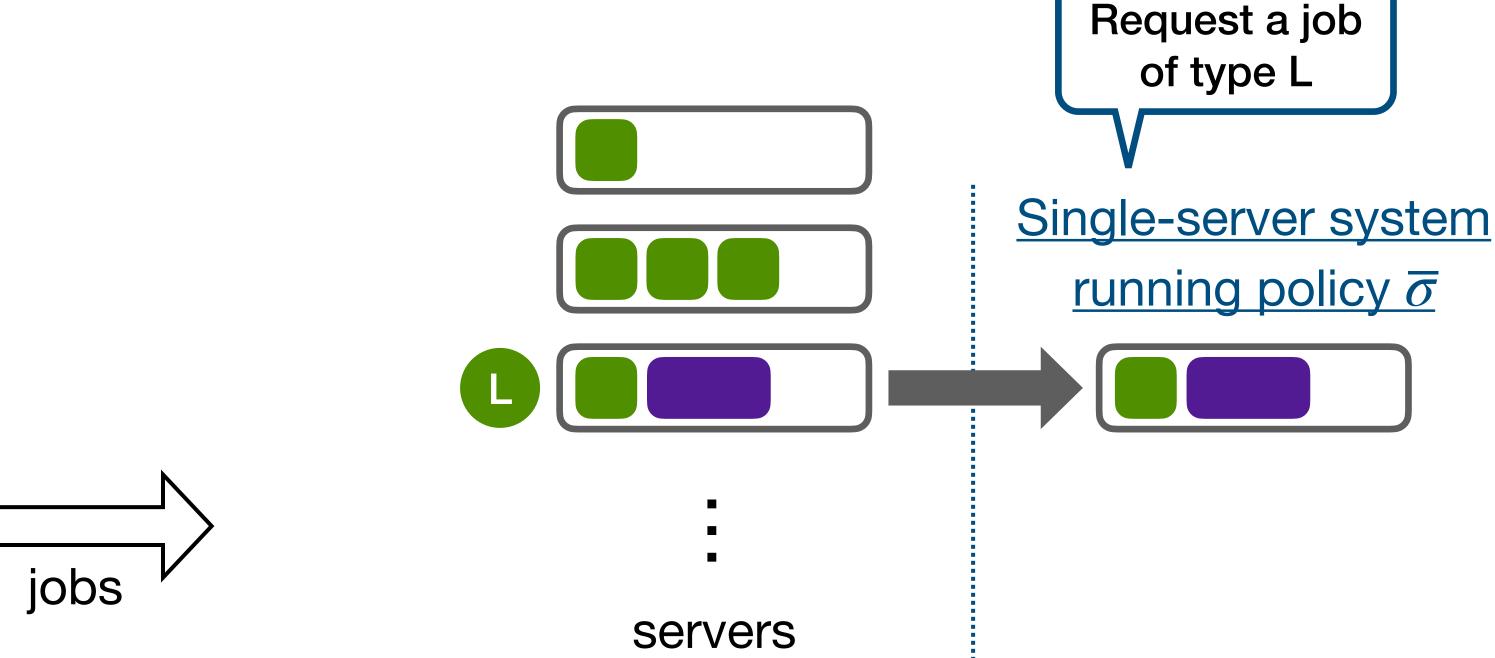


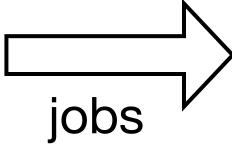
- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i



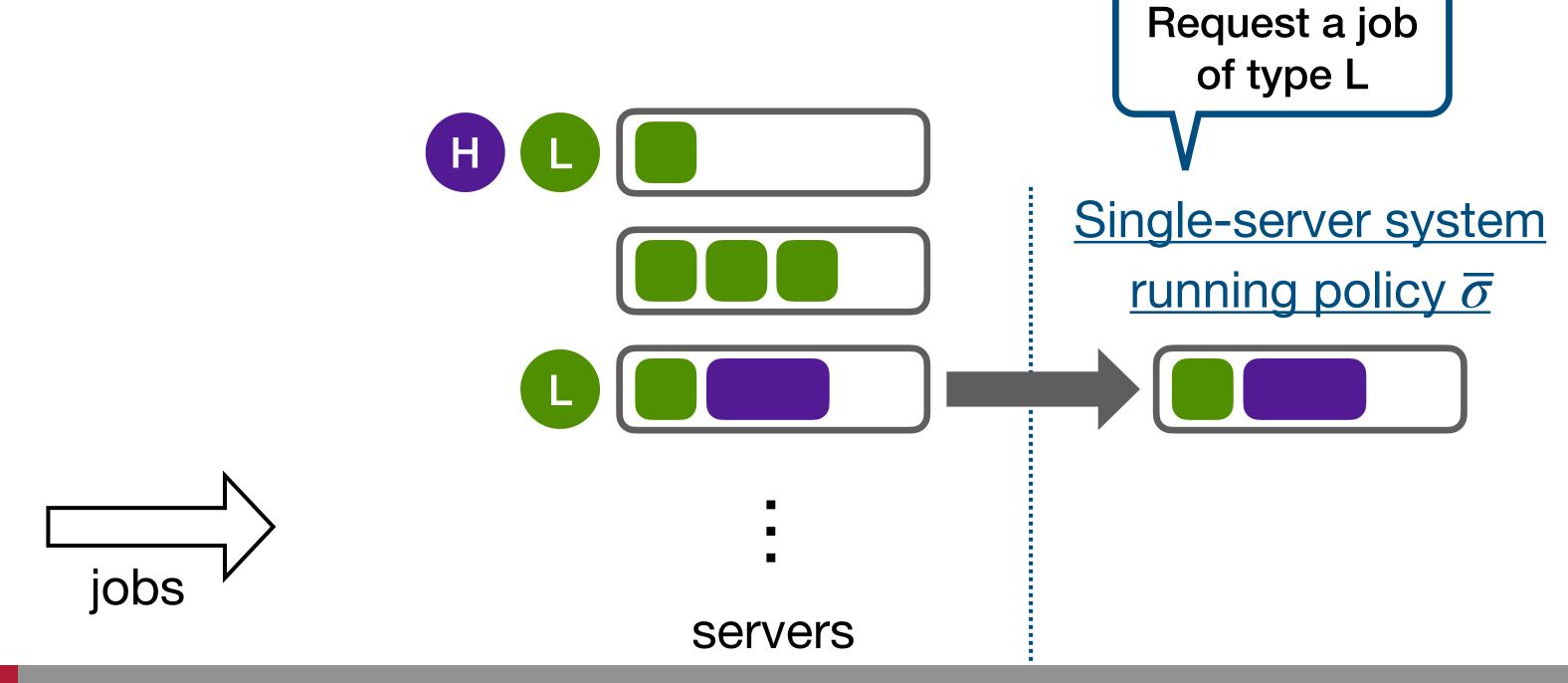


- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i

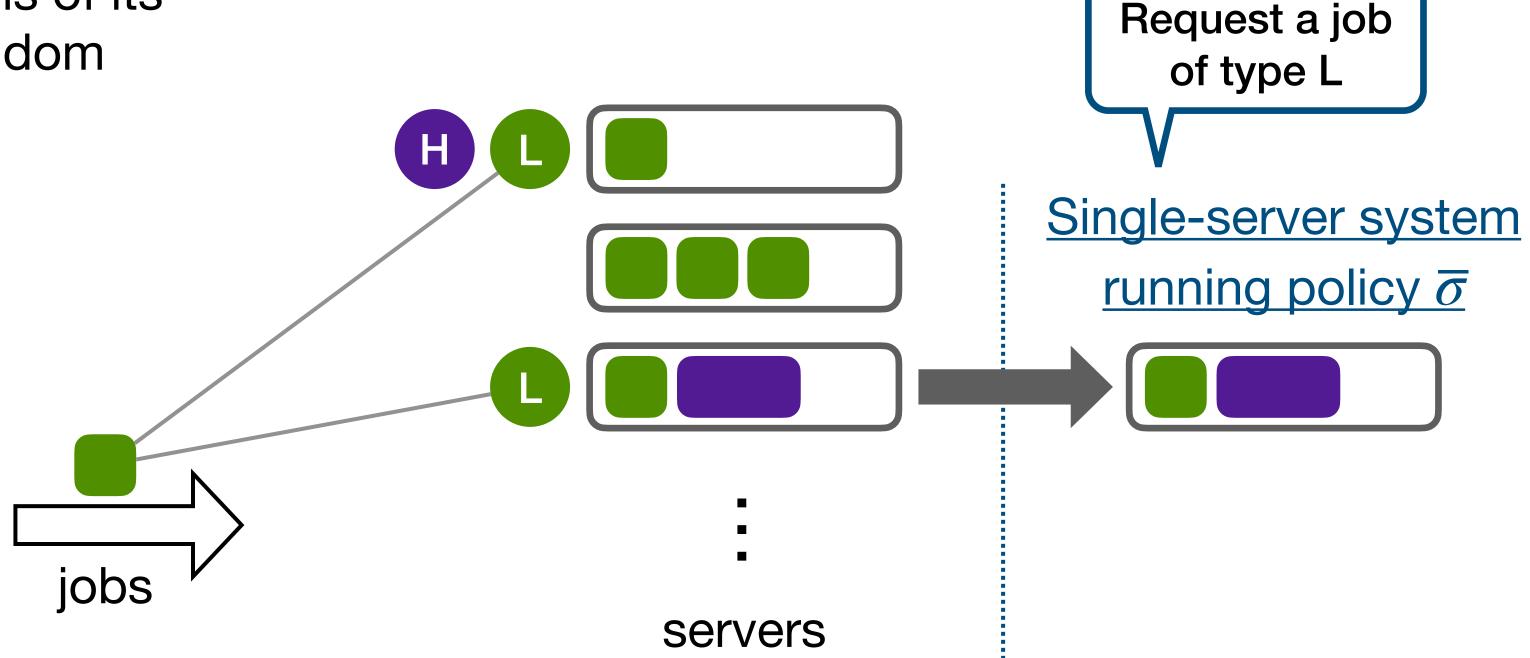




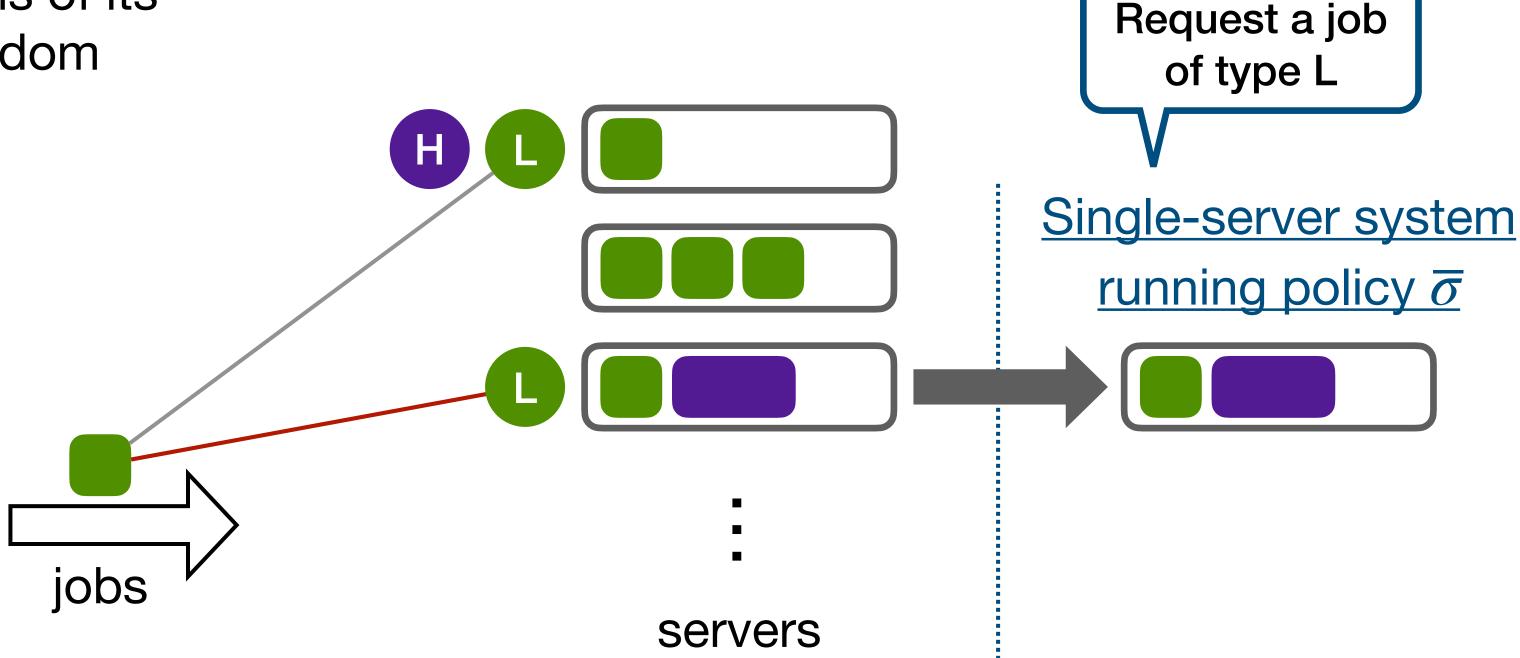
- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i



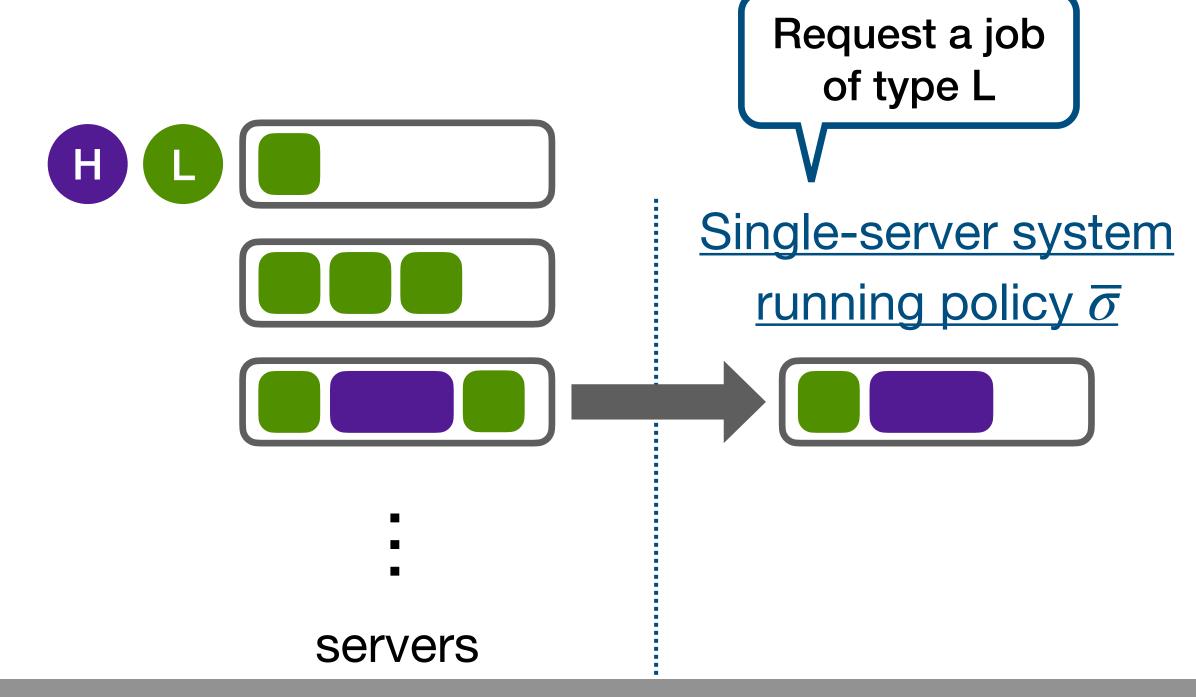
- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i
- When a job arrives, it checks tokens of its type and joins one uniformly at random

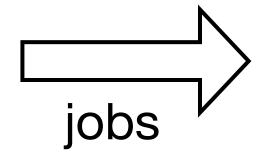


- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i
- When a job arrives, it checks tokens of its type and joins one uniformly at random

