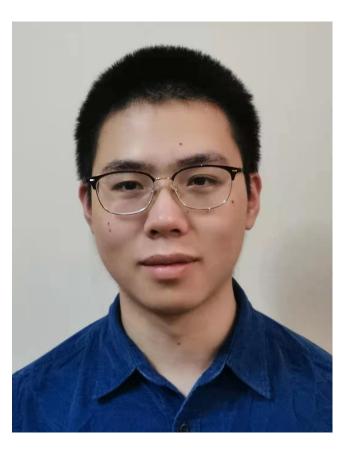
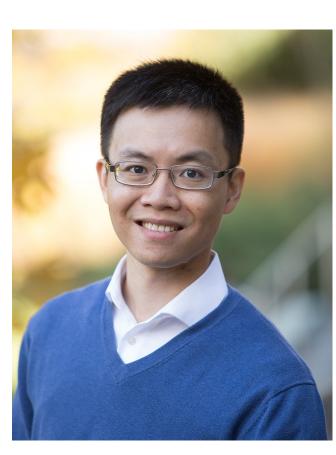
Restless Bandits with Average Reward: Breaking the Uniform Global Attractor Assumption

Weina Wang Carnegie Mellon University



Yige Hong Carnegie Mellon

Qiaomin Xie
UW—Madison



Yudong Chen UW—Madison

Stochastic multi-armed bandits

unknown reward distribution 1 unknown Which reward distribution 2 arm to pull? unknown reward distribution 3 unknown reward distribution 4 N arms

Restless Bandits with Average Reward: Breaking the UGAP Assumption

Stochastic multi-armed bandits

Restless bandits [Whittle 88]

unknown reward distribution 1

Which arm to pull?

unknown reward distribution 2

unknown reward distribution 3

unknown reward distribution 4

N arms

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms

Stochastic multi-armed bandits

Restless bandits [Whittle 88]

unknown reward distribution 1 unknown Which reward distribution 2 arm to pull? unknown reward distribution 3 unknown reward distribution 4 N arms

MDP with known parameters MDP with Which known αN parameters arms to MDP with pull? known parameters MDP with known parameters N arms

MDP with known parameters MDP with Which known αN parameters arms to MDP with pull? known parameters MDP with known parameters N arms

Restless bandits Markov Decision Process (S, A, P, r): MDP with known parameters MDP with Which known αN parameters arms MDP with to pull? known parameters MDP with known parameters N arms

Markov Decision Process (S, A, P, r):

• State space: S, finite

Which αN arms to pull?

MDP with known parameters

MDP with

known

parameters

MDP with known parameters

MDP with known parameters

N arms

Markov Decision Process (S, A, P, r):

MDP with known parameters • State space: S, finite

Which known αN parameters

arms

to

pull?

MDP with

MDP with known parameters

MDP with known parameters

N arms

• Action space: $A = \{active, passive\}$

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms

Markov Decision Process (S, A, P, r):

- State space: S, finite
- Action space: $A = \{active, passive\}$
 - Active = "pulling"

Which

 αN

arms

to

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms

Markov Decision Process (S, A, P, r):

- State space: S, finite
- Action space: $A = \{active, passive\}$
 - Active = "pulling"
 - Passive = "not pulling"

Which

 αN

arms

to

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms

Markov Decision Process (S, A, P, r):

- State space: S, finite
- Action space: $A = \{active, passive\}$
 - Active = "pulling"
 - Passive = "not pulling"
- Transition probabilities:

Which

 αN

arms

to

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms

Markov Decision Process (S, A, P, r):

- State space: S, finite
- Action space: $A = \{active, passive\}$
 - Active = "pulling"
 - Passive = "not pulling"
- Transition probabilities:
 - P(s' | s, active)

Which

 αN

arms

to

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms

Markov Decision Process (S, A, P, r):

- State space: S, finite
- Action space: $A = \{active, passive\}$
 - Active = "pulling"
 - Passive = "not pulling"
- Transition probabilities:
 - $P(s' \mid s, active)$
 - P(s' | s, passive) "restless"

Which

 αN

arms

to

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms

Markov Decision Process (S, A, P, r):

- State space: S, finite
- Action space: $A = \{active, passive\}$
 - Active = "pulling"
 - Passive = "not pulling"
- Transition probabilities:
 - $P(s' \mid s, active)$
 - P(s' | s, passive) "restless"
- Reward: r(s, a)

Which

 αN

arms

to

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms

Markov Decision Process (S, A, P, r):

- State space: S, finite
- Action space: $A = \{active, passive\}$
 - Active = "pulling"
 - Passive = "not pulling"
- Transition probabilities:
 - $P(s' \mid s, active)$
 - P(s' | s, passive) "restless"
- Reward: r(s, a)

Goal: Design a policy to maximize long-term average of total reward

Which

 αN

arms

to

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms

Markov Decision Process (S, A, P, r):

- State space: S, finite
- Action space: $A = \{active, passive\}$
 - Active = "pulling"
 - Passive = "not pulling"
- Transition probabilities:
 - $P(s' \mid s, active)$
 - P(s' | s, passive) "restless"
- Reward: r(s, a)

Goal: Design a policy to maximize long-term average of total reward

Which

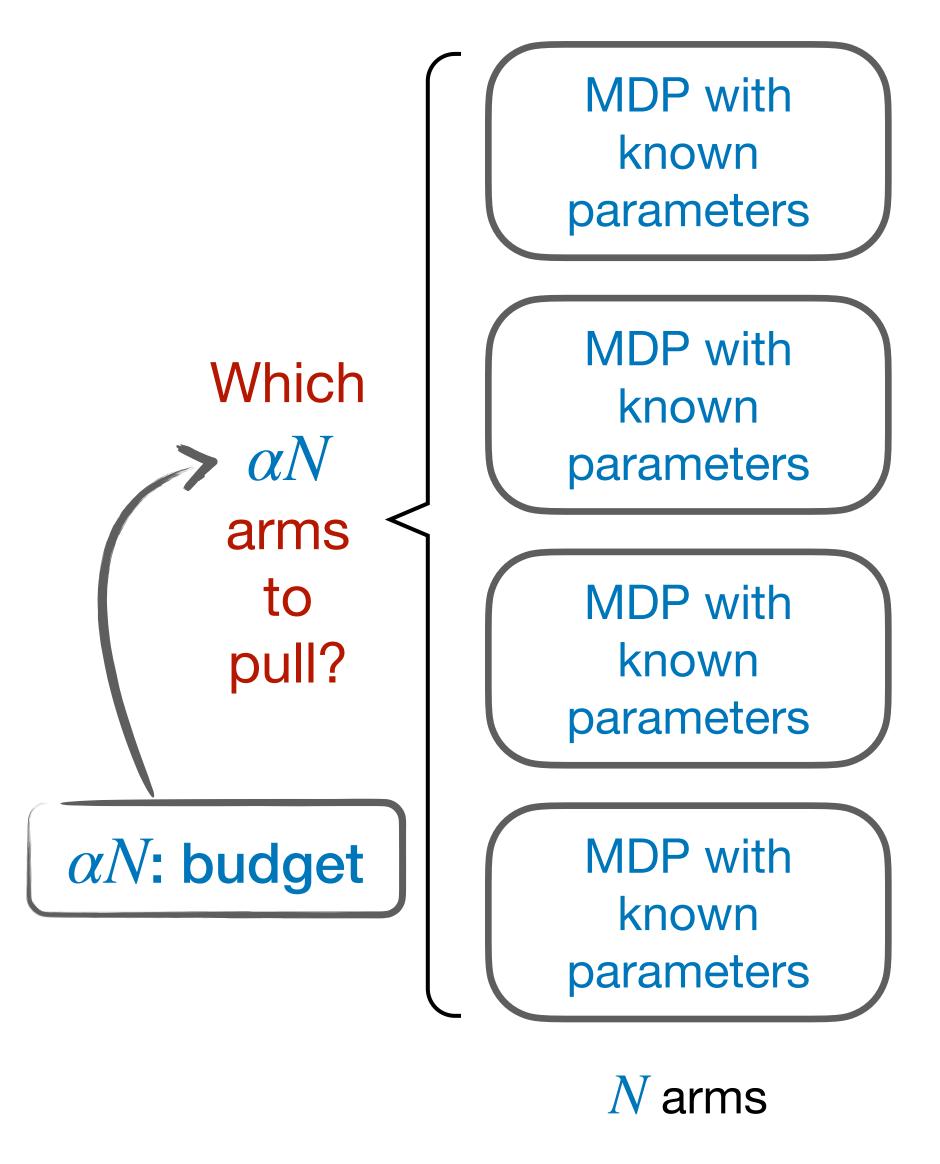
 αN

arms

to

pull?