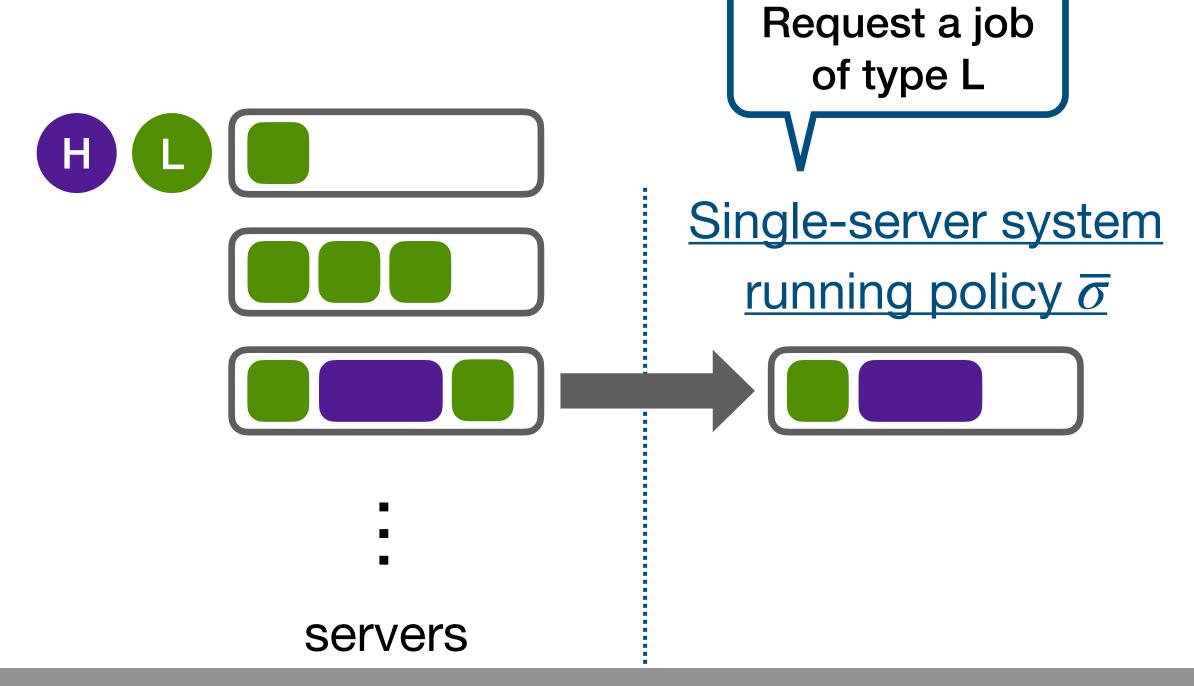


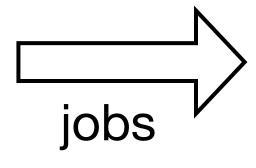
- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i
- When a job arrives, it checks tokens of its type and joins one uniformly at random

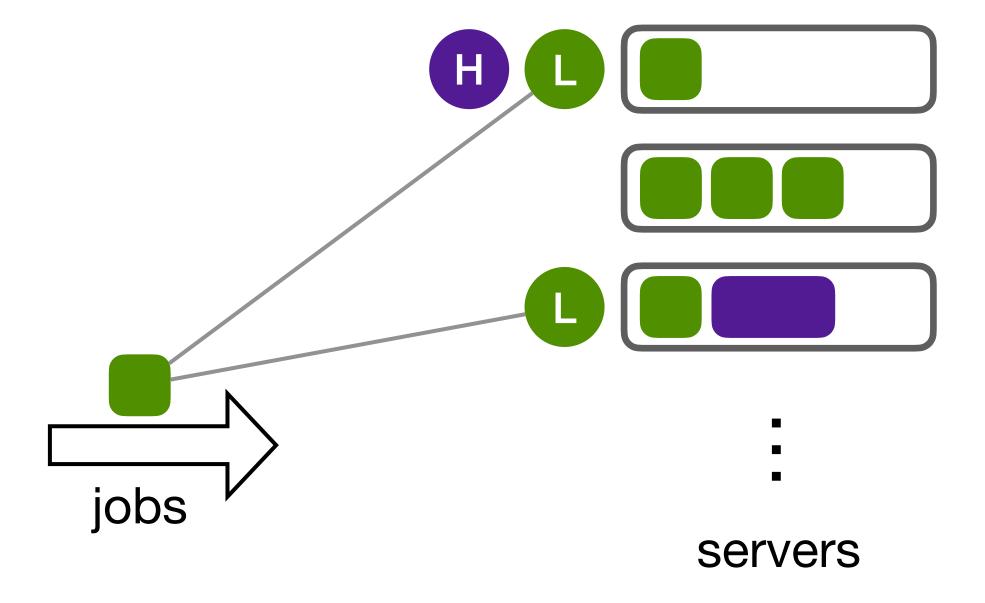


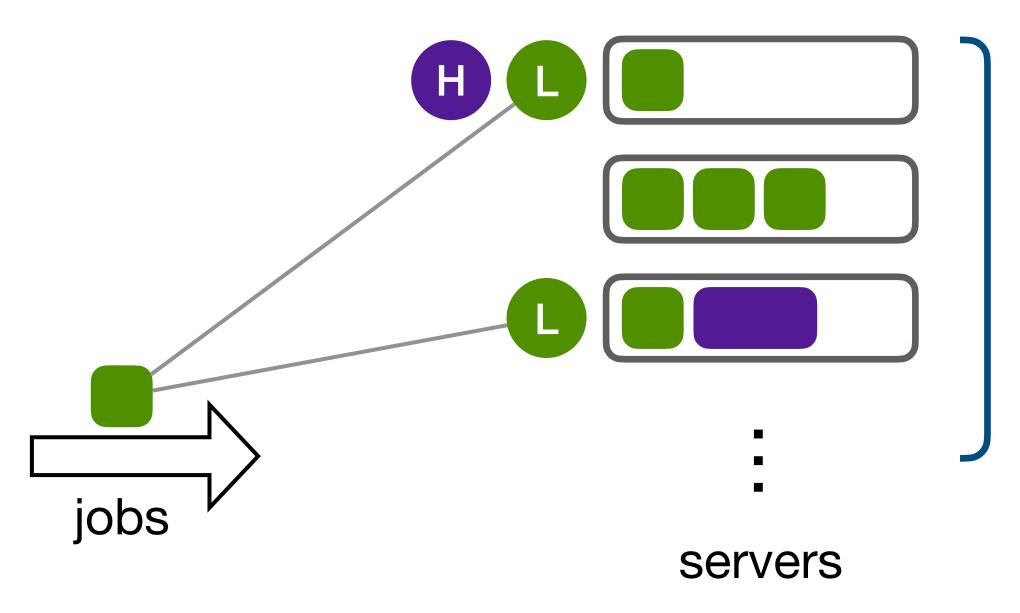


- For each server, run a single-server policy $\overline{\sigma}$
- If $\overline{\sigma}$ requests a job of type i, generate a token of type i
- When a job arrives, it checks tokens of its type and joins one uniformly at random
- If no tokens, go to an inactive server





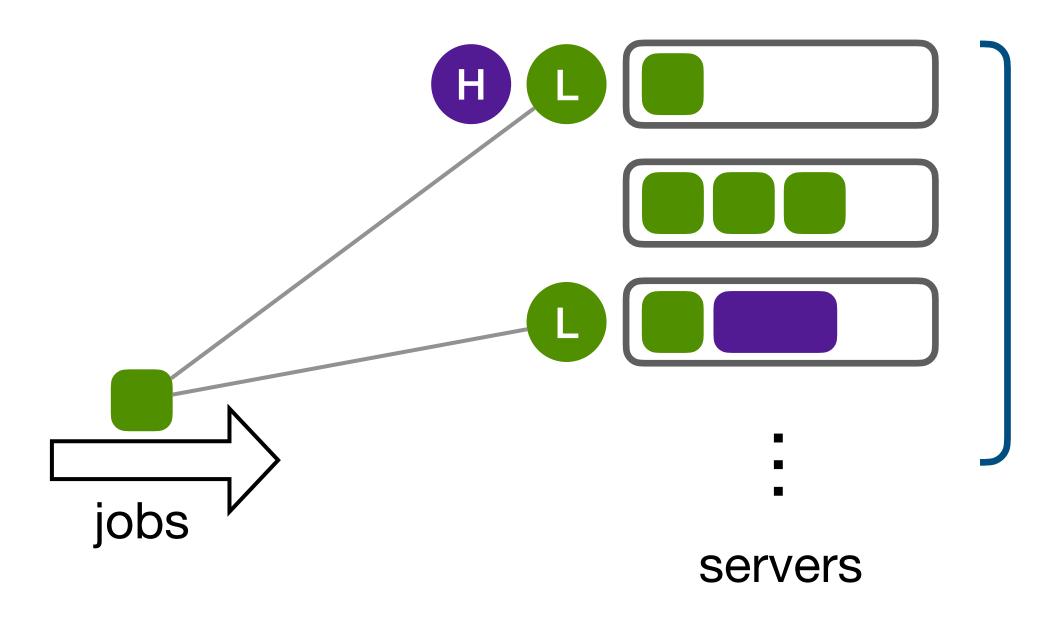




Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

$$\text{(regular servers)}$$



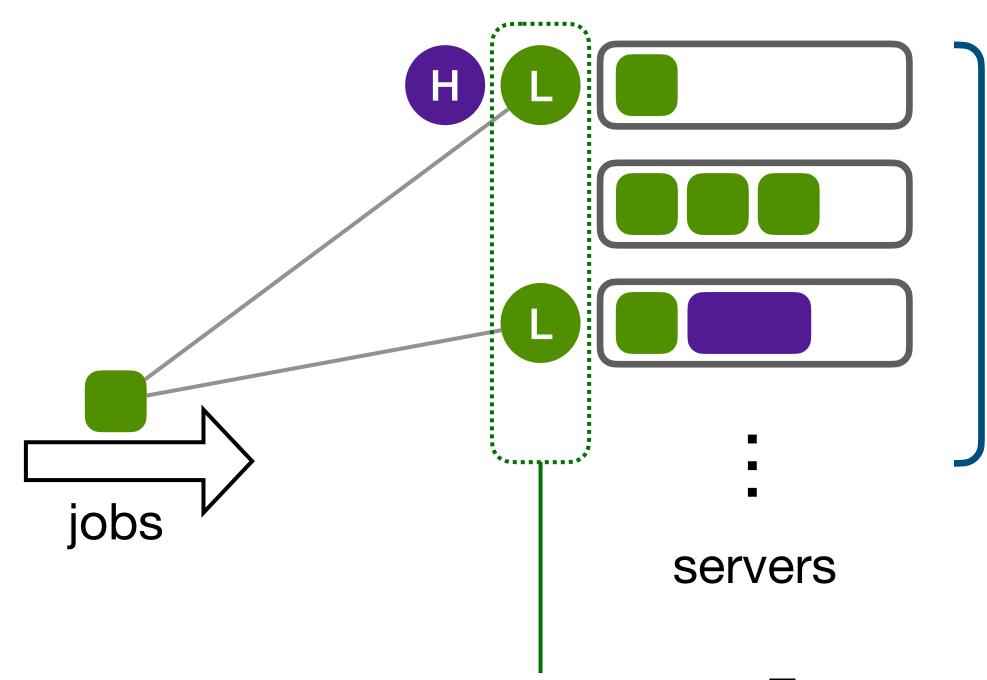
Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

$$(\text{regular servers})$$

Recall that we aim to show

E [# active servers]
$$\leq \left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}$$



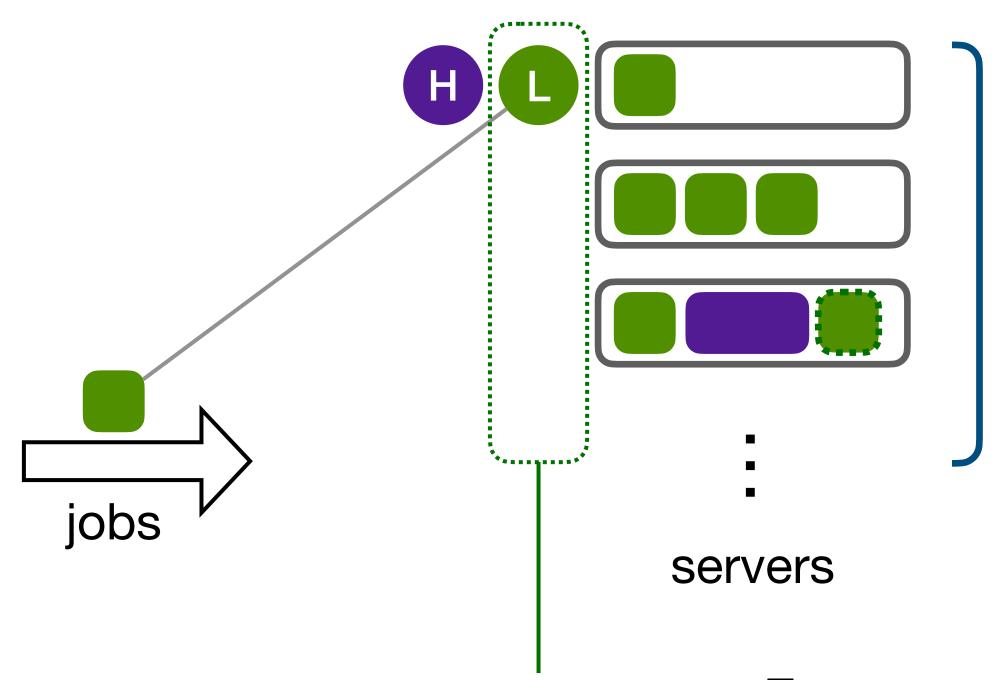
Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

$$(\text{regular servers})$$

Recall that we aim to show

E [# active servers]
$$\leq \left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}$$



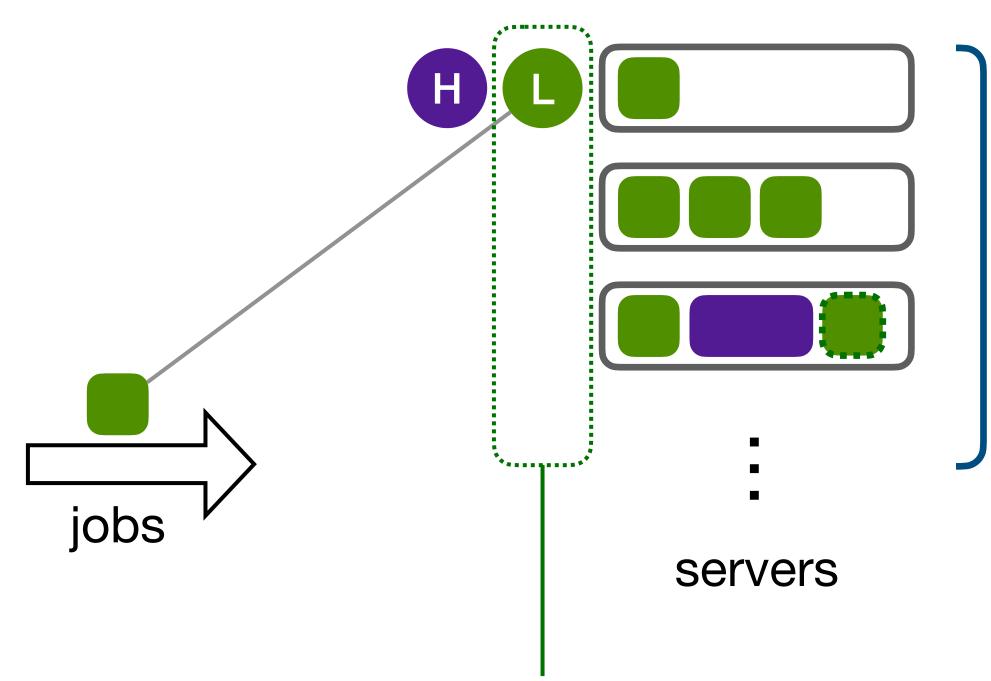
Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

$$(\text{regular servers})$$

Recall that we aim to show

E [# active servers]
$$\leq \left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}$$



Run single-server policy $\overline{\sigma}$ for only

$$\overline{N} = \frac{\text{arrival rate}}{\text{throughtput}(\overline{\sigma})} \text{ servers}$$

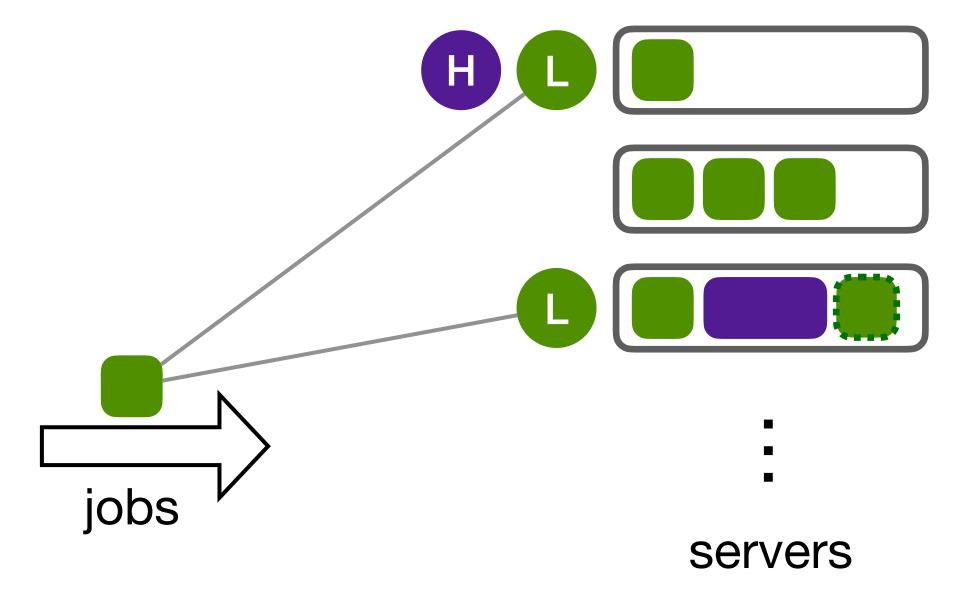
$$(\text{regular servers})$$

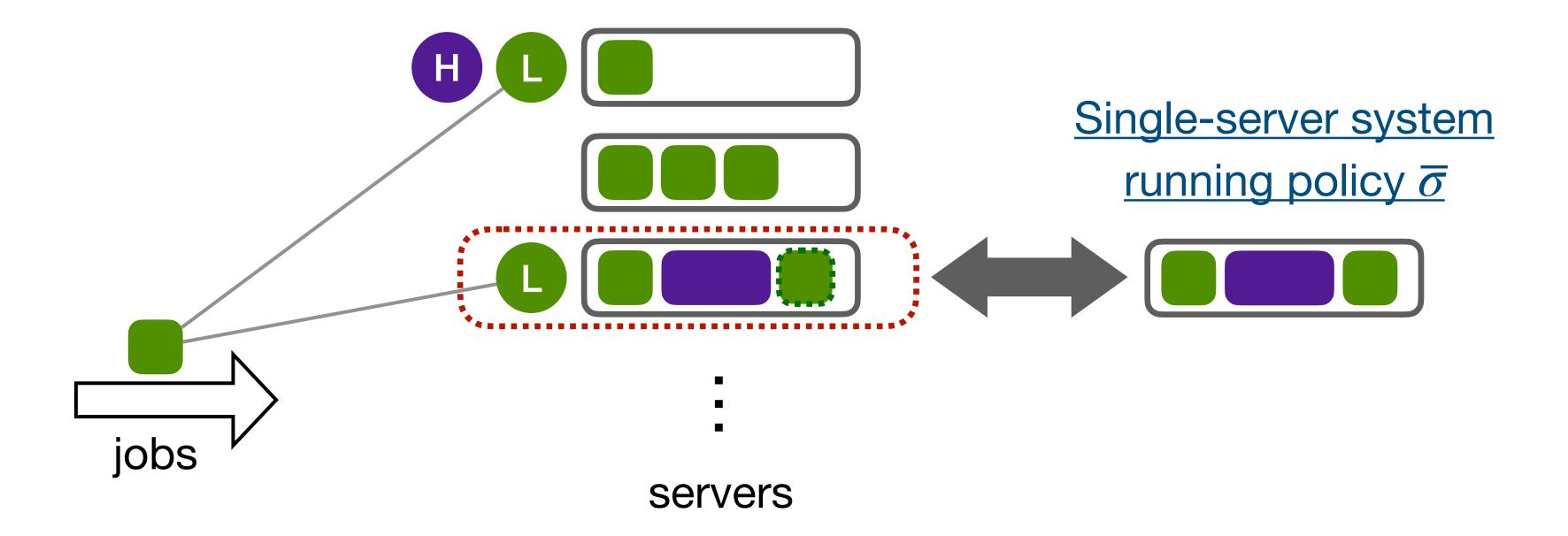
Recall that we aim to show

E [# active servers]
$$\leq \left(1 + O\left(r^{-0.5}\right)\right) \cdot \overline{N}$$