 αN : budget



MDP with known parameters MDP with Which known αN parameters arms to MDP with pull? known parameters MDP with αN : budget known parameters N arms

Weina Wang (CMU)

N-armed MDP

maximize policy π

$$V_N^{\pi} \triangleq \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[r(S_i^{\pi}(t), A_i^{\pi}(t))]$$

subject to

$$\sum_{i=1}^{N} \mathbf{1}_{\{A_i^{\pi}(t) = \text{active}\}} = \alpha N, \quad \forall t \ge 0$$

MDP with known parameters MDP with Which known αN parameters arms to MDP with pull? known parameters MDP with αN : budget known parameters N arms

N-armed MDP

maximize policy
$$\pi$$

$$V_N^{\pi} \triangleq \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[r(S_i^{\pi}(t), A_i^{\pi}(t))]$$
 subject to
$$\sum_{t=0}^{N} \mathbf{1}_{\{A_i^{\pi}(t) = \text{active}\}} = \alpha N, \quad \forall t \geq 0$$

Goal (refined):

Design a computationally efficient policy π such that

$$V_N^* - V_N^\pi \to 0 \text{ as } N \to \infty$$

MDP with known parameters MDP with Which known αN parameters arms to MDP with pull? known parameters MDP with αN : budget known parameters N arms

N-armed MDP

Goal (refined):

Design a computationally efficient policy π such that

$$\begin{array}{c} V_N^* - V_N^{\pi} \to 0 \text{ as } N \to \infty \\ \hline \\ \text{optimality gap} \end{array}$$

Discrete time setting

Paper Policy Optimality Gap Conditions*

Discrete time setting

Discrete time setting

Paper	Policy	Optimality Gap	Conditions*

Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexability & UGAP
Verloop 16	LP-Prioriy	<i>o</i> (1)	UGAP

Discrete time setting

 Paper	Policy	Optimality Gap	Conditions*

Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexability & UGAP
Verloop 16	LP-Prioriy	<i>o</i> (1)	UGAP
Gast, Gaujal, and Yan 20	Whittle Index	$O\left(e^{-cN}\right)$	UGAP & Non-singular
Gast, Gaujal, and Yan 22	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate

Discrete time setting

Paper	Policy	Optimality Gap	Conditions*
Gast, Gaujal, and Yan 20	Whittle Index	$O\left(e^{-cN}\right)$	UGAP & Non-singular
Gast, Gaujal, and Yan 22	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate

Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexability & UGAP
Verloop 16	LP-Prioriy	<i>o</i> (1)	UGAP
Gast, Gaujal, and Yan 20	Whittle Index	$O\left(e^{-cN}\right)$	UGAP & Non-singular
Gast, Gaujal, and Yan 22	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate

Discrete time setting

Paper	Policy	Optimality Gap	Conditions*	
Gast, Gaujal, and Yan 20	Whittle Index	$O\left(e^{-cN}\right)$	UGAP & Non-singular	
Gast Could and Van 22	LD Driarity	O(a-cN)	LICAD & Non dogenerate	
Can we achieve asymptotic optimality without UGAP?				

Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexability & UGAP
Verloop 16	LP-Prioriy	<i>o</i> (1)	UGAP
Gast, Gaujal, and Yan 20	Whittle Index	$O\left(e^{-cN}\right)$	UGAP & Non-singular
Gast, Gaujal, and Yan 22	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate

Discrete time setting

PaperPolicyOptimality GapConditions*Gast, Gaujal, and Yan 20Whittle Index $O\left(e^{-cN}\right)$ UGAP & Non-singularGast Caujal and Yan 22LD Driority $O\left(e^{-cN}\right)$ UCAD & Non-degenerateCan we achieve asymptotic optimality without UGAP?

Continuous time setting

Can we establish a non-trivial optimality gap without non-singular/non-degenerate assumption (and UGAP)?

Gast, Gaujai, and Tarr 20	vviiittie iriaex	0 (6)	UGAF & Non-singular
Gast, Gaujal, and Yan 22	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate

Our results

Discrete time setting

Paper	Policy	Optimality Gap	Conditions*
Gast, Gaujal, and Yan 20	Whittle Index	$O\left(e^{-cN}\right)$	UGAP & Non-singular
Gast, Gaujal, and Yan 22	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate
Our paper	FTVA	$O(1/\sqrt{N})$	SA

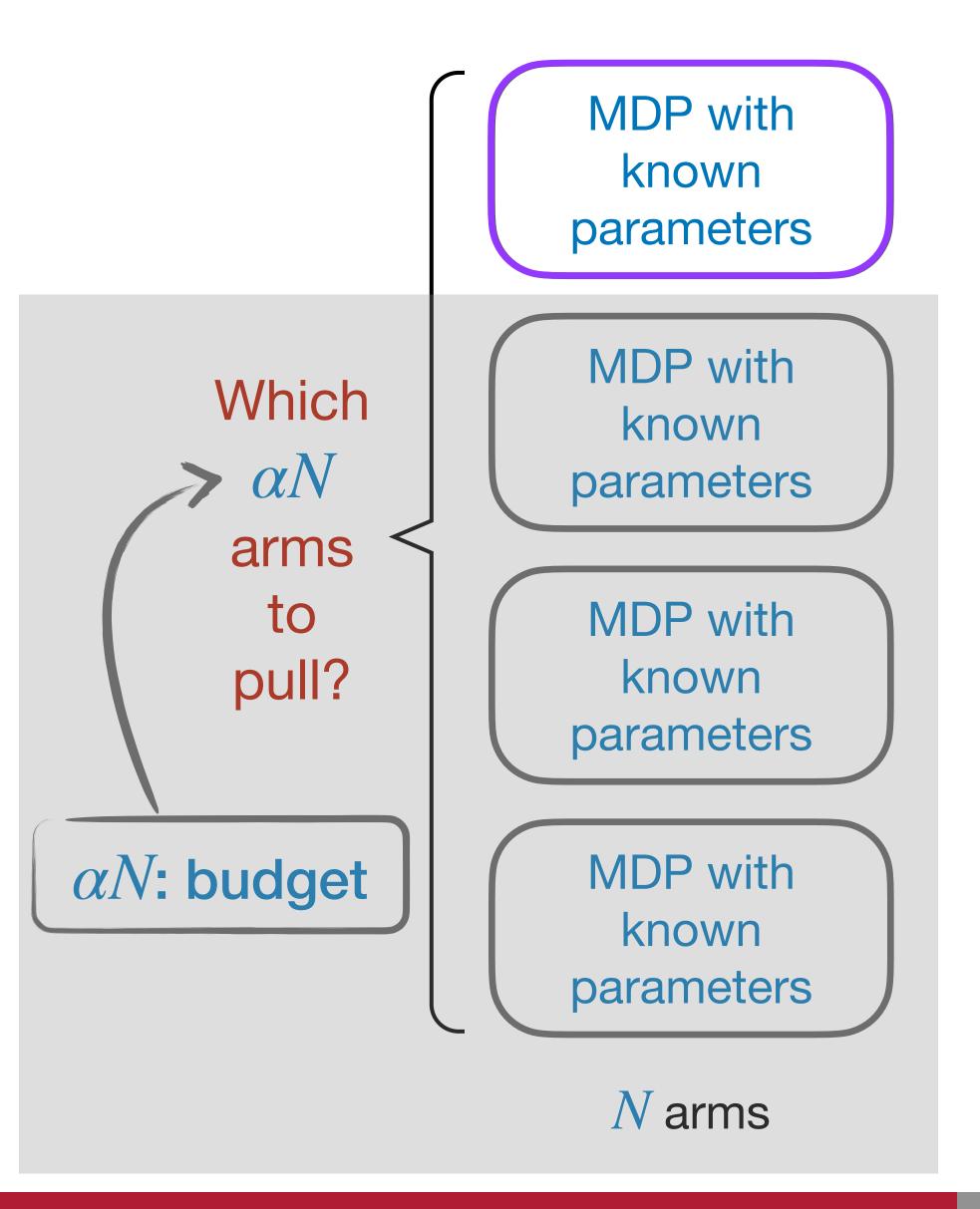
Our results

Discrete time setting

Paper	Policy	Optimality Gap	Conditions*
Gast, Gaujal, and Yan 20	Whittle Index	$O\left(e^{-cN}\right)$	UGAP & Non-singular
Gast, Gaujal, and Yan 22	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate
Our paper	FTVA	$O(1/\sqrt{N})$	SA

Weber and Weiss 90	Whittle Index	<i>o</i> (1)	UGAP
Verloop 16	LP-Prioriy	<i>o</i> (1)	UGAP
Gast, Gaujal, and Yan 20	Whittle Index	$O\left(e^{-cN}\right)$	UGAP & Non-singular
Gast, Gaujal, and Yan 22	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate
Our paper	FTVA-CT	$O(1/\sqrt{N})$	

Single-armed MDP



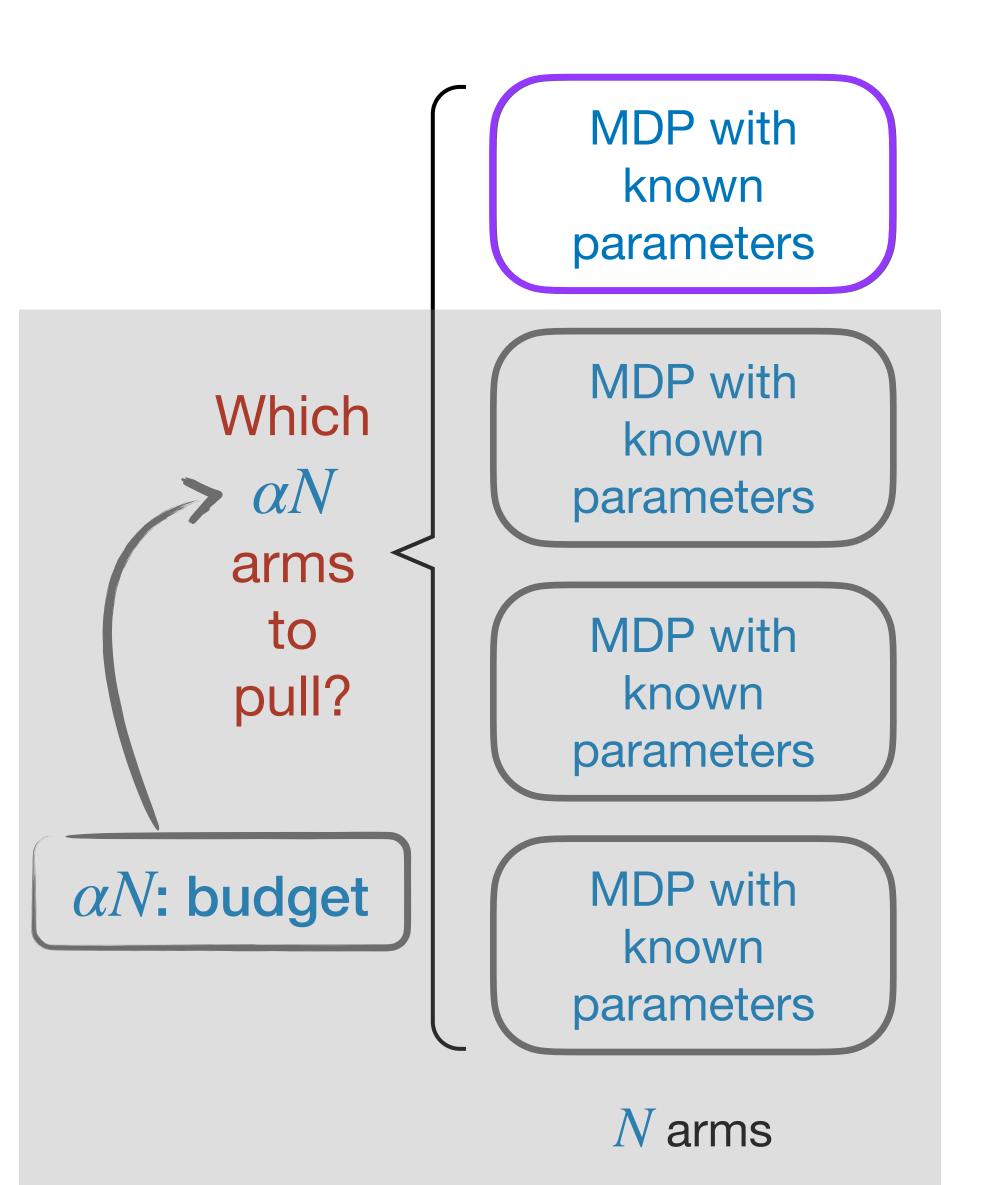
N-armed MDP

maximize policy
$$\pi$$

$$V_N^{\pi} \triangleq \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[r(S_i^{\pi}(t), A_i^{\pi}(t))]$$

$$\sum_{i=1}^{N} \mathbf{1}_{\{A_i^{\pi}(t) = \text{active}\}} = \alpha N, \quad \forall t \ge 0$$

Single-armed MDP



maximize policy
$$\bar{\pi}$$

$$V_{1}^{\bar{\pi}} \triangleq \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[r(S_{1}^{\bar{\pi}}(t), A_{1}^{\bar{\pi}}(t))]$$

N-armed MDP

maximize policy
$$\pi$$

$$V_N^{\pi} \triangleq \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[r(S_i^{\pi}(t), A_i^{\pi}(t))]$$

$$\sum_{i=1}^{N} \mathbf{1}_{\{A_i^{\pi}(t) = \text{active}\}} = \alpha N, \quad \forall t \ge 0$$

MDP with known parameters MDP with Which known αN parameters arms to MDP with pull? known parameters MDP with αN : budget known parameters N arms

Single-armed MDP

Relaxed budget constraint

N-armed MDP

MDP with known parameters MDP with Which known αN parameters arms to MDP with pull? known parameters MDP with αN : budget known parameters N arms

Single-armed MDP

MDP with known parameters MDP with Which known αN parameters arms to MDP with pull? known parameters MDP with αN : budget known parameters N arms

Single-armed MDP

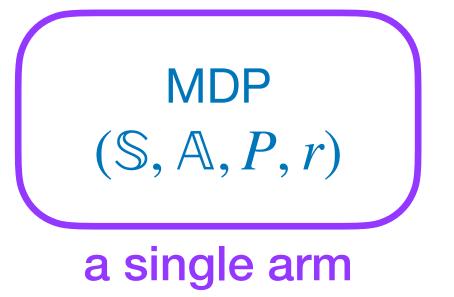
• Upper bound: $V_N^* \leq V_1^{\bar{\pi}^*}$, for all N

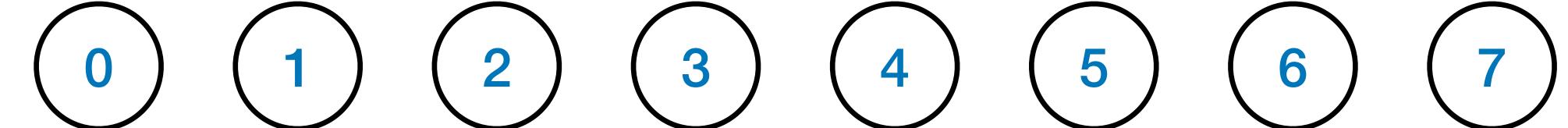
MDP with known parameters MDP with Which known αN parameters arms to MDP with pull? known parameters MDP with αN : budget known parameters N arms

Single-armed MDP

- Upper bound: $V_N^* \leq V_1^{\bar{\pi}^*}$, for all N
- The single-armed MDP can be solved as a linear program

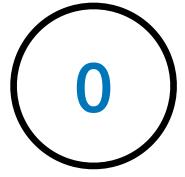
Example

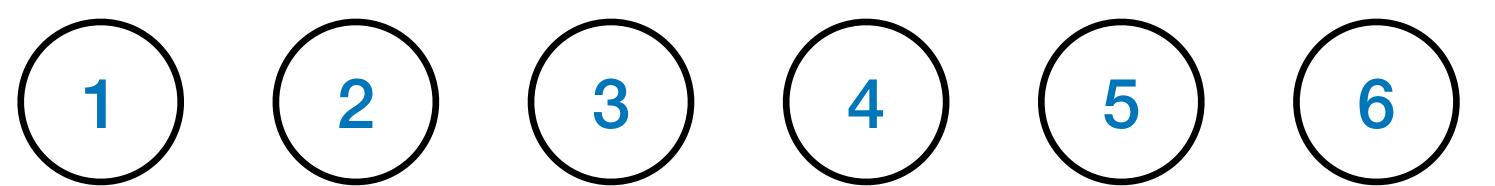




State space of each arm: $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$

a single arm

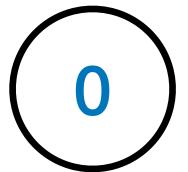


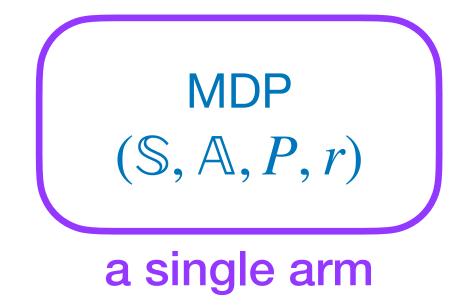


State space of each arm: $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$

a single arm

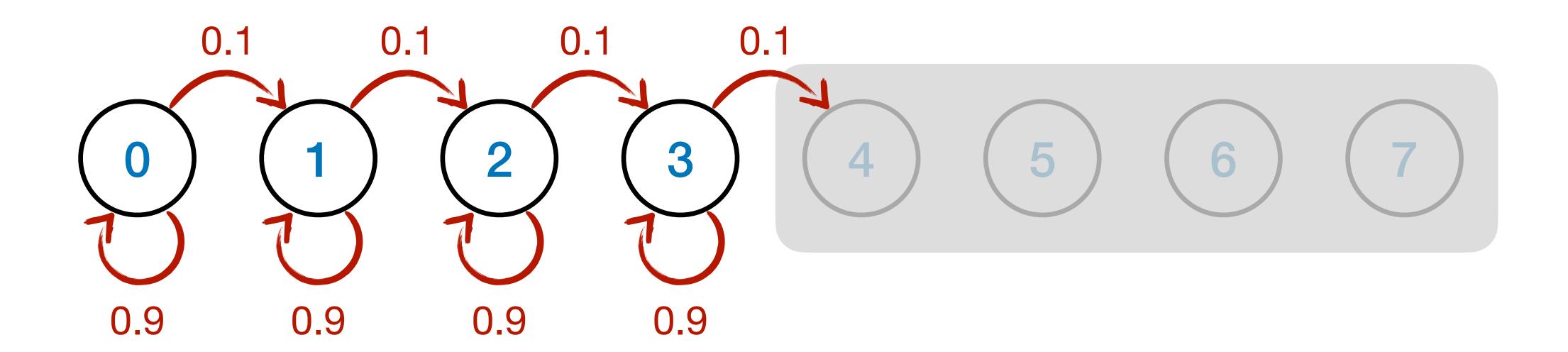
Get a unit of reward only when going from State 7 to State 0