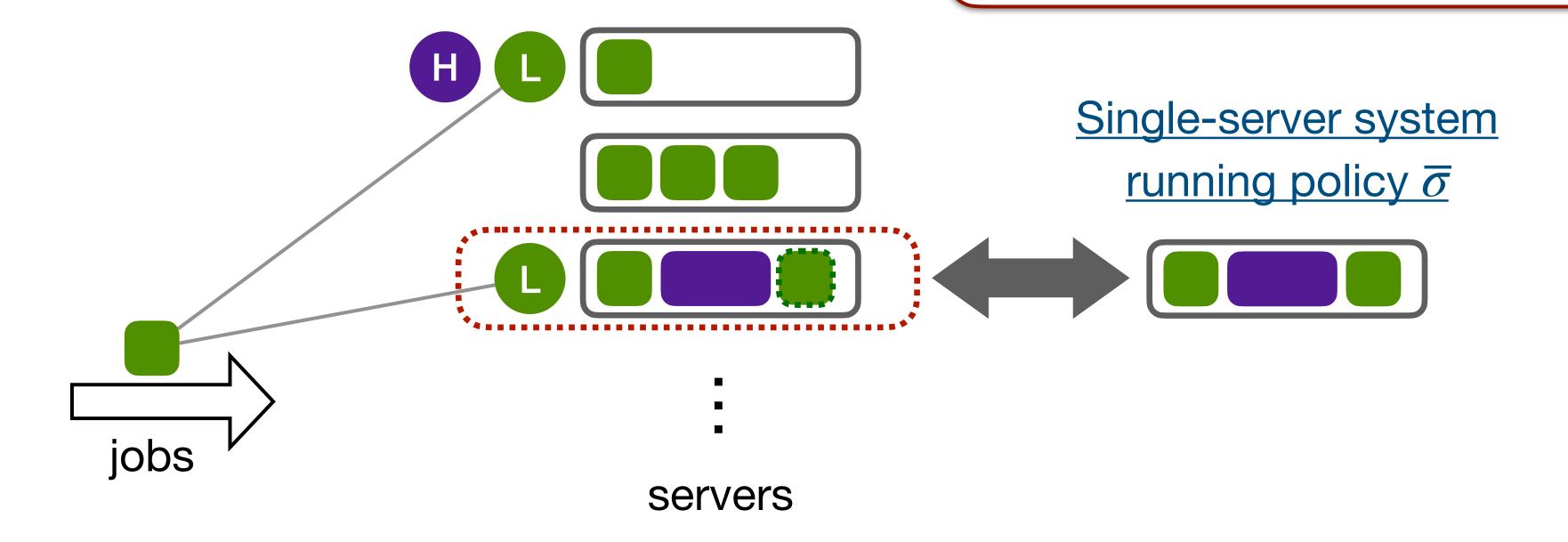
When the # tokens of a type $> \sqrt{r}$, remove the overflow tokens and generate virtual jobs

We can prove that **E** [# virtual jobs] = $O(r^{0.5})$

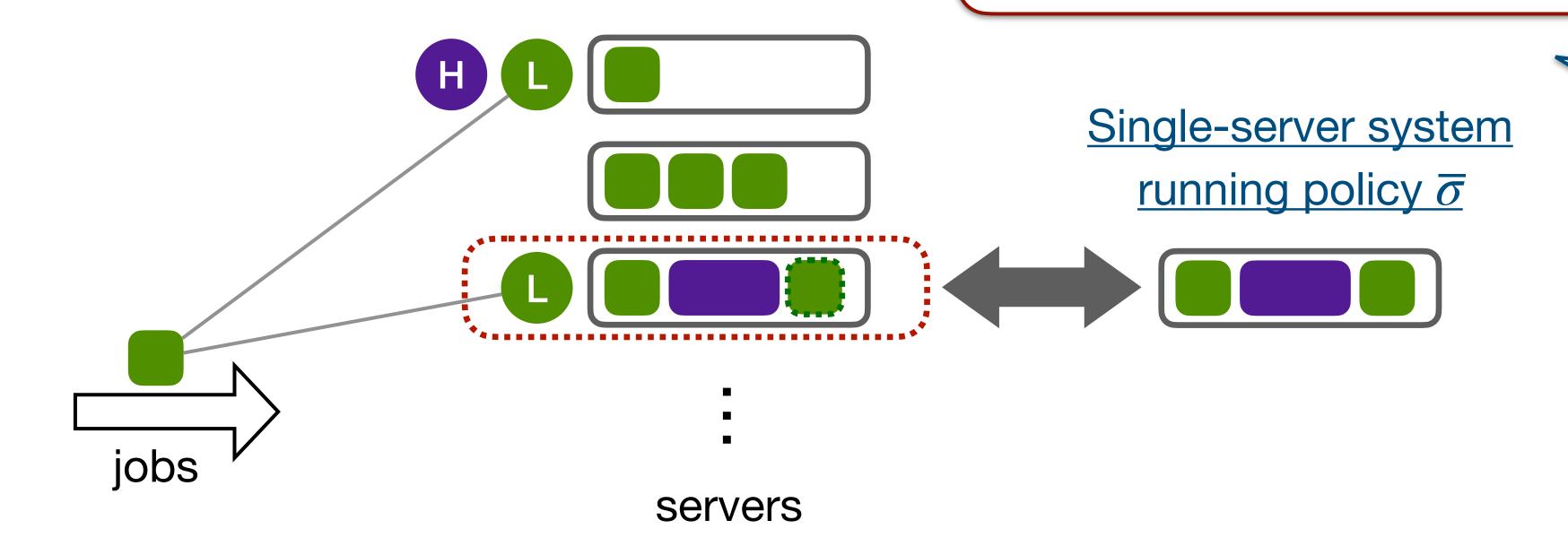




Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems

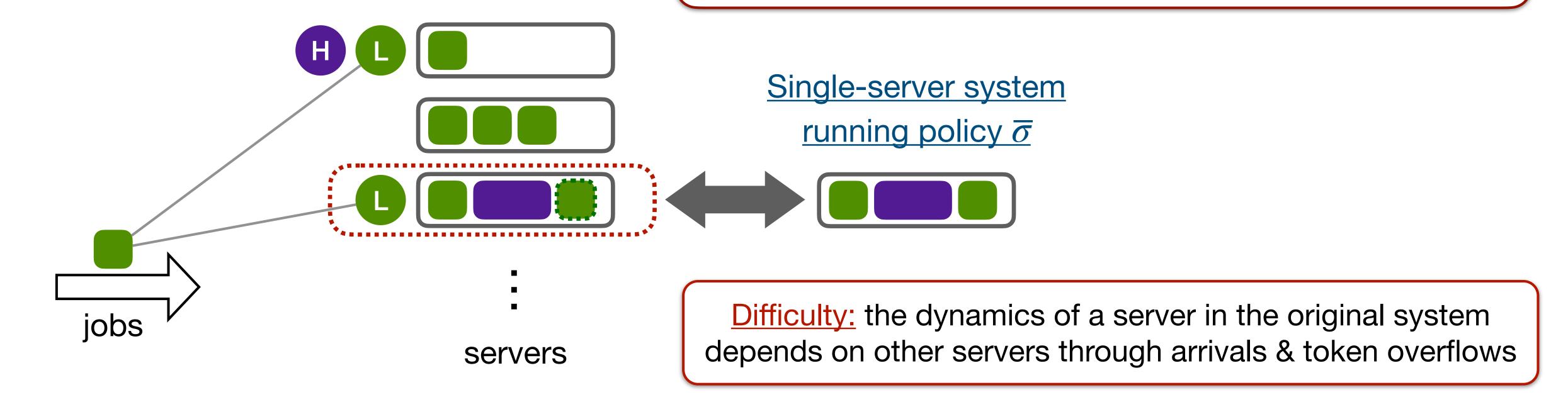


Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems



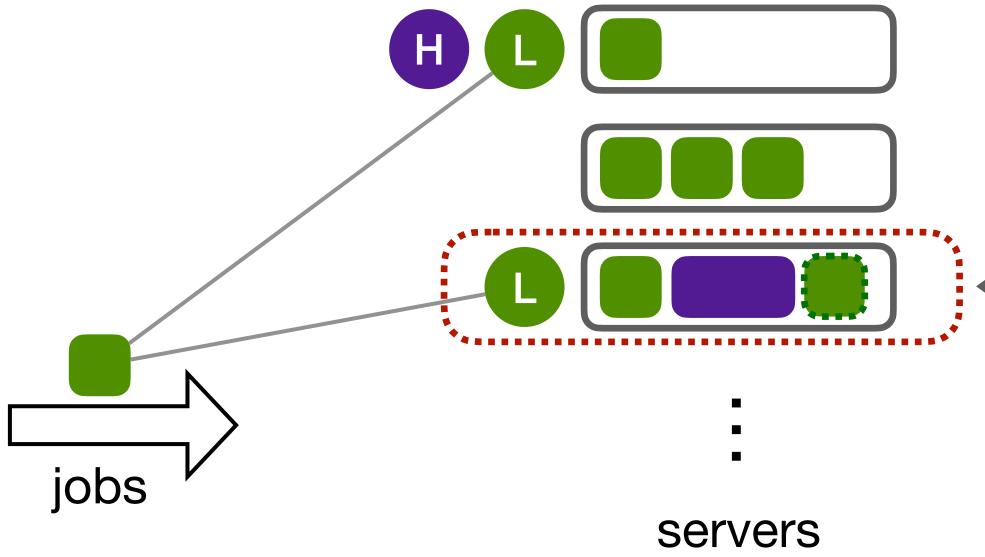
If only each token were replaced by a job immediately ...

Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems



Weina Wang (CMU)

Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems



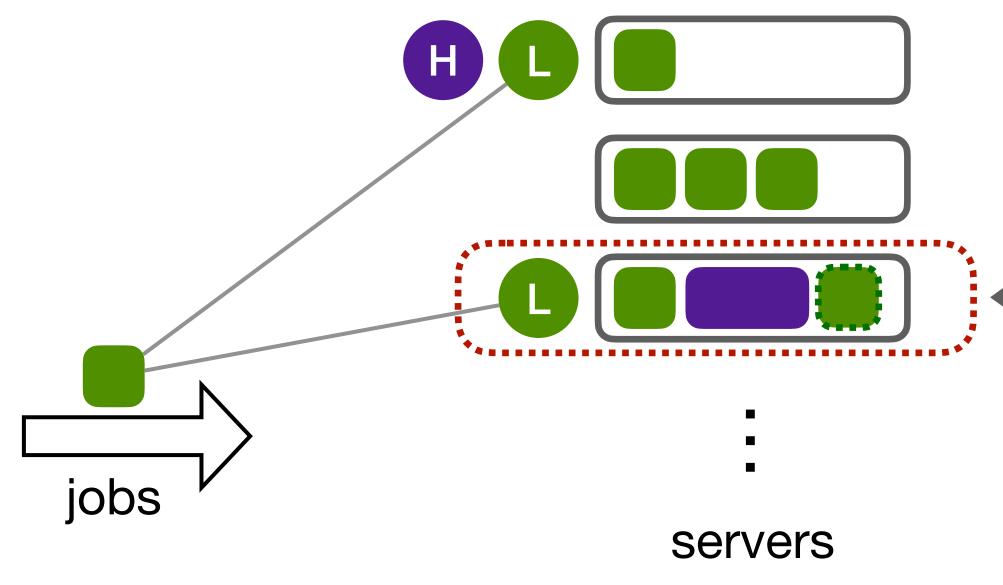
Single-server system running policy $\overline{\sigma}$

<u>Difficulty:</u> the dynamics of a server in the original system depends on other servers through arrivals & token overflows

Idea: for each type i, consider

$$K_i =$$
jobs + # virtual jobs + # tokens

Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems



Single-server system

running policy $\overline{\sigma}$

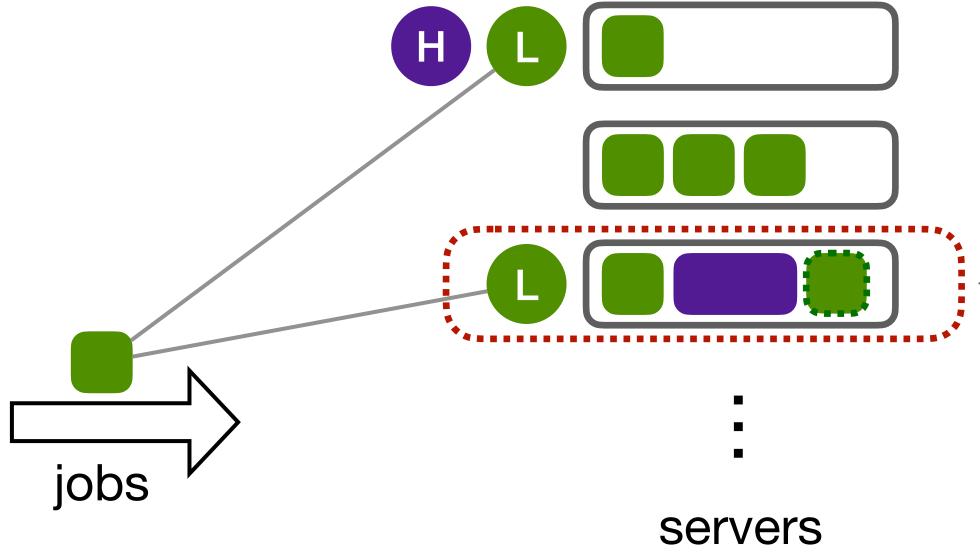
Idea: for each type i, consider

 $\widetilde{K}_i = \#$ jobs + # virtual jobs + # tokens

<u>Difficulty:</u> the dynamics of a server in the original system depends on other servers through arrivals & token overflows

Do job arrivals affect \widetilde{K}_i ?

Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems



running policy $\overline{\sigma}$

Idea: for each type i, consider

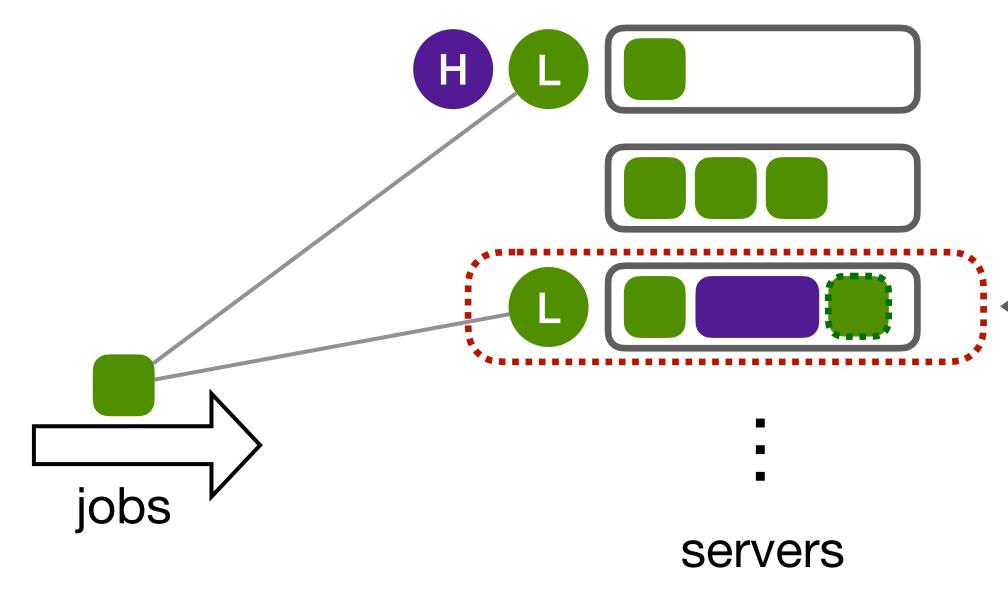
 $\widetilde{K}_i = \#$ jobs + # virtual jobs + # tokens

<u>Difficulty:</u> the dynamics of a server in the original system depends on other servers through arrivals & token overflows

Do job arrivals affect K_i ?