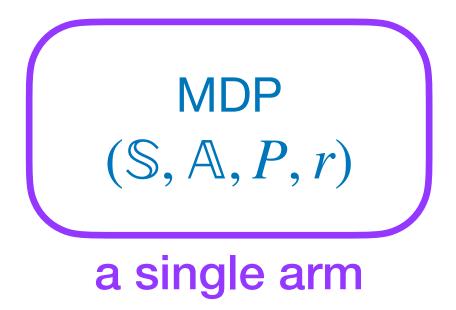




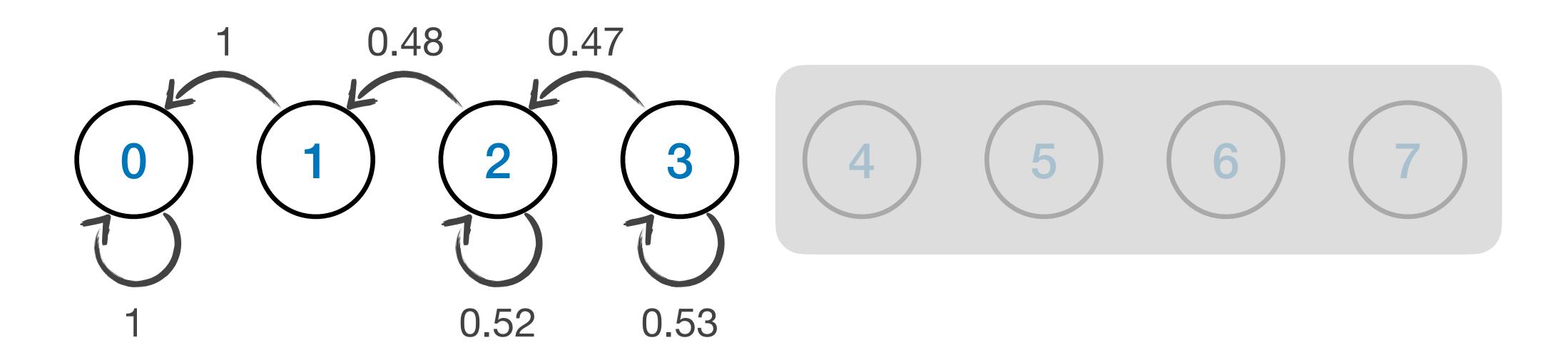
"preferred"