Do token overflows affect K_i ?

Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems



Single-server system running policy $\overline{\sigma}$

Idea: for each type i, consider

$$\widetilde{K}_i = \#$$
 jobs + $\#$ virtual jobs + $\#$ tokens

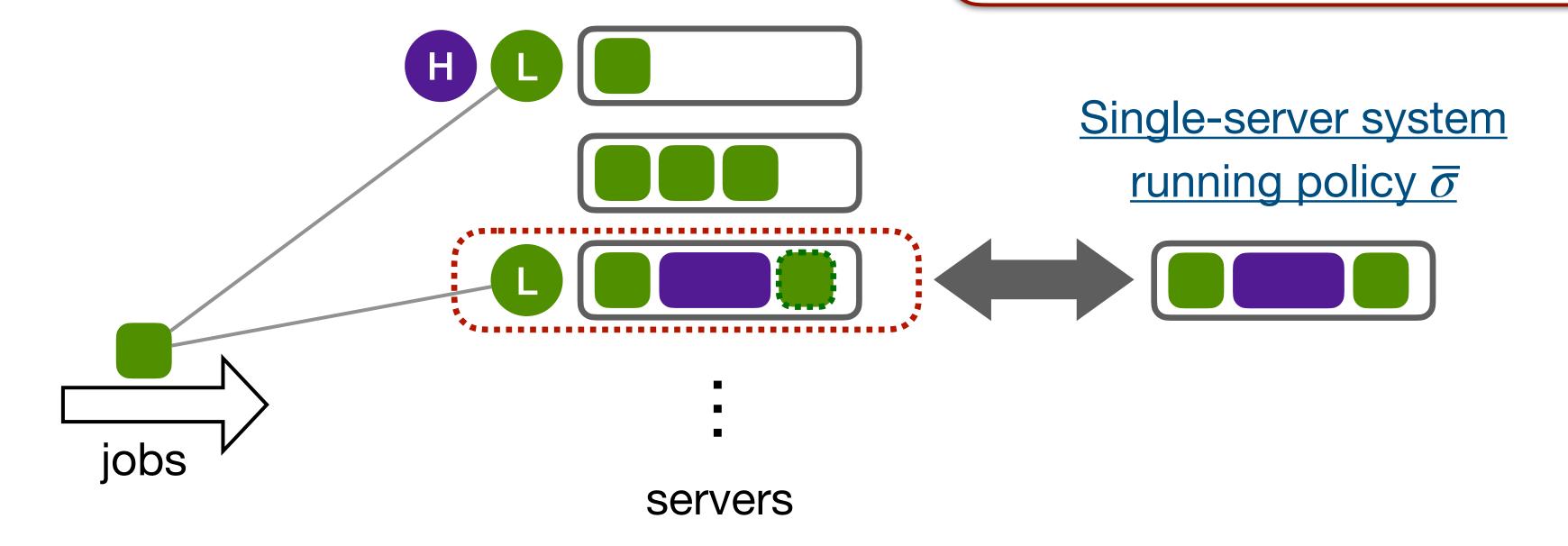
Arrivals & token overflows do not affect \widetilde{K}_i

<u>Difficulty:</u> the dynamics of a server in the original system depends on other servers through arrivals & token overflows

Do job arrivals affect K_i ?

Do token overflows affect K_i ?

Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems

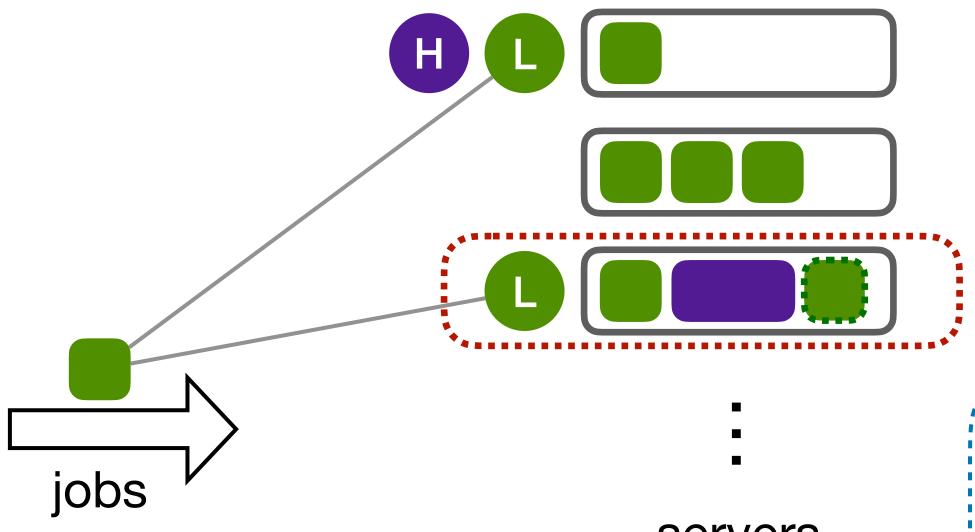


Idea: for each type i, consider

$$\widetilde{K}_i = \text{\# jobs} + \text{\# virtual jobs} + \text{\# tokens}$$

Arrivals & token overflows do not affect \widetilde{K}_i

Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems



servers

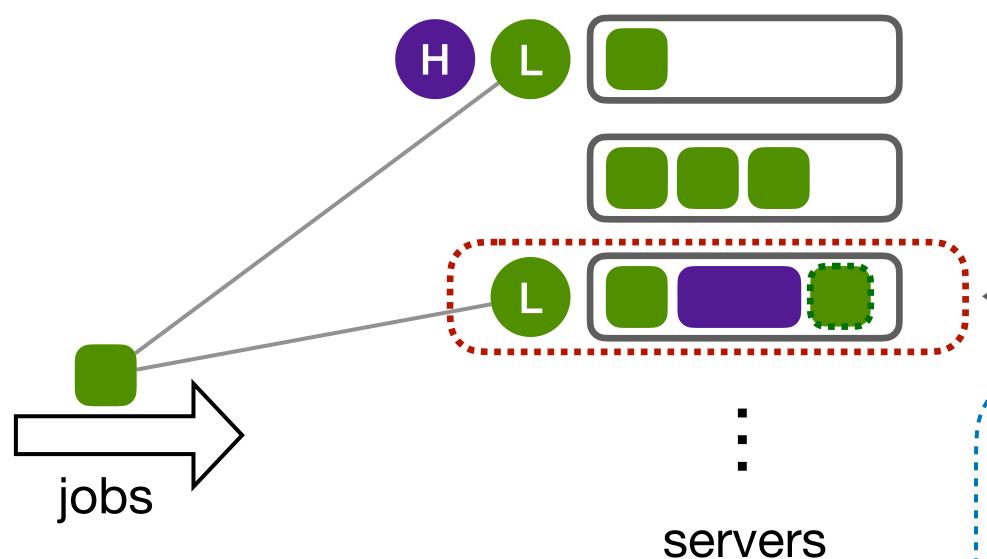
$$\widetilde{K}_i = \text{\# jobs} + \text{\# virtual jobs} + \text{\# tokens}$$

Idea: for each type i, consider

Arrivals & token overflows do not affect \widetilde{K}

Single-server system running policy $\overline{\sigma}$

Dynamics in the original system v.s.



Idea: for each type i, consider

$$\widetilde{K}_i = \#$$
 jobs + $\#$ virtual jobs + $\#$ tokens

Arrivals & token overflows do not affect \widetilde{K}_i

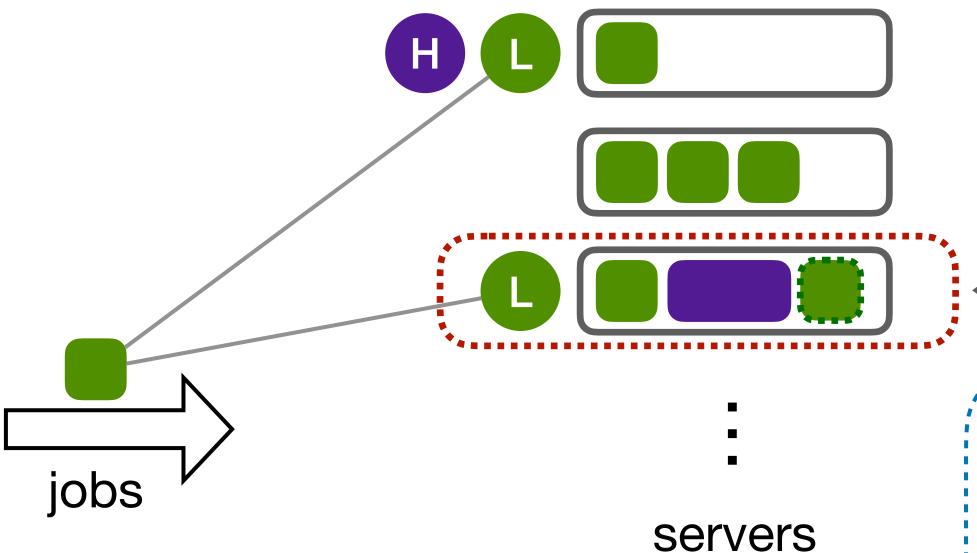
Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems

Single-server system running policy $\overline{\sigma}$

Dynamics in the original system v.s.

Dynamics in \overline{N} independent single-server systems

 A server without tokens in the original system generates tokens and has job transitions in the same way as a single-server system



Idea: for each type i, consider

$$\widetilde{K}_i = \#$$
 jobs + $\#$ virtual jobs + $\#$ tokens

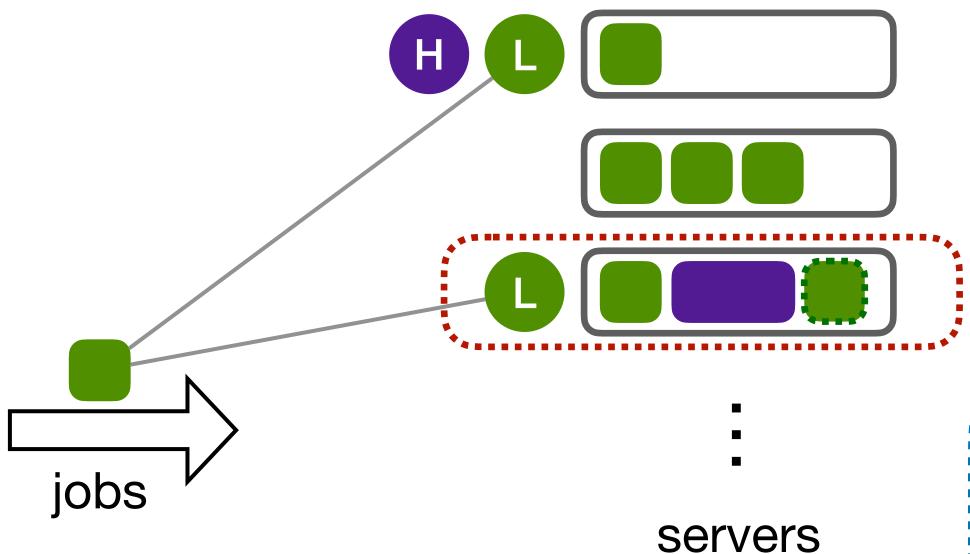
Arrivals & token overflows do not affect \widetilde{K}_i

Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems

Single-server system running policy $\overline{\sigma}$

Dynamics in the original system v.s.

- A server without tokens in the original system generates tokens and has job transitions in the same way as a single-server system
- Difference between two systems is bounded by # tokens



Idea: for each type i, consider

$$\widetilde{K}_i = \#$$
 jobs + $\#$ virtual jobs + $\#$ tokens

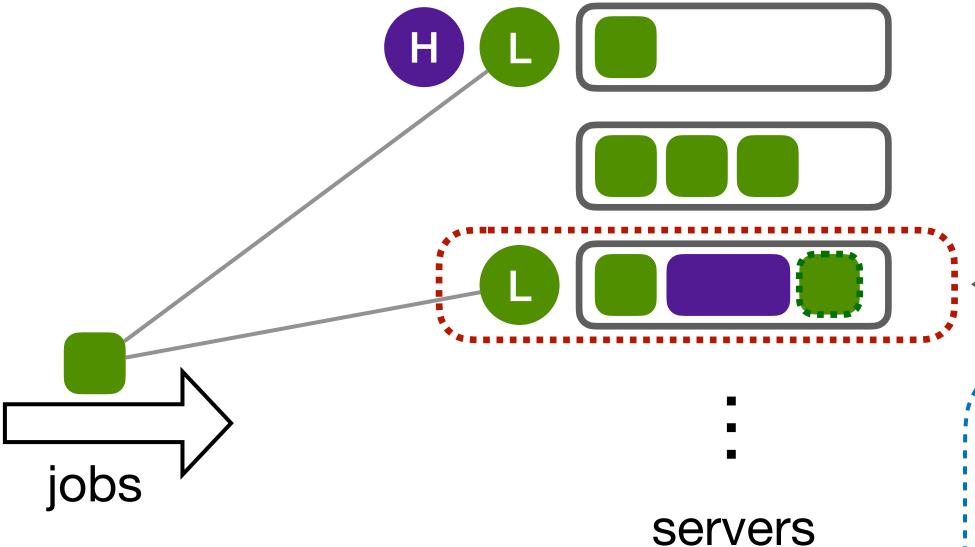
Arrivals & token overflows do not affect \widetilde{K}

Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems

Single-server system running policy $\overline{\sigma}$

Dynamics in the original system v.s.

- A server without tokens in the original system generates tokens and has job transitions in the same way as a single-server system
- Difference between two systems is bounded by # tokens
- # tokens $\leq \sqrt{r}$



Idea: for each type i, consider

$$\widetilde{K}_i = \#$$
 jobs + $\#$ virtual jobs + $\#$ tokens

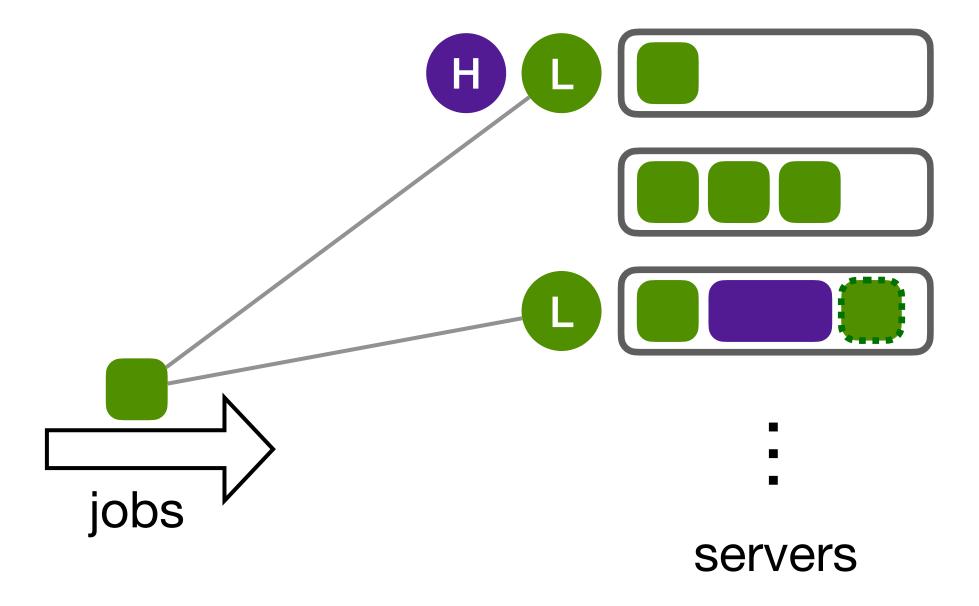
Arrivals & token overflows do not affect \widetilde{K}_i

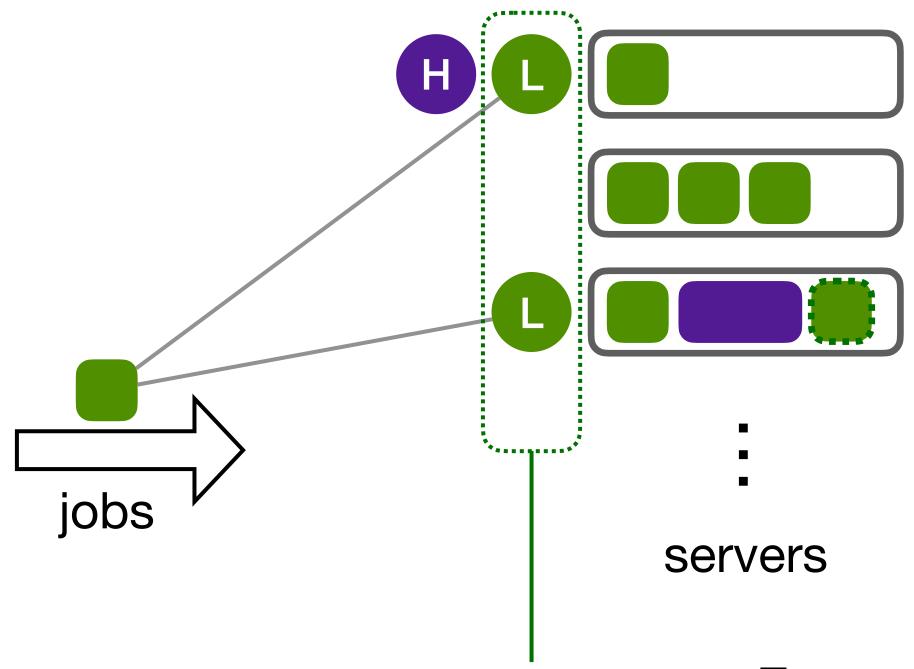
Will show that regular servers in the original system $\approx \overline{N}$ independent single-server systems