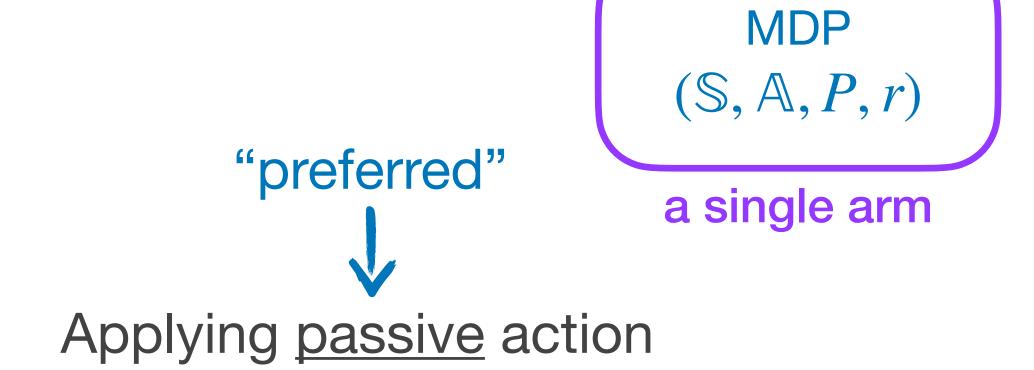
Applying active action

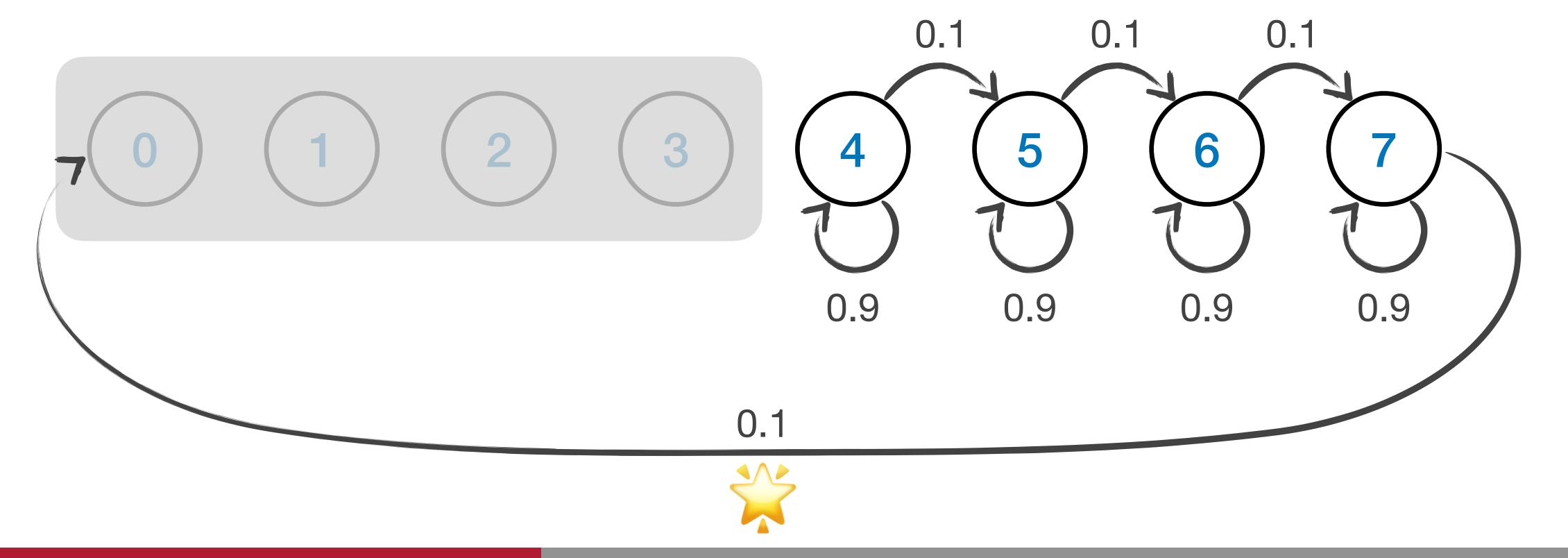


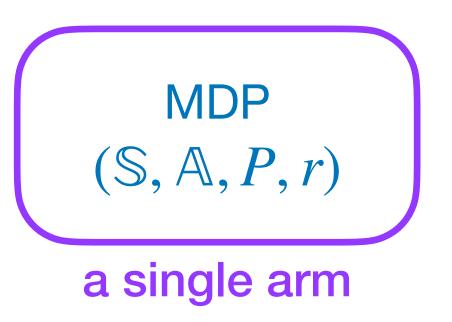


Applying passive action

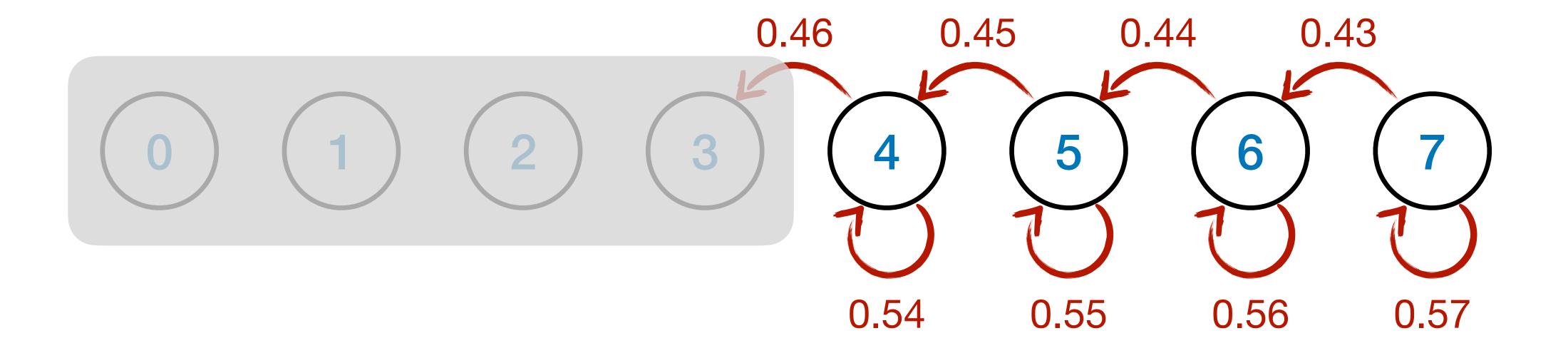


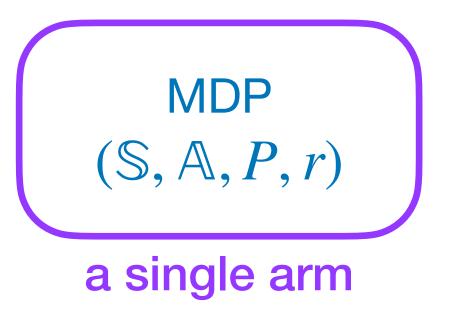






Applying active action

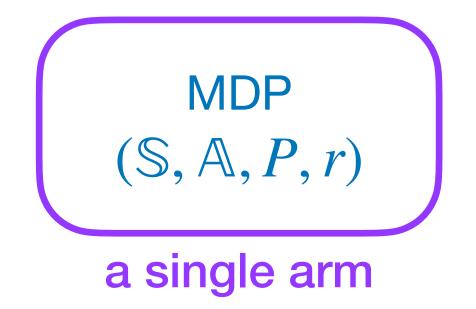


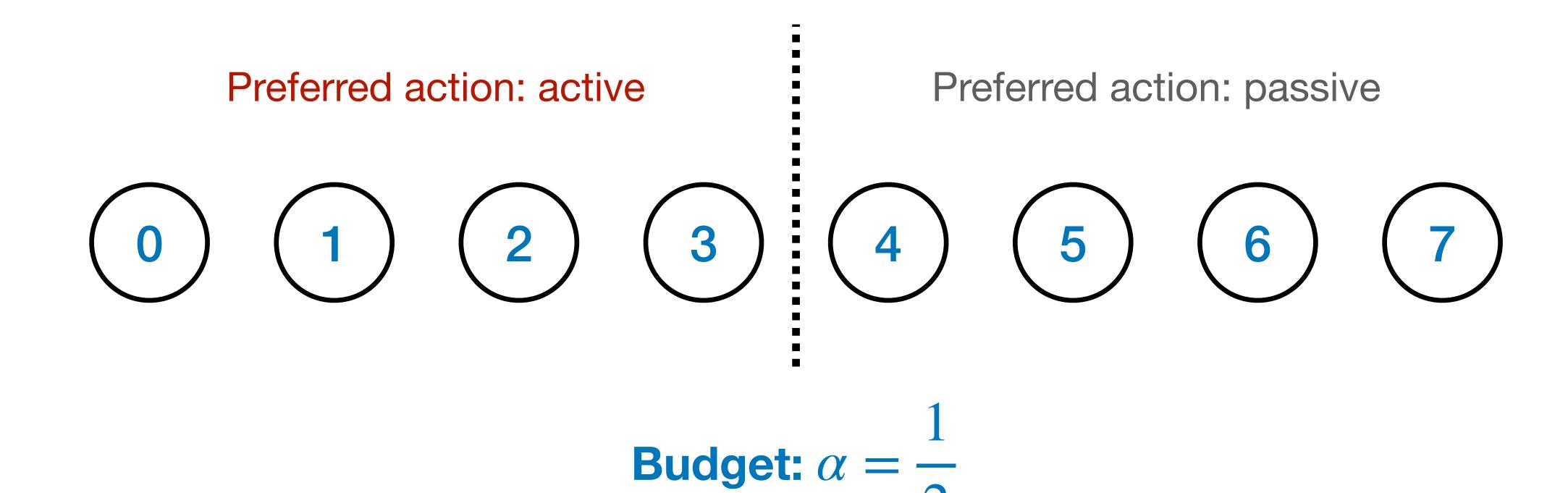


Preferred action: active

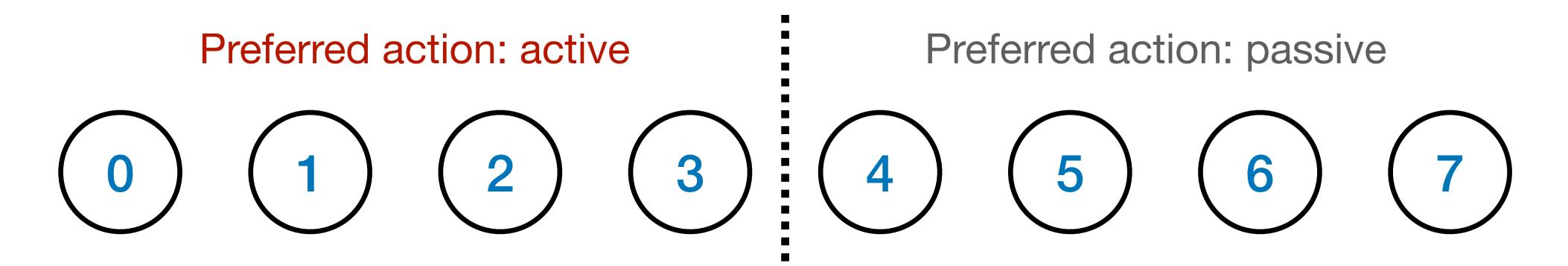
Preferred action: passive

1 2 3 4 5 6 7

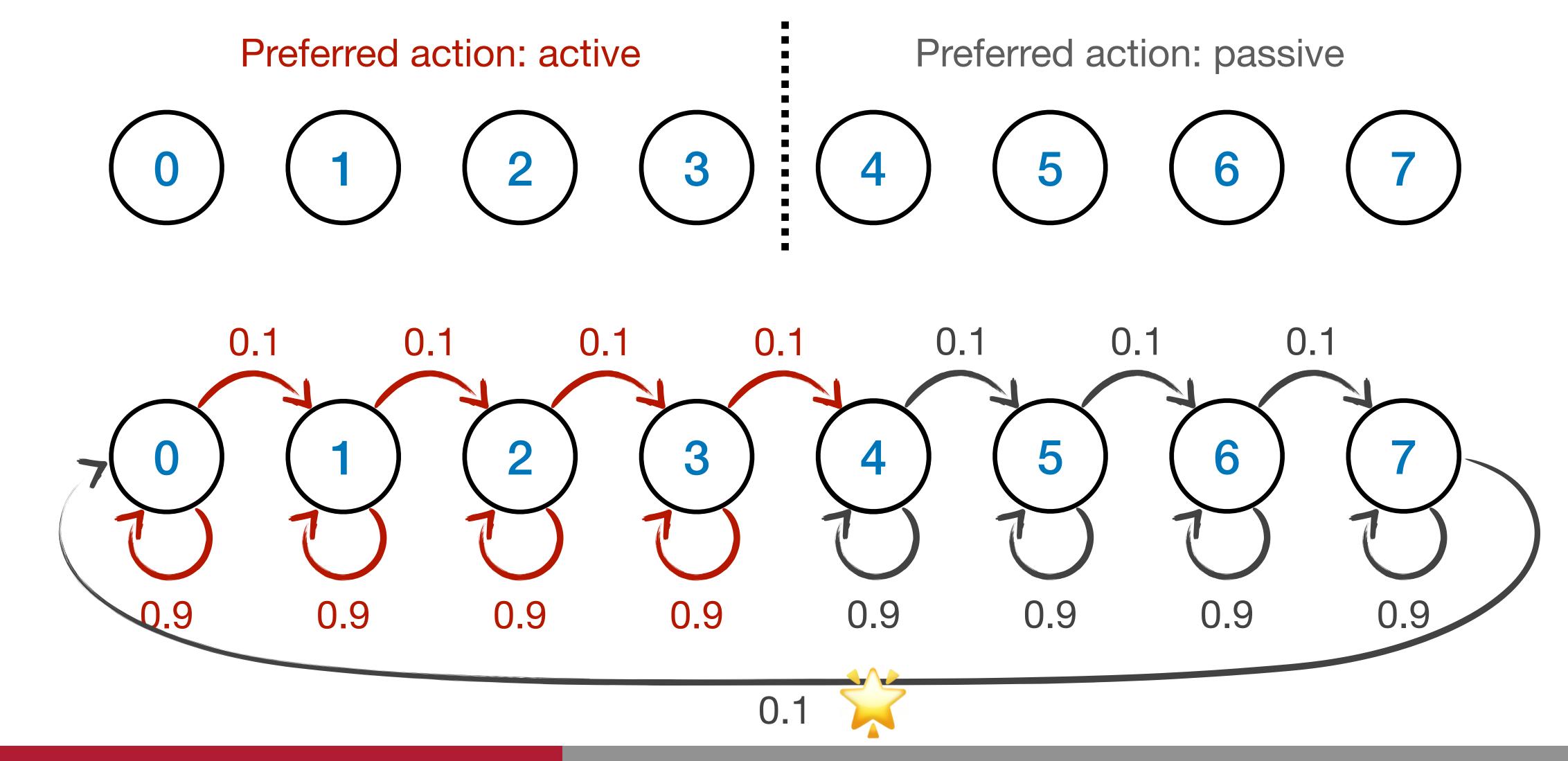




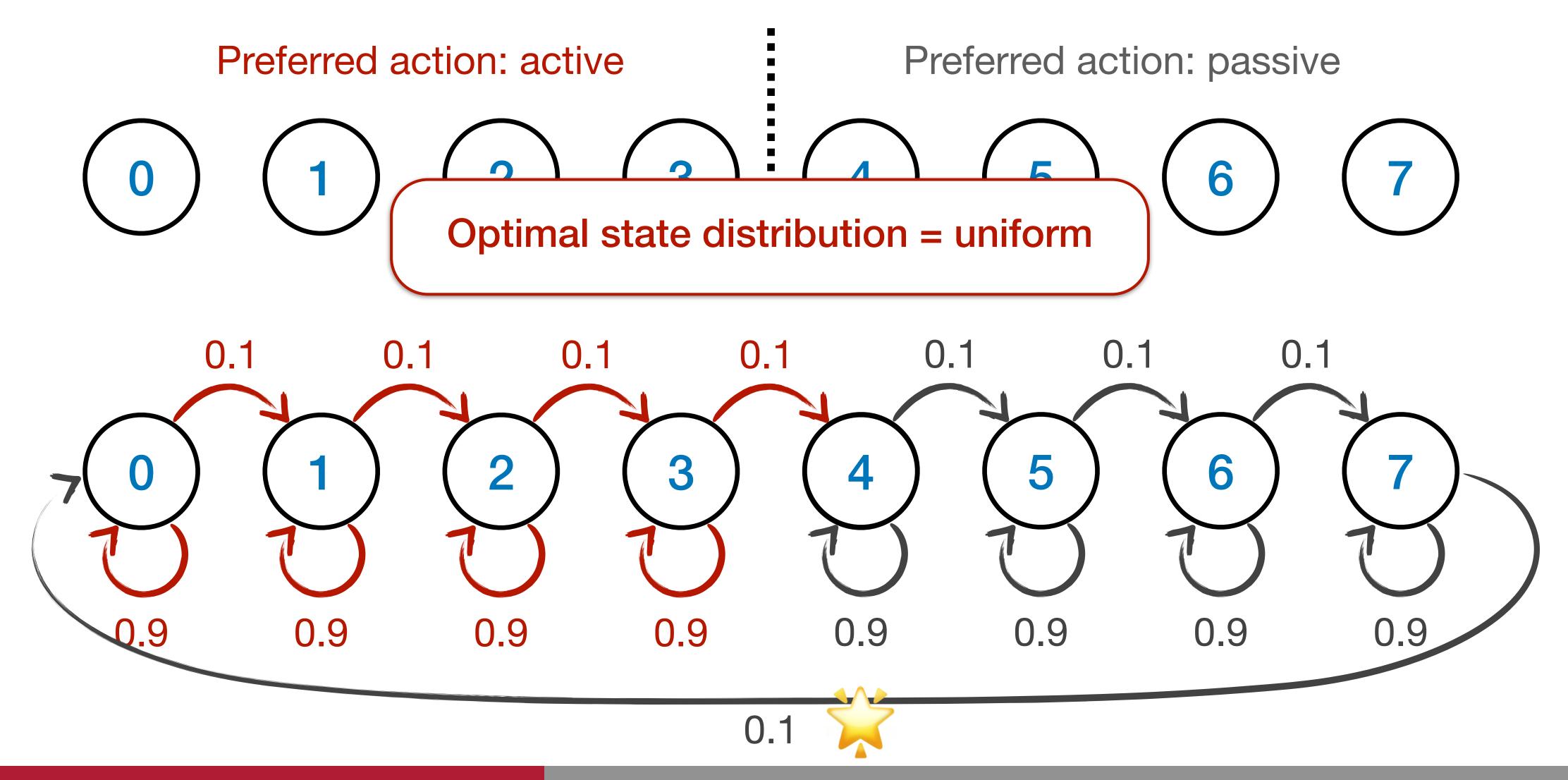
Optimal single-armed policy

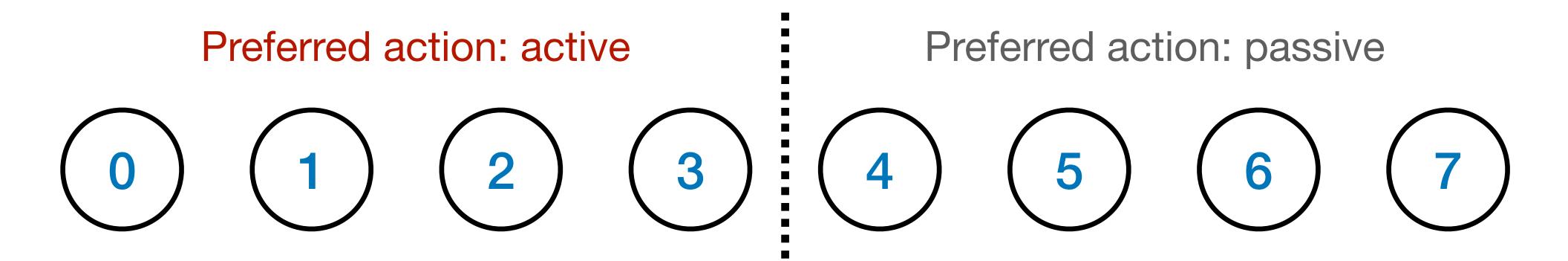


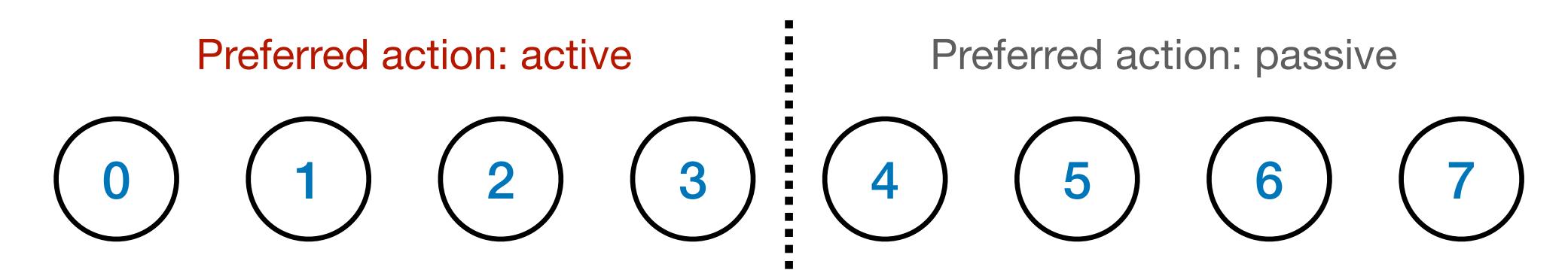
Optimal single-armed policy



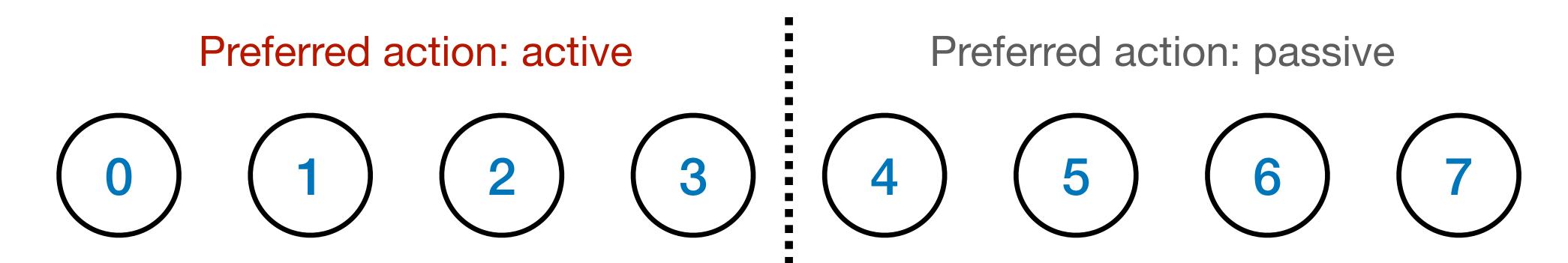
Optimal single-armed policy



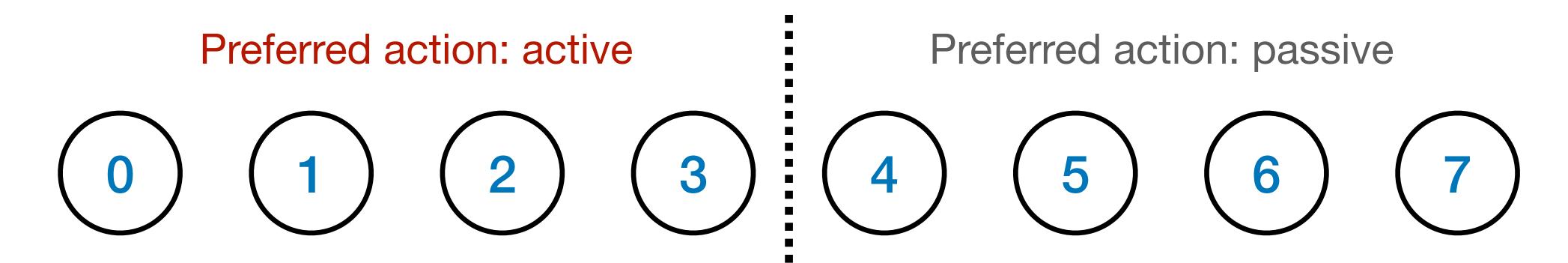




LP-priority policy gives the states a priority order

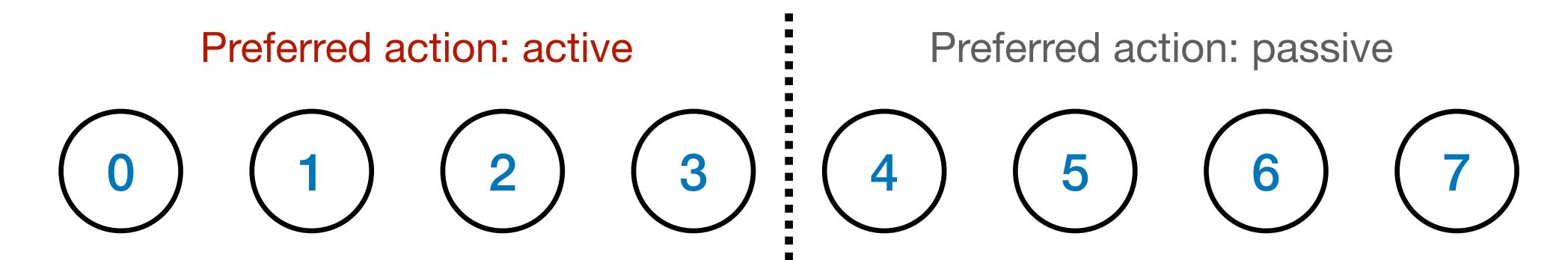


- LP-priority policy gives the states a priority order
- In the N-armed system, the policy starts pulling arms in the state with the highest priority, and then goes down the order until it has pulled αN arms



- LP-priority policy gives the states a priority order
- In the N-armed system, the policy starts pulling arms in the state with the highest priority, and then goes down the order until it has pulled αN arms

What priority order would you assign to the states in this example?

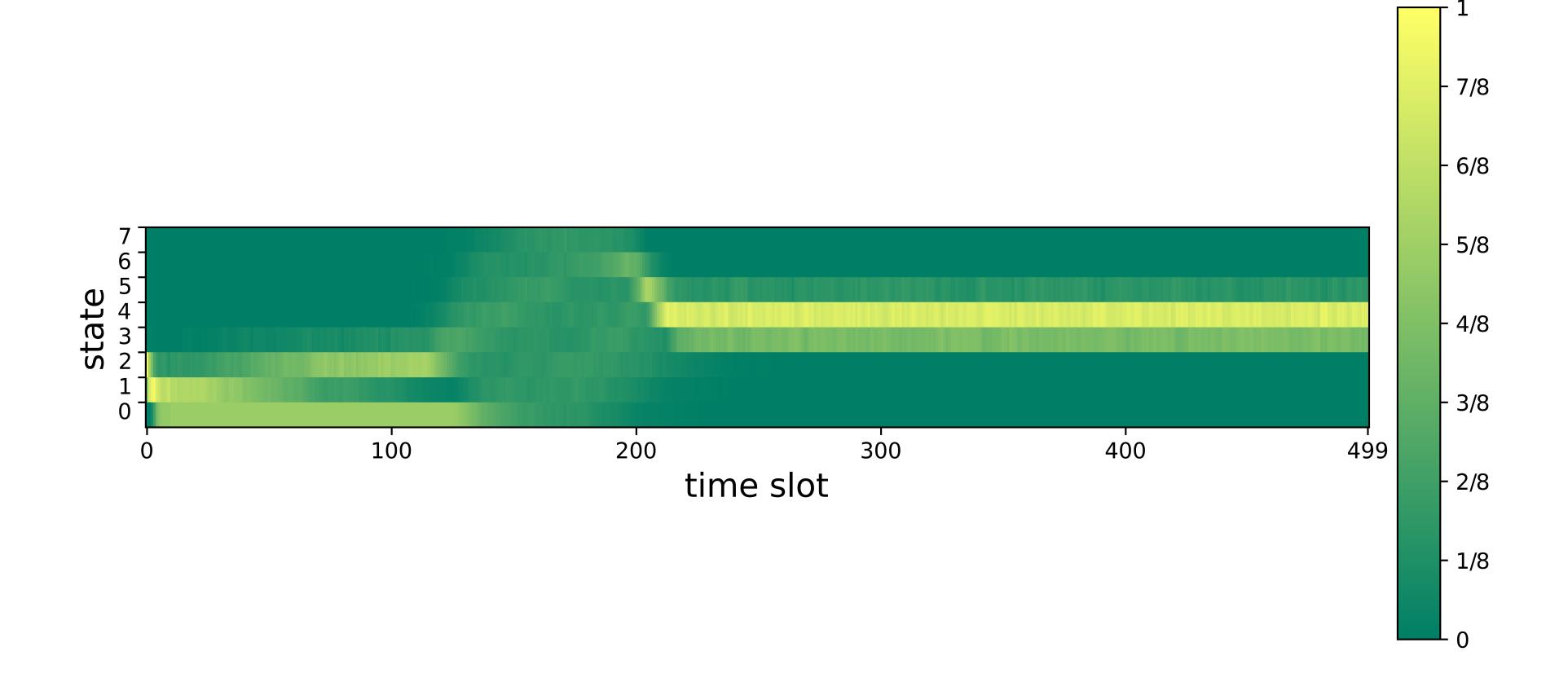


- LP-priority policy gives the states a priority order
- In the N-armed system, the policy starts pulling arms in the state with the highest priority, and then goes down the order until it has pulled αN arms

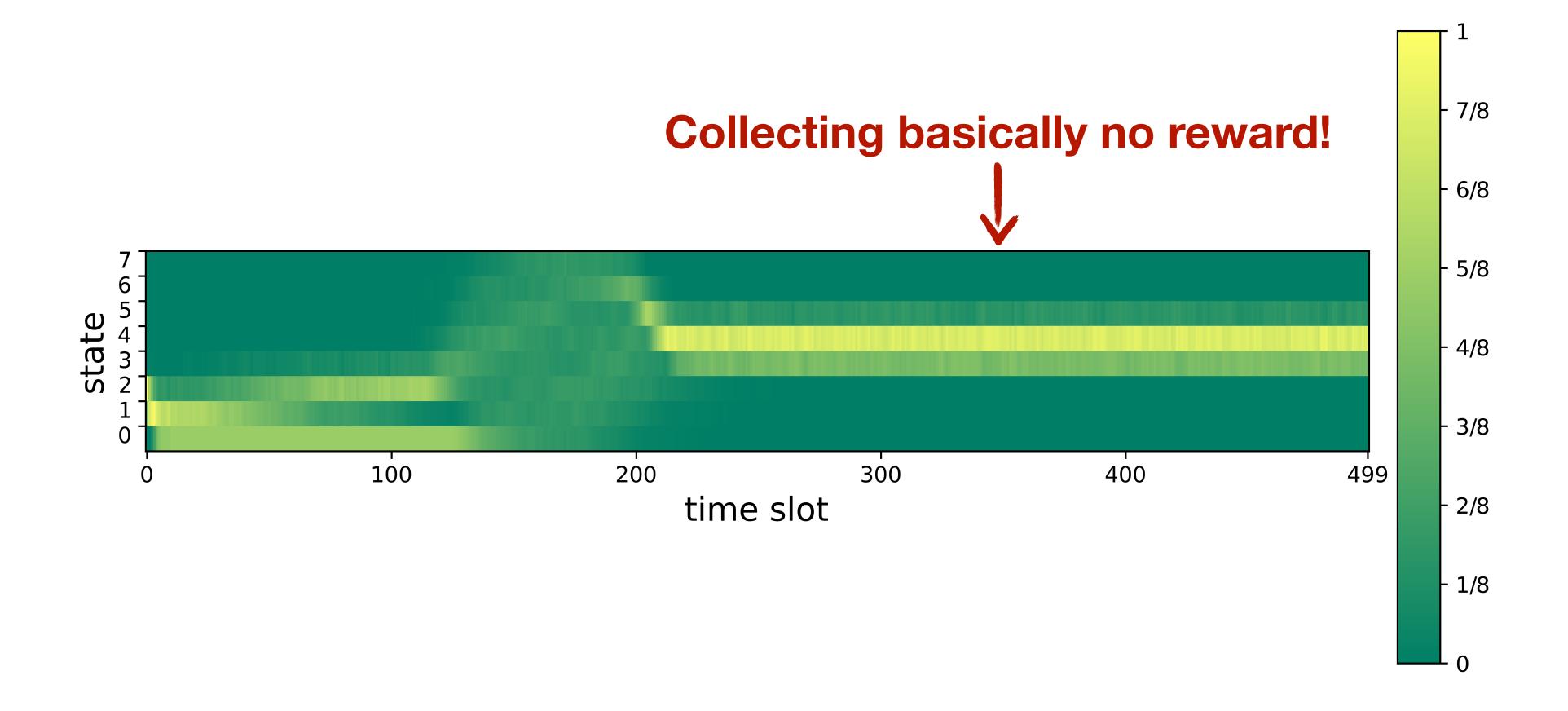
What priority order would you assign to the states in this example?

LP-index: 1 > 2 > 3 > 0 > 7 > 6 > 5 > 4

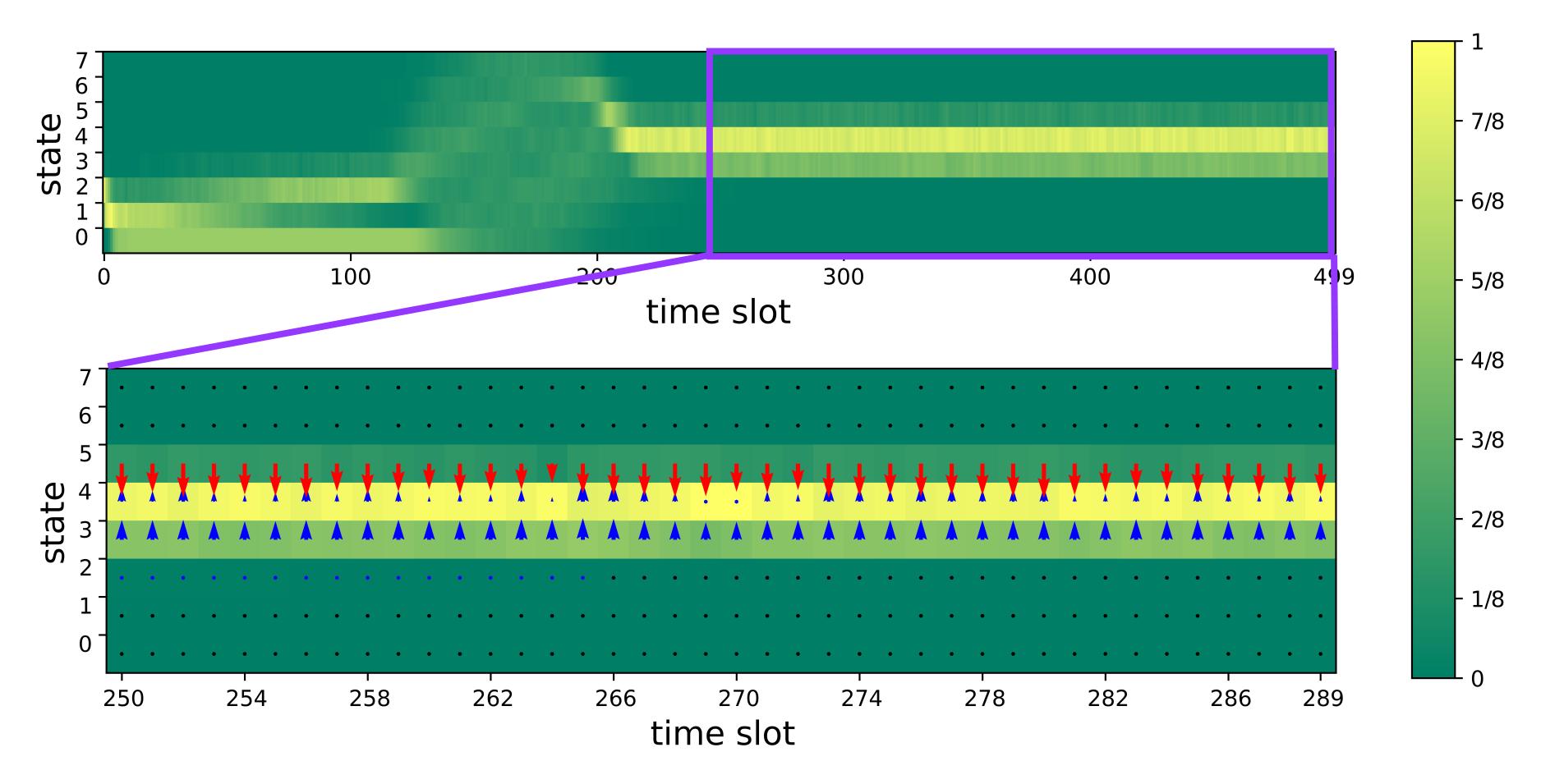
LP-priority: Empirical state distribution over time



LP-priority: Empirical state distribution over time

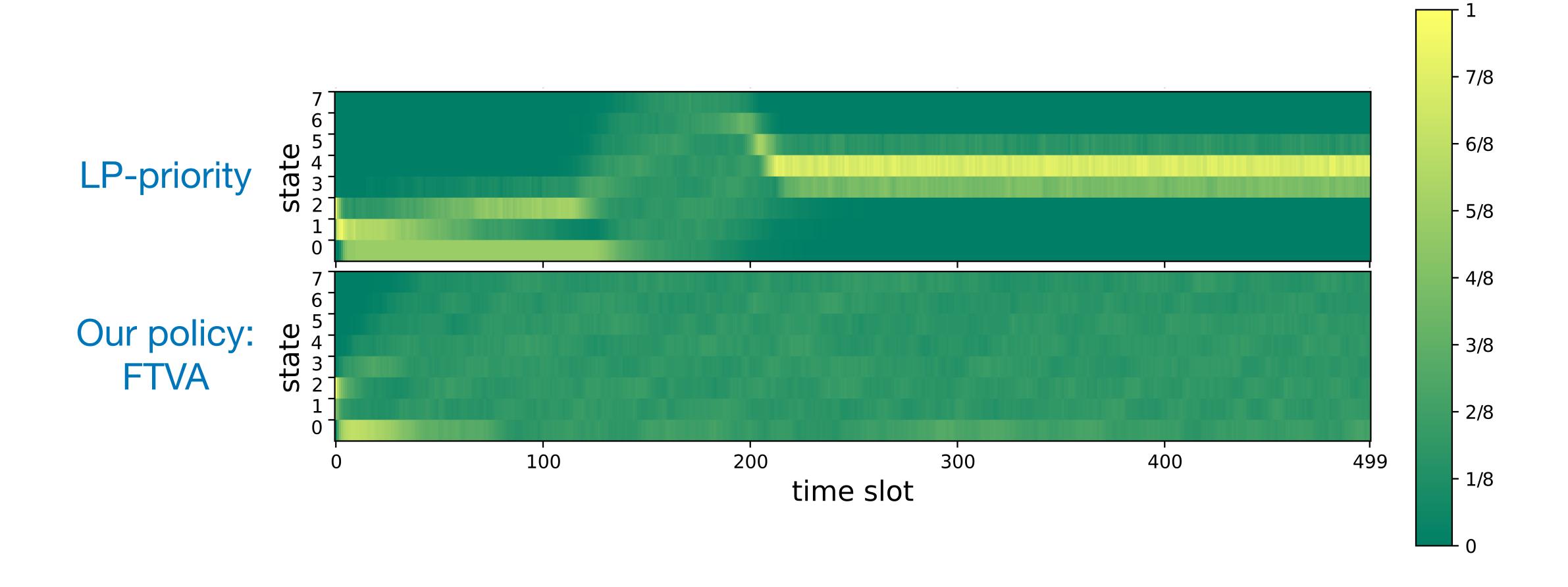


LP-priority: Why suboptimal?

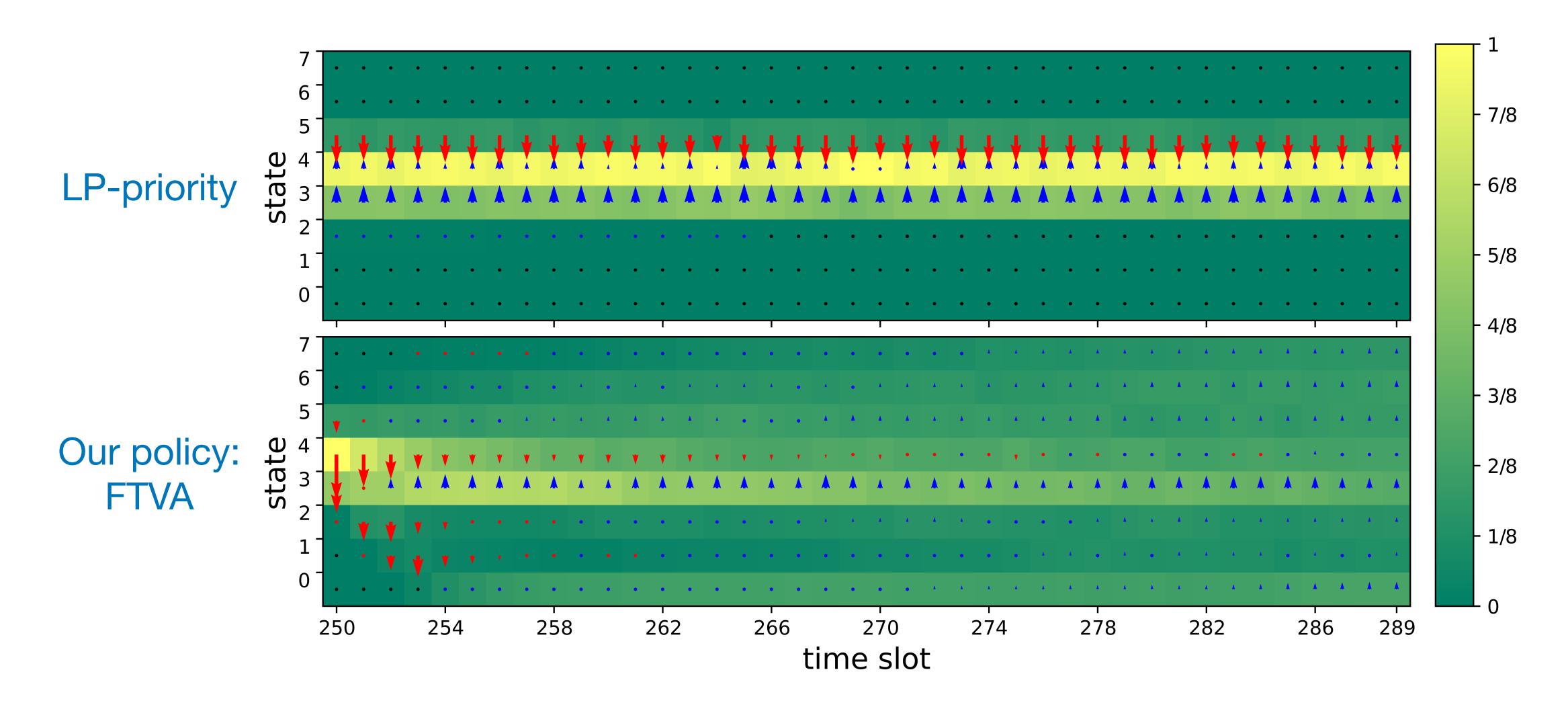


Priority order: 1 > 2 > 3 > 0 > 7 > 6 > 5 > 4

LP-priority vs our policy



LP-priority vs our policy



• Input: a single-armed policy $\bar{\pi}$

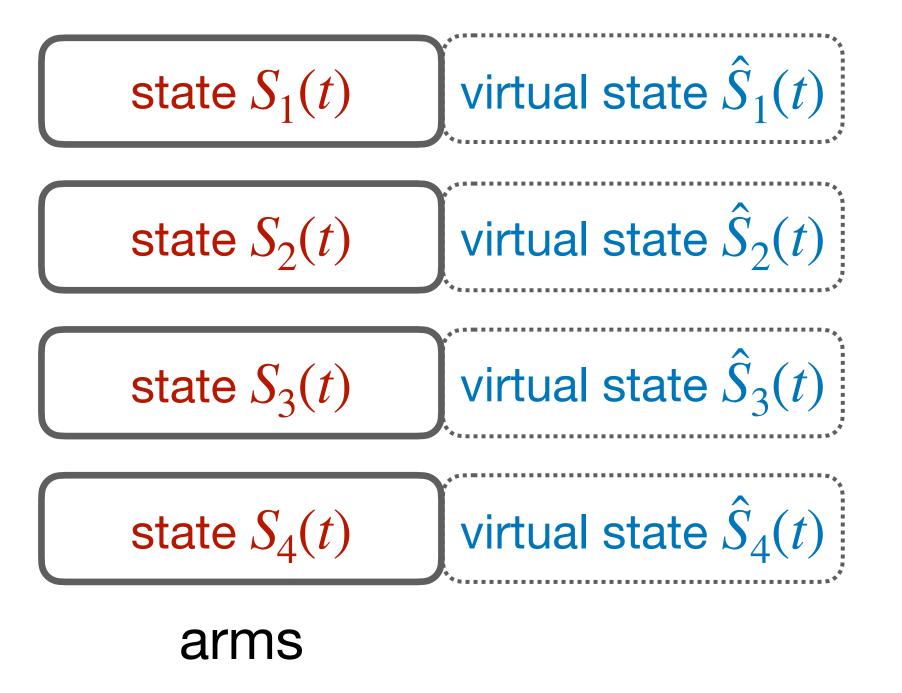
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$

- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible