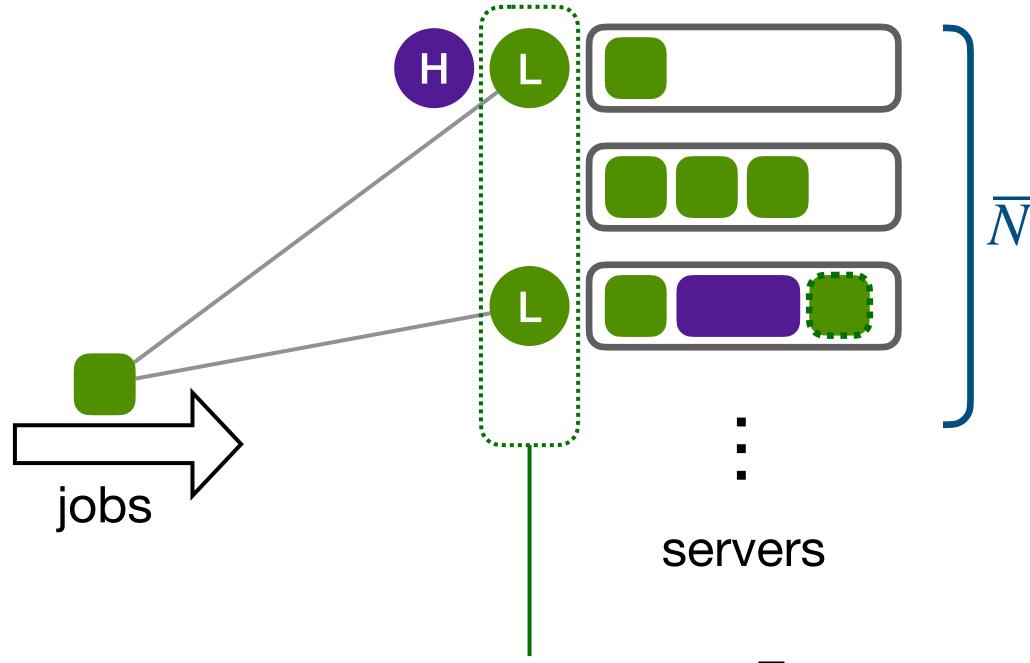
Single-server system running policy $\overline{\sigma}$

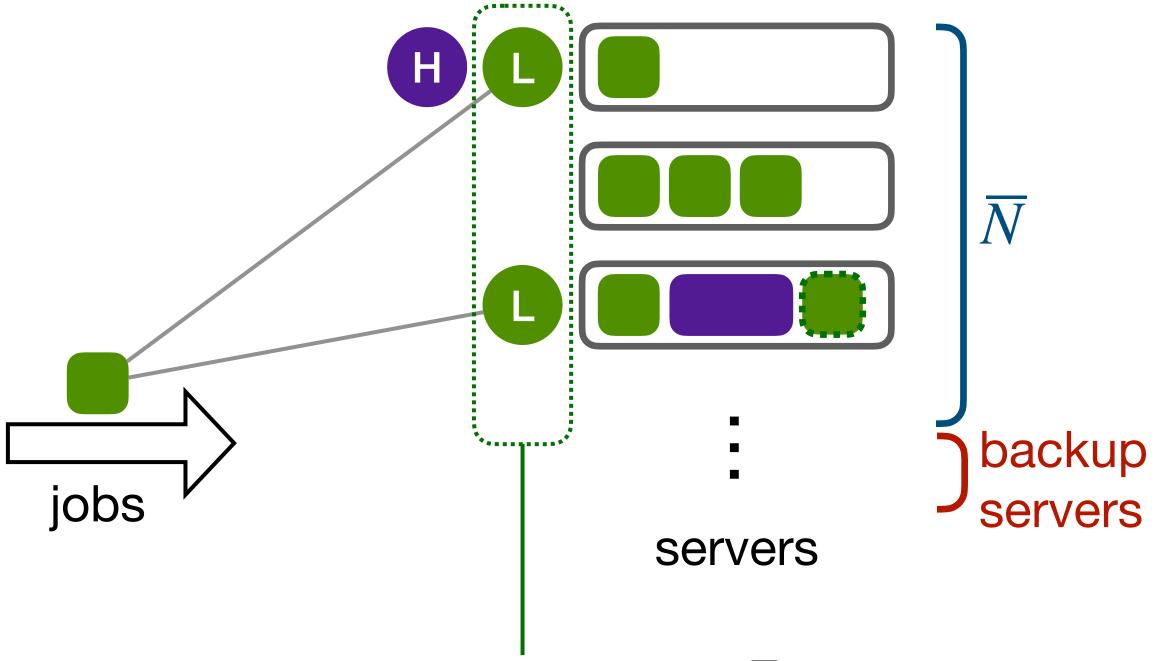
Dynamics in the original system v.s.

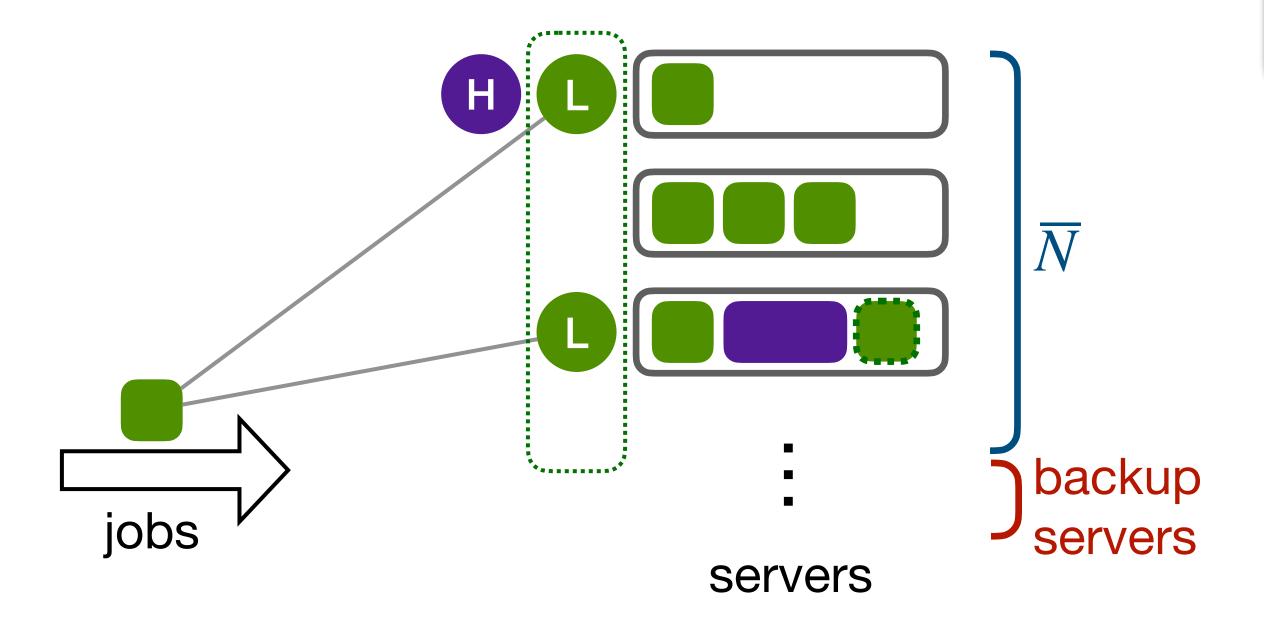
- A server without tokens in the original system generates tokens and has job transitions in the same way as a single-server system
- Difference between two systems is bounded by # tokens
- # tokens $\leq \sqrt{r}$
 - \Longrightarrow Using Stein's method, $d_W\left(\widetilde{K}^{1:\overline{N}},\overline{K}^{1:\overline{N}}\right)=O\left(r^{0.5}\right)$



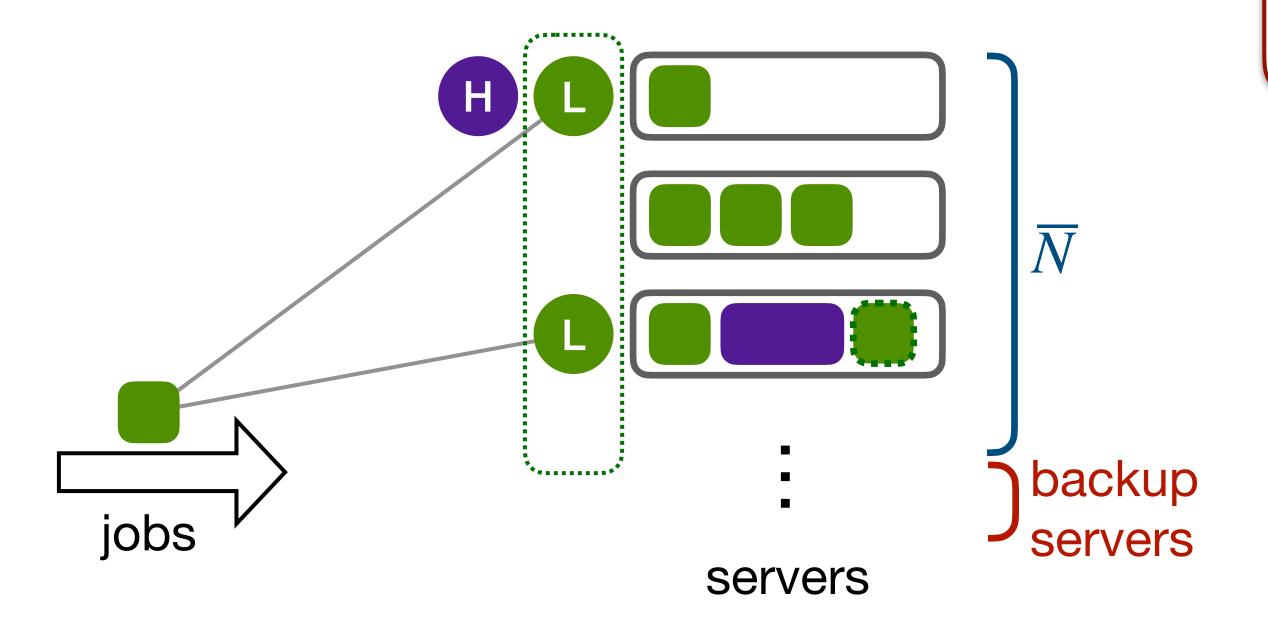


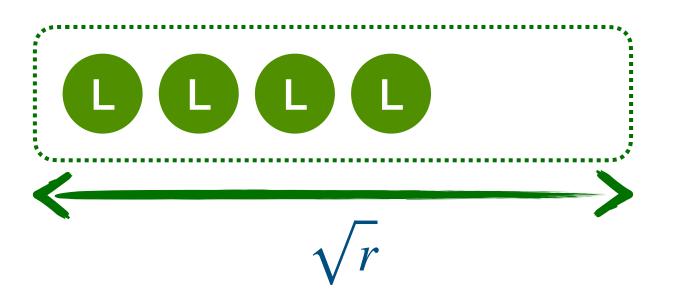


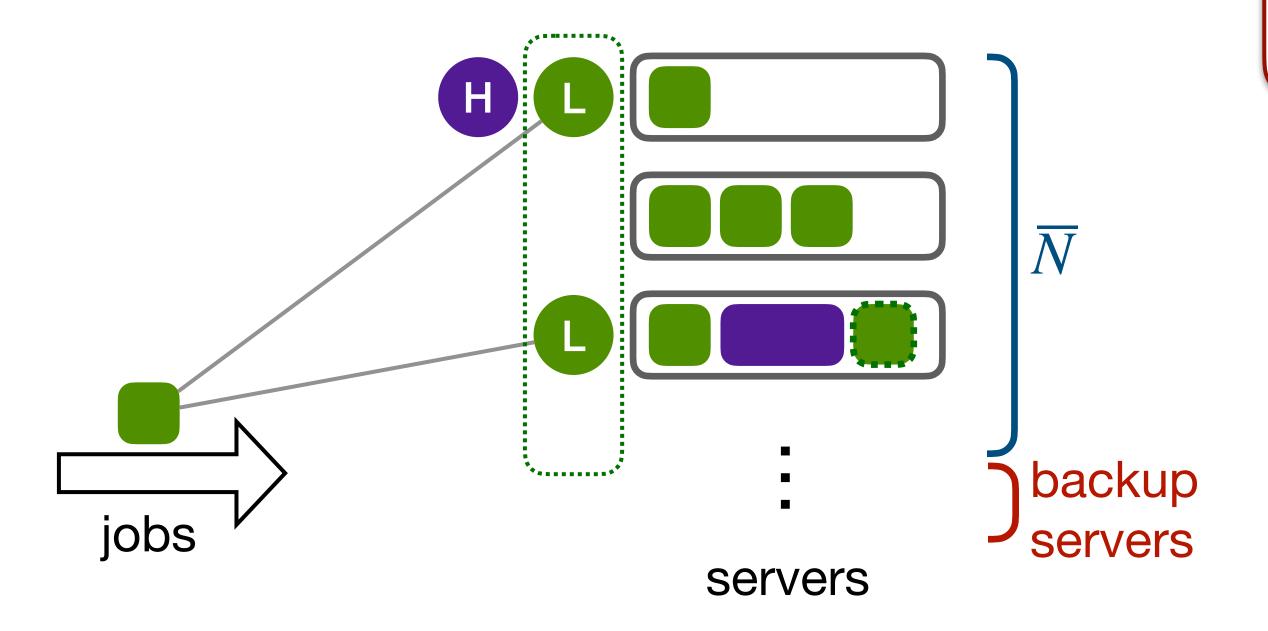


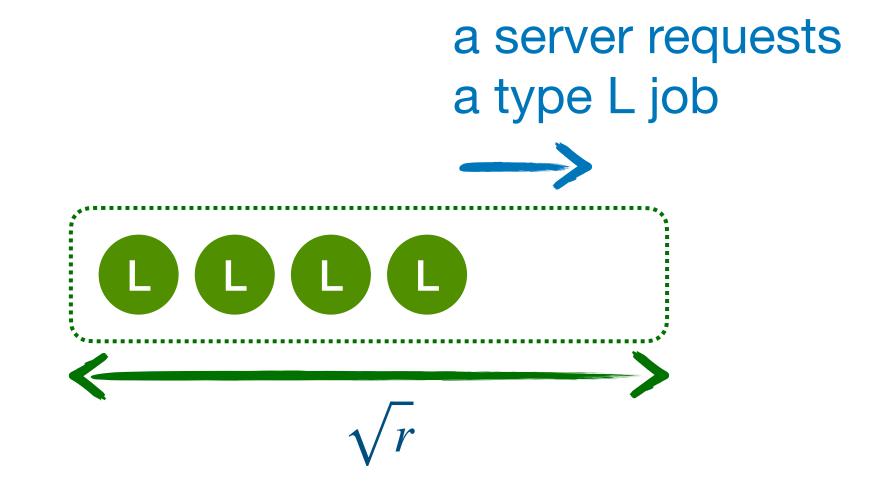


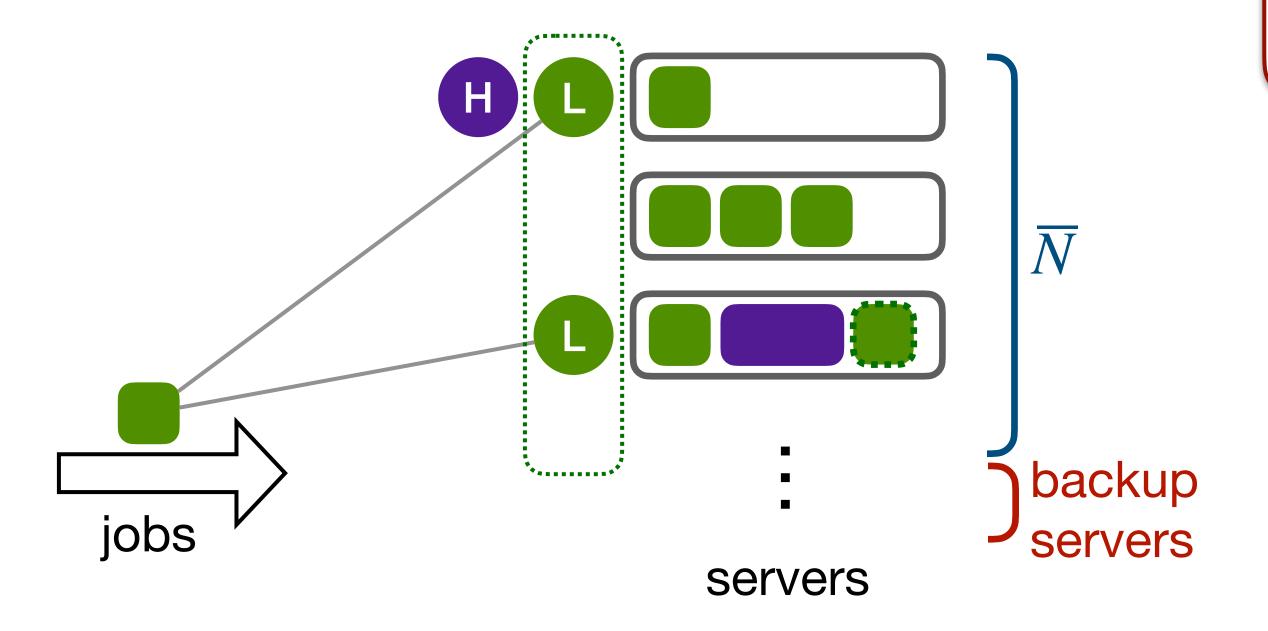
Will show that # virtual jobs = $O\left(\sqrt{r}\right)$, and # backup servers = $O\left(\sqrt{r}\right)$

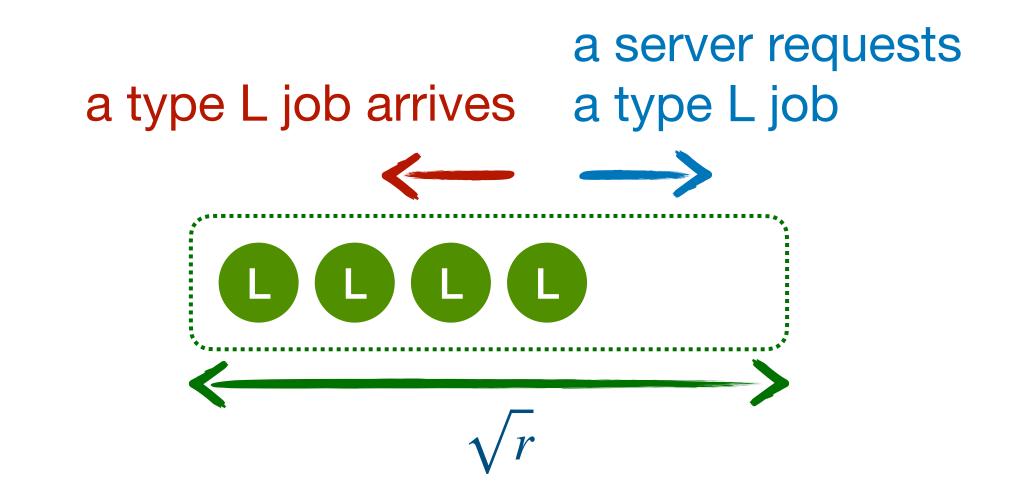


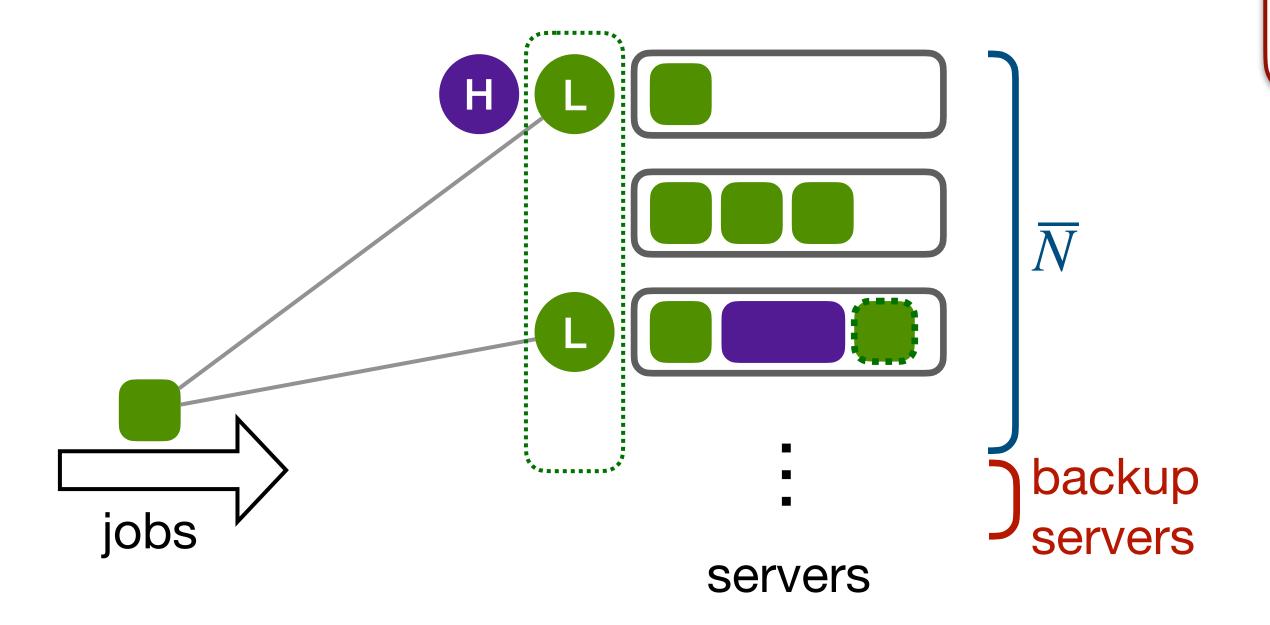


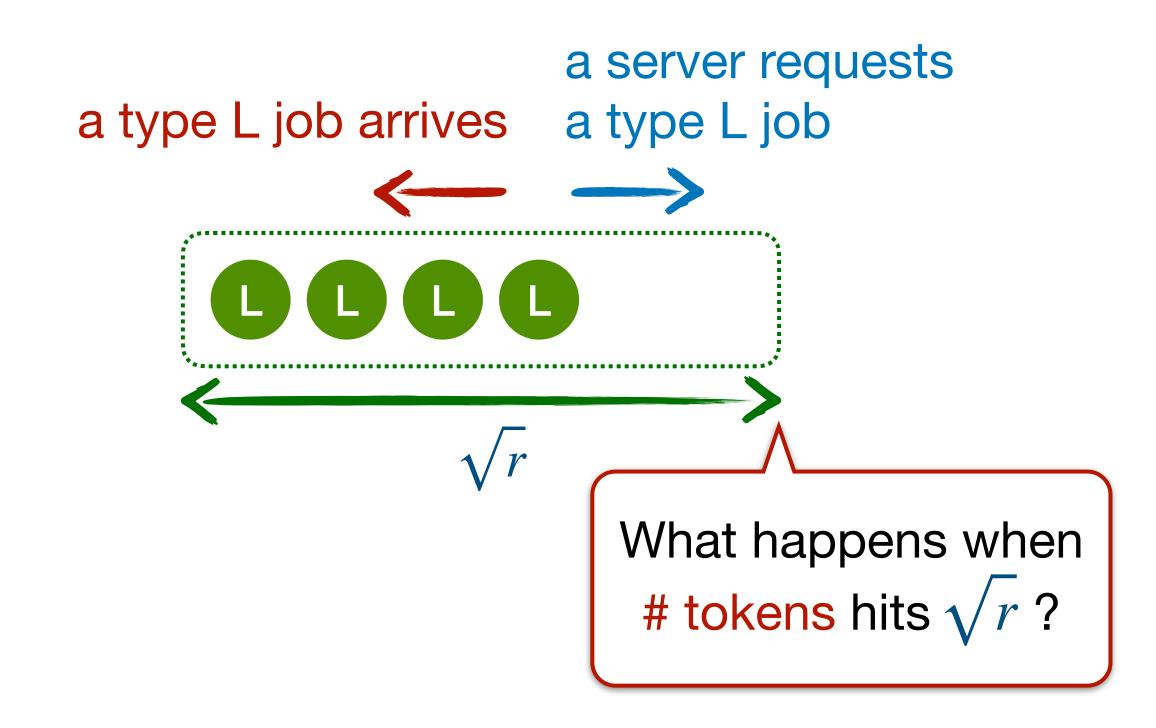


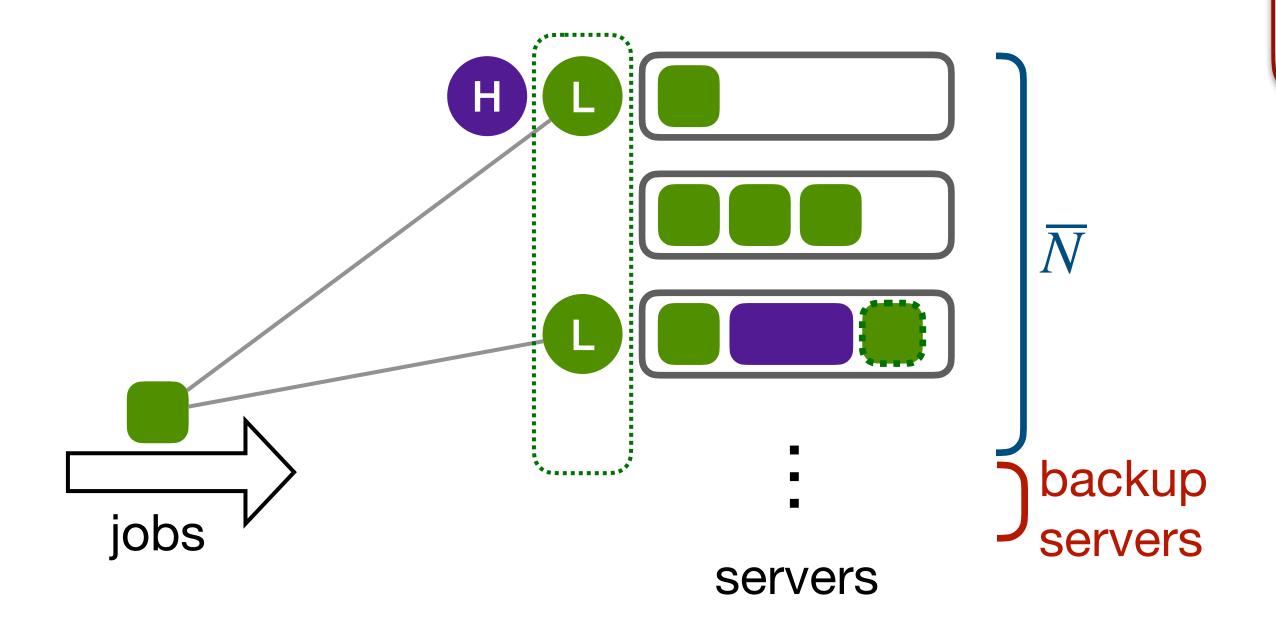


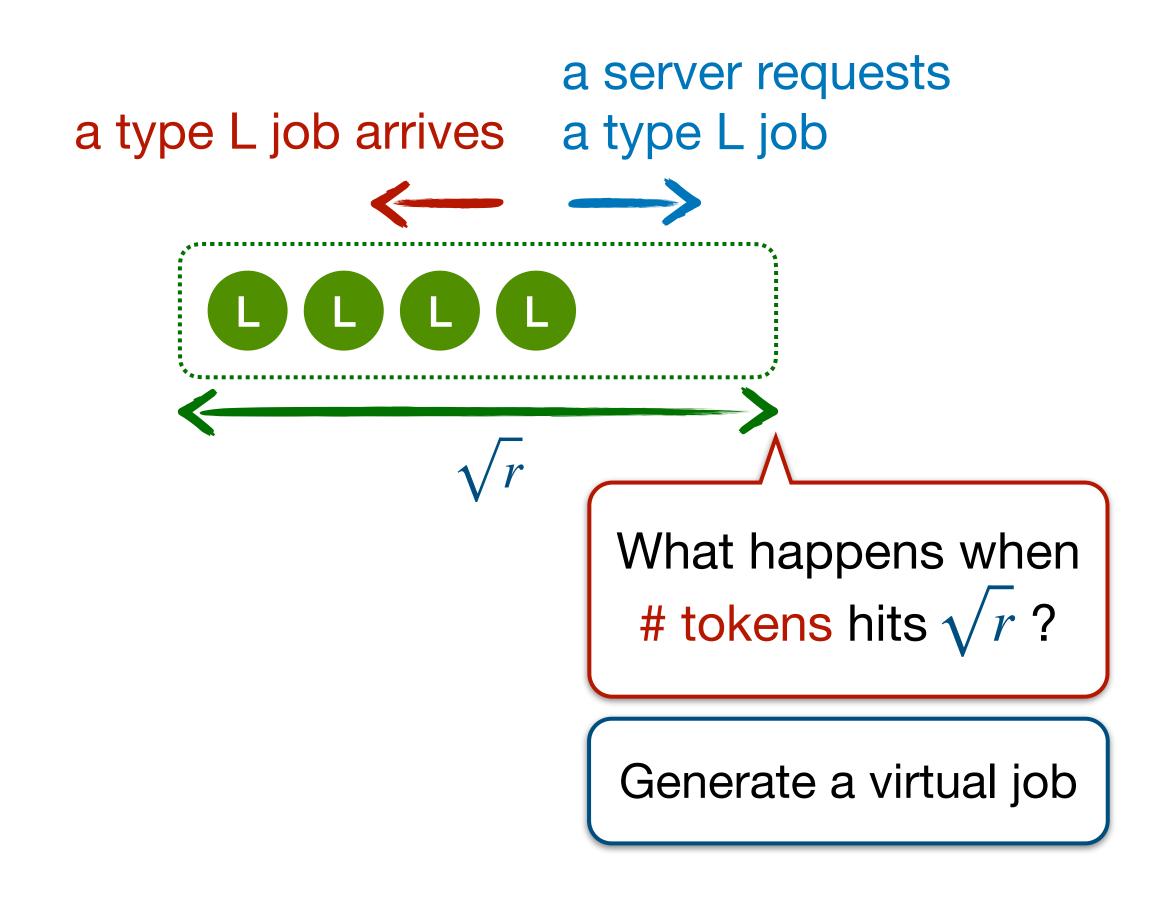


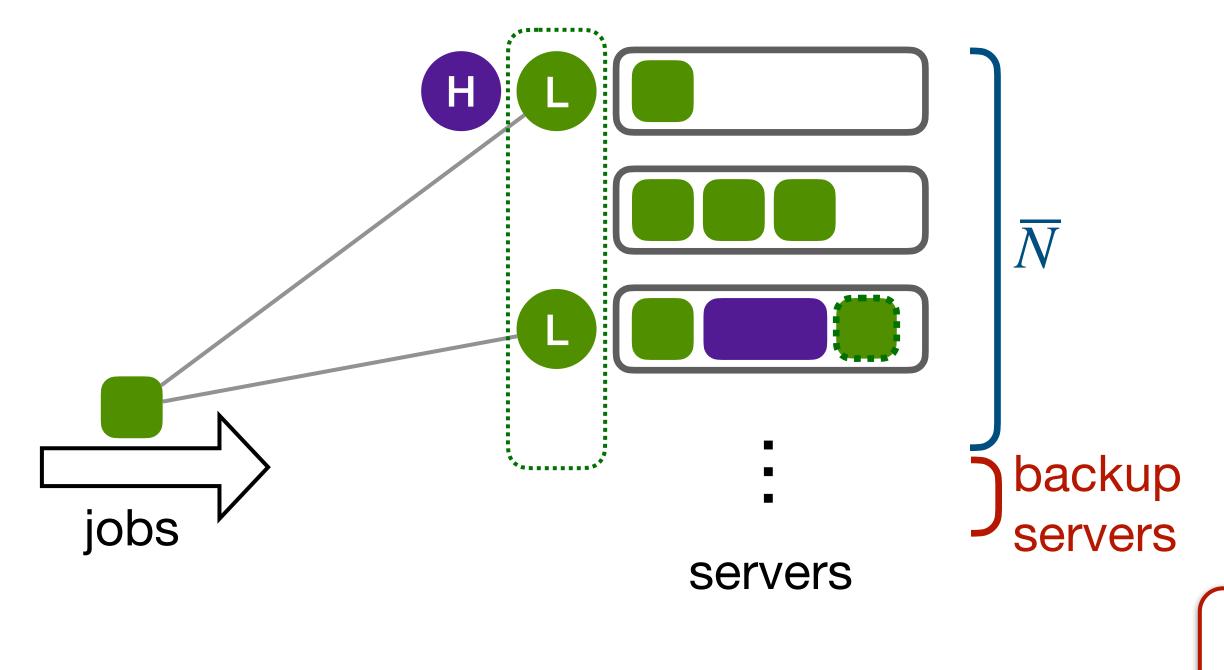


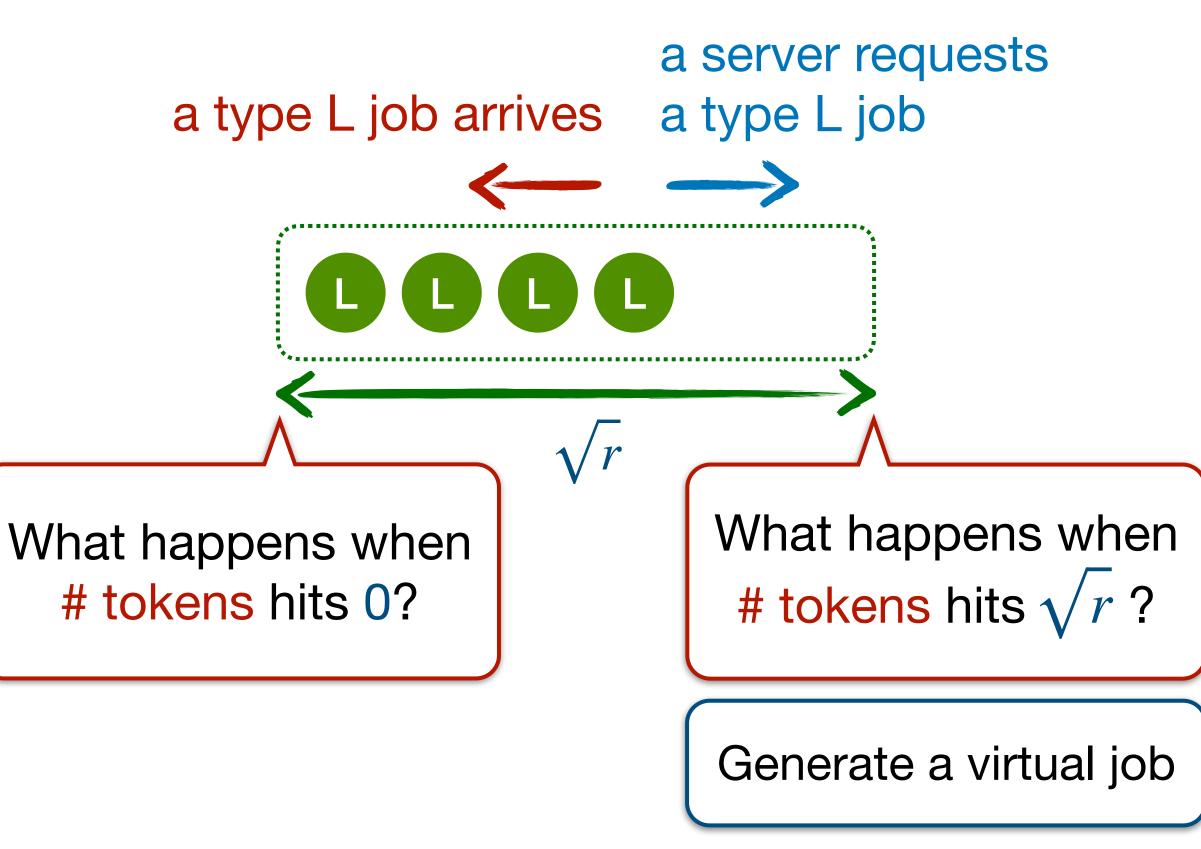


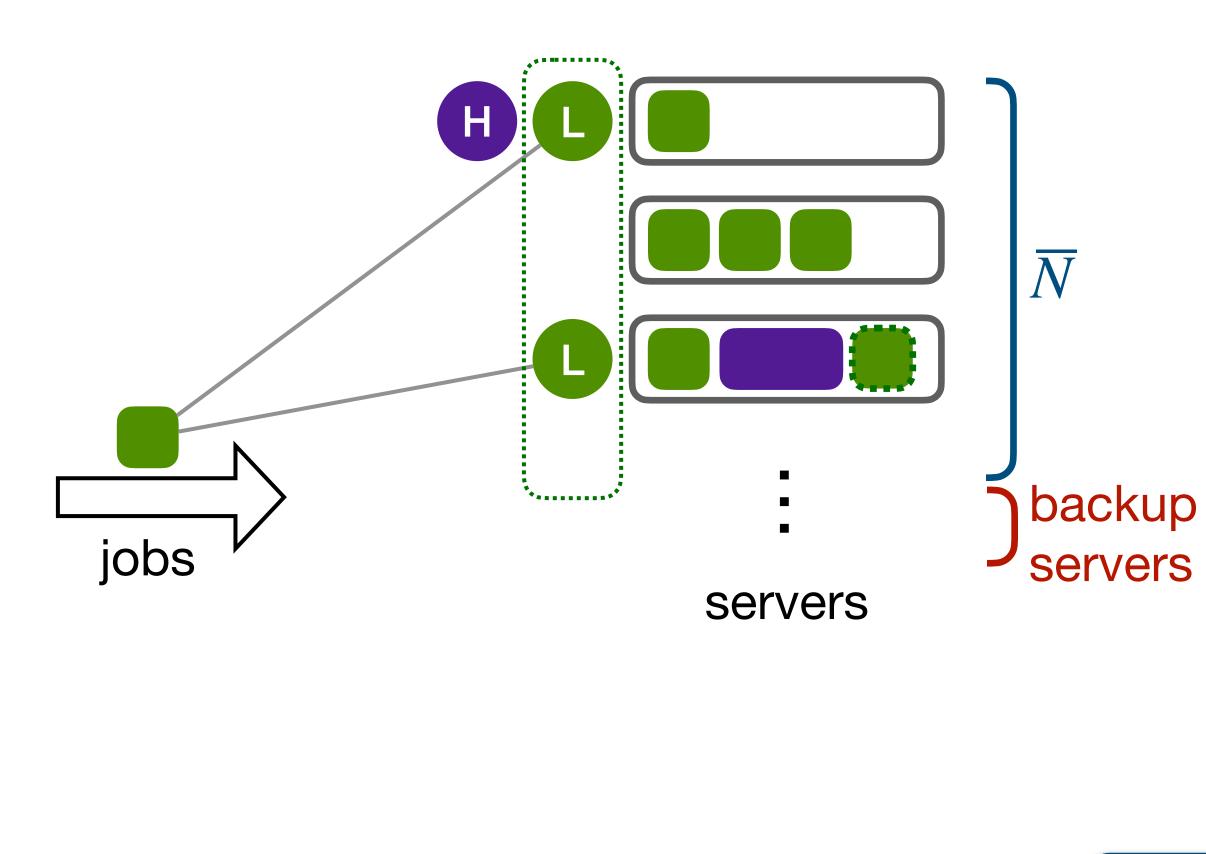


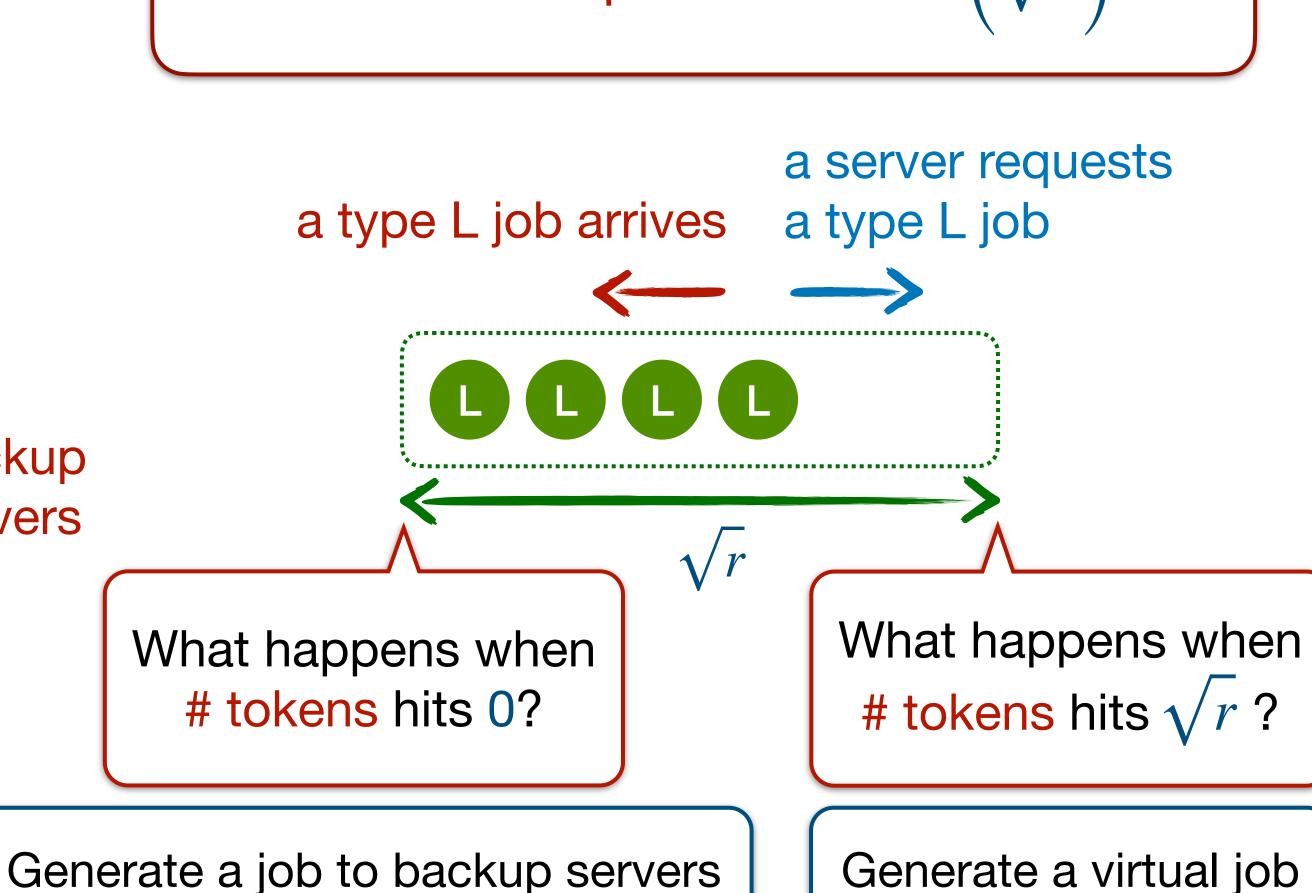


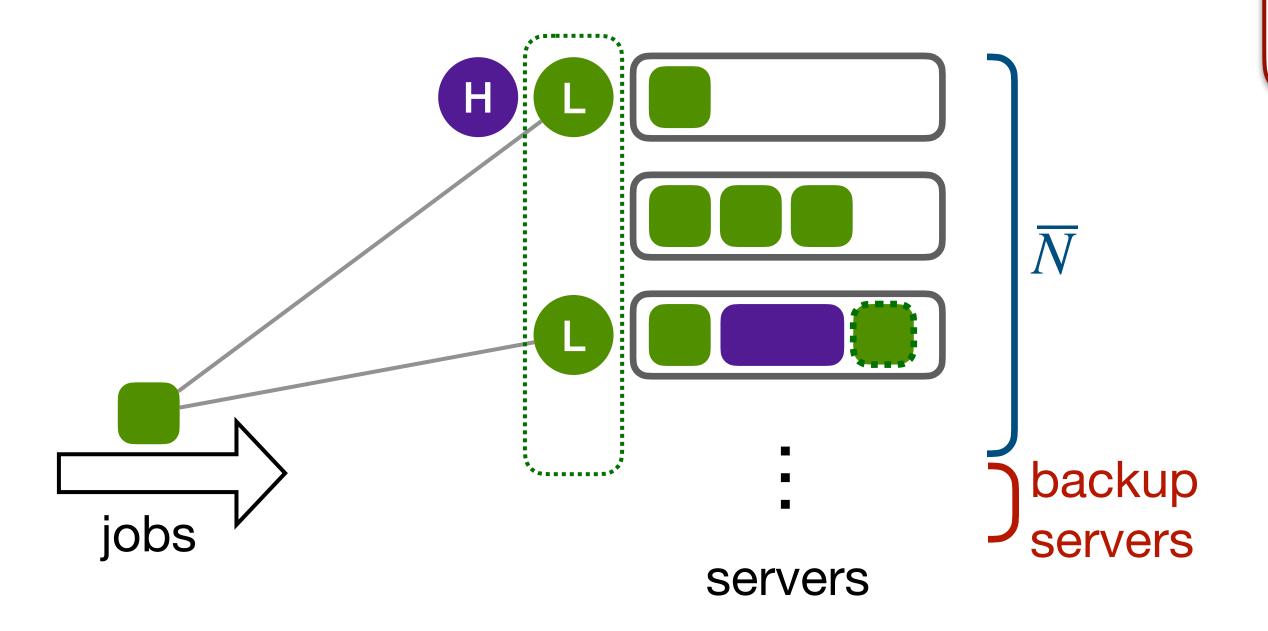


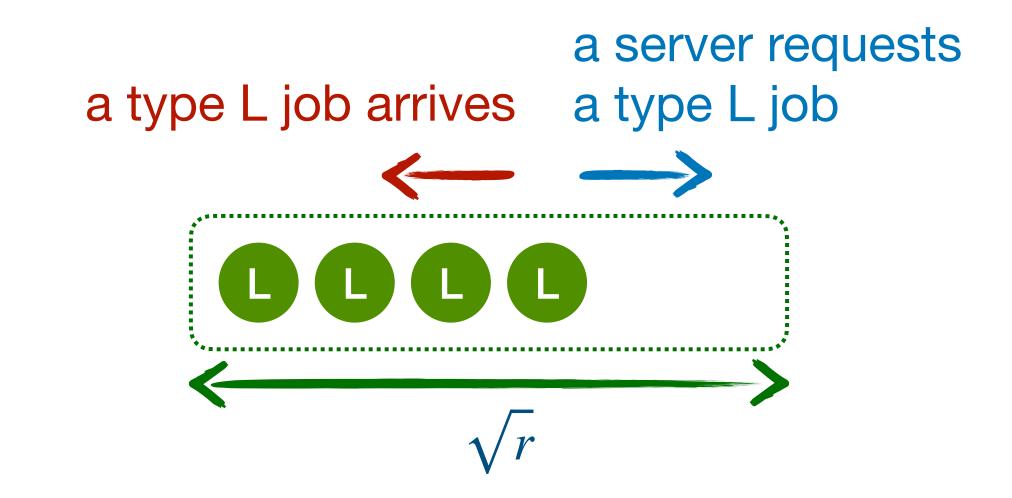


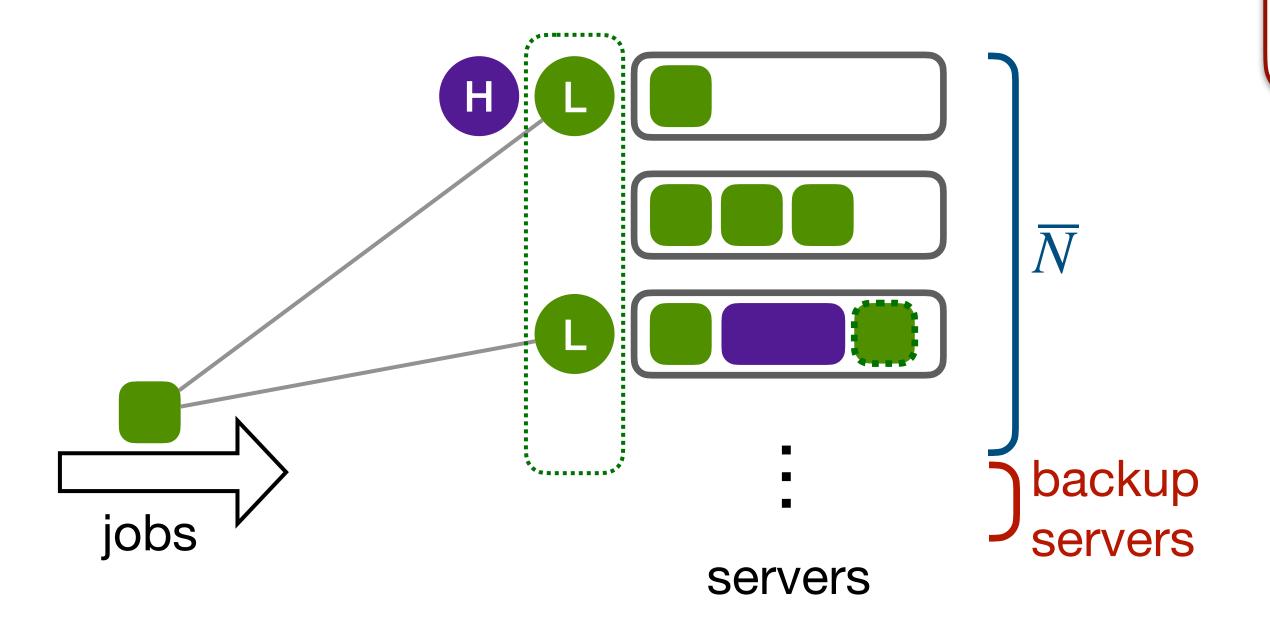


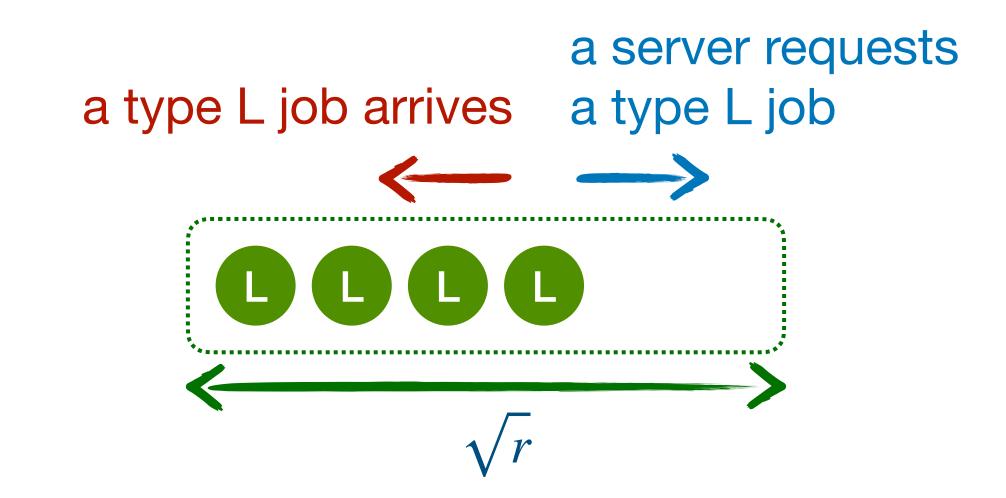


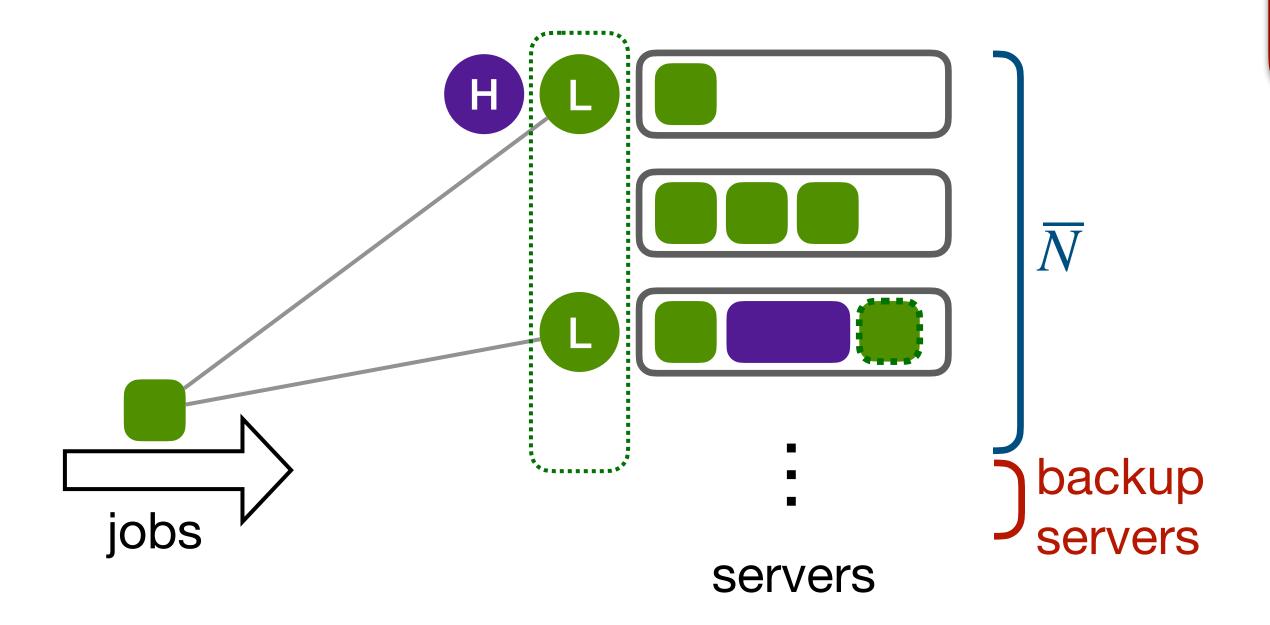






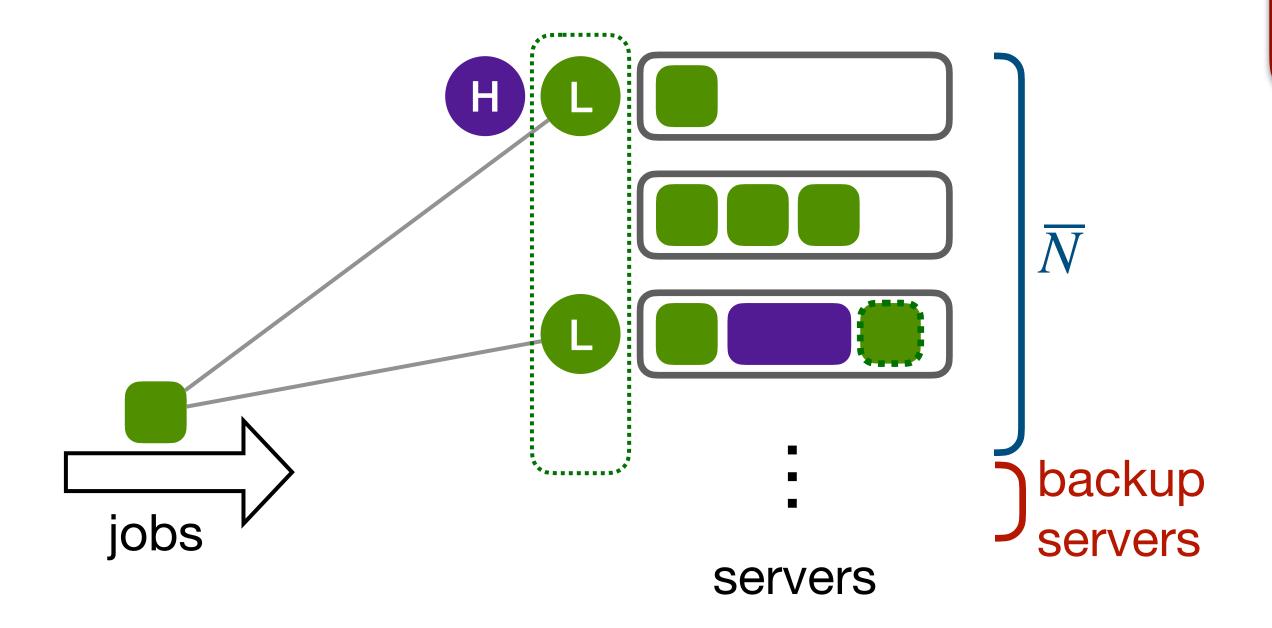




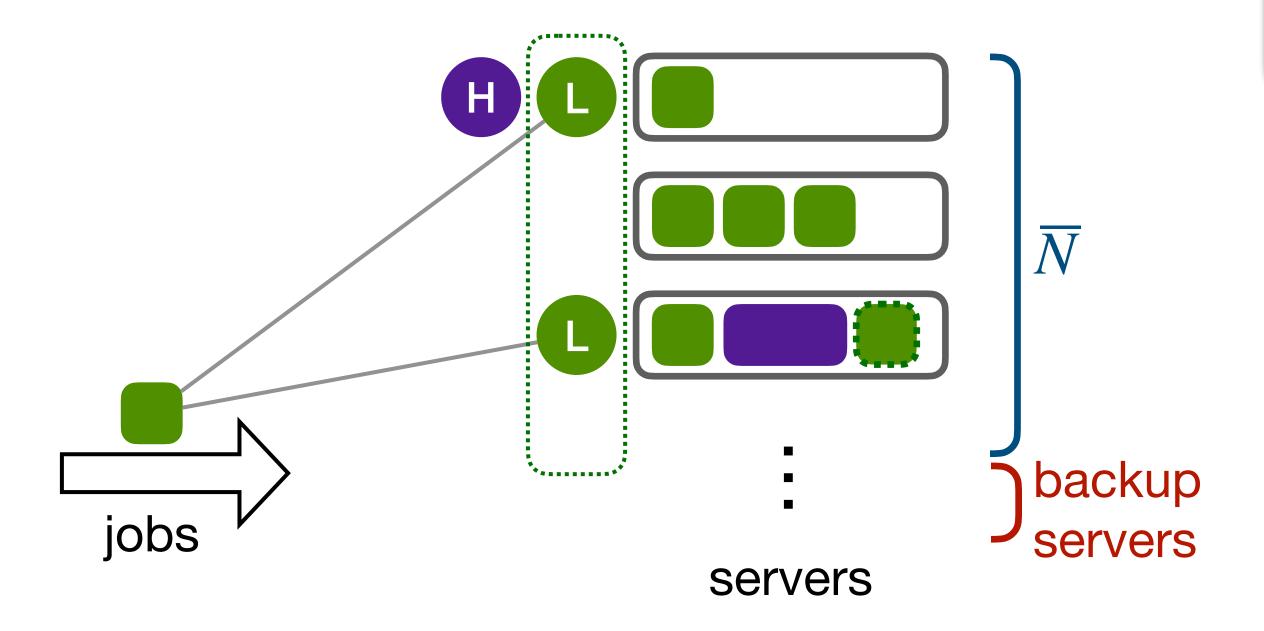


Will show that # virtual jobs = $O\left(\sqrt{r}\right)$, and # backup servers = $O\left(\sqrt{r}\right)$

An almost balanced random walk



- An almost balanced random walk
- Stationary distribution \approx uniform on $\{0, 1, ..., \sqrt{r}\}$



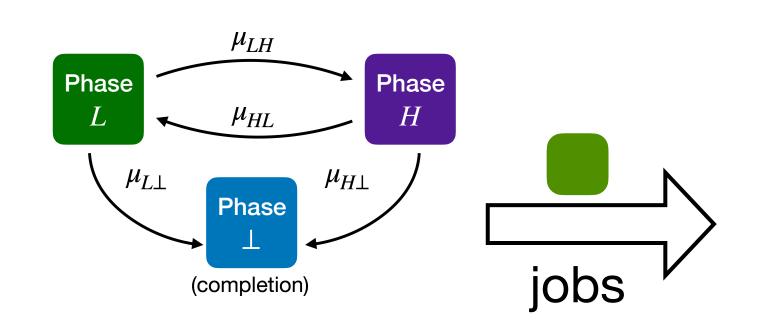
Will show that # virtual jobs = $O\left(\sqrt{r}\right)$, and # backup servers = $O\left(\sqrt{r}\right)$

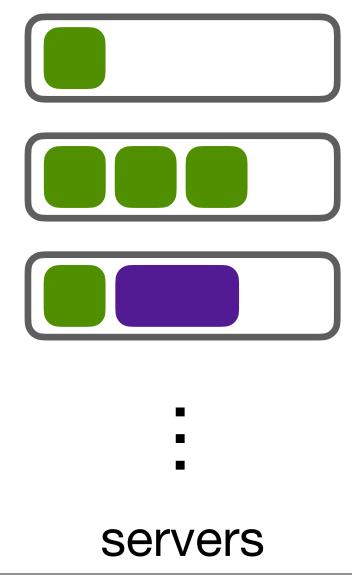
a server requests a type L job

COCO

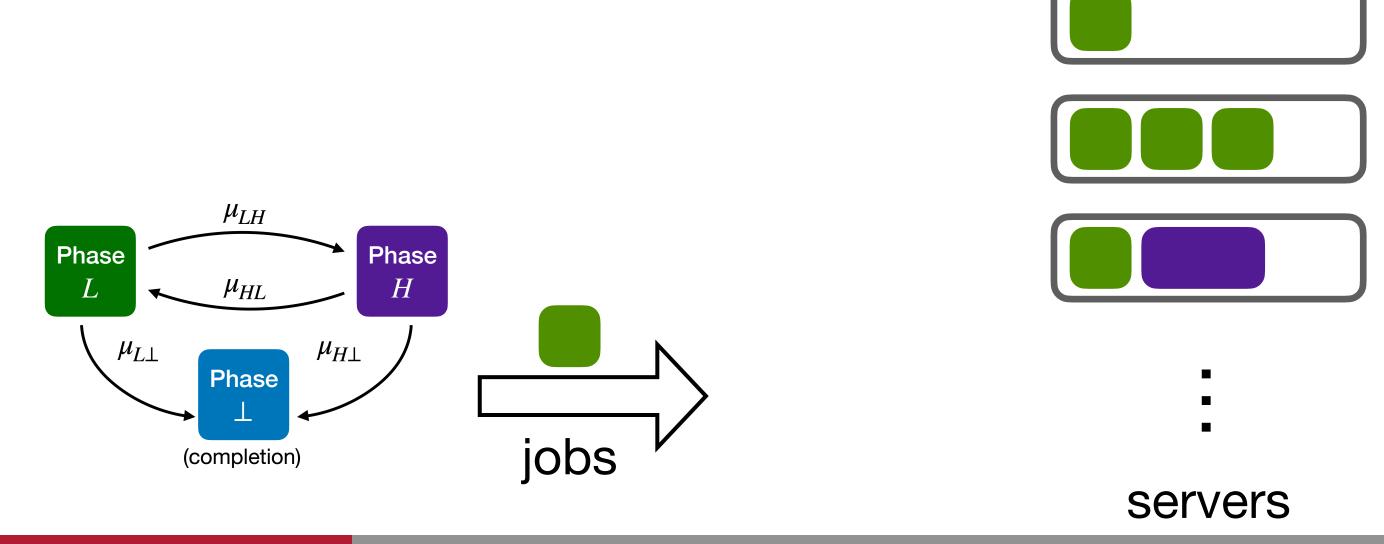
Tr

- An almost balanced random walk
- Stationary distribution \approx uniform on $\{0, 1, ..., \sqrt{r}\}$
- Rate of generating virtual jobs \approx rate of sending jobs to backup servers \approx arrival rate $/\sqrt{r} = O\left(\sqrt{r}\right)$

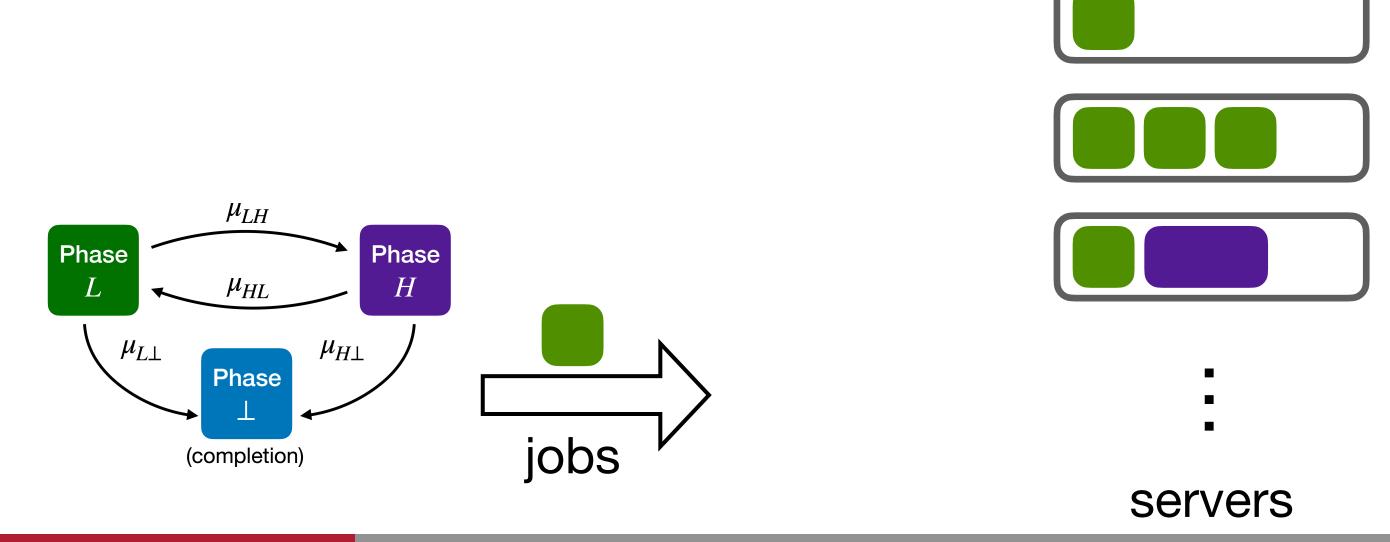




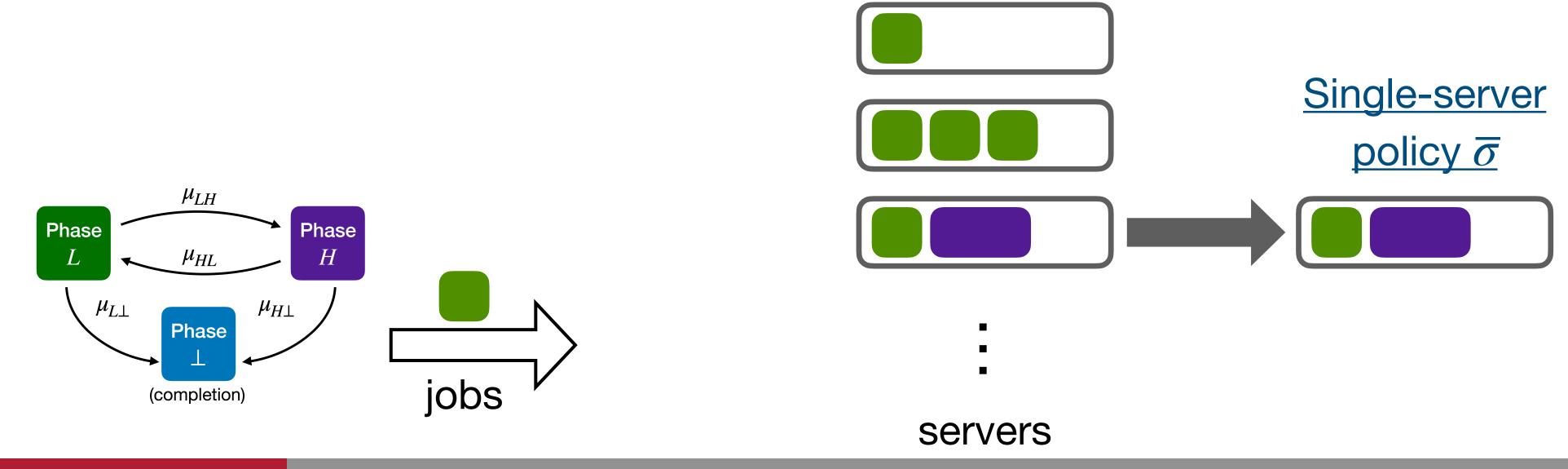
 We considered the problem of assigning jobs to servers when jobs have time-varying resource requirements



- We considered the problem of assigning jobs to servers when jobs have time-varying resource requirements
- We designed an asymptotically optimal policy



- We considered the problem of assigning jobs to servers when jobs have time-varying resource requirements
- We designed an asymptotically optimal policy
- We proposed a policy-conversion framework that allows us to reduce the policy-design problem to that in a single-server system



- We considered the problem of assigning jobs to servers when jobs have time-varying resource requirements
- We designed an asymptotically optimal policy
- We proposed a policy-conversion framework that allows us to reduce the policy-design problem to that in a single-server system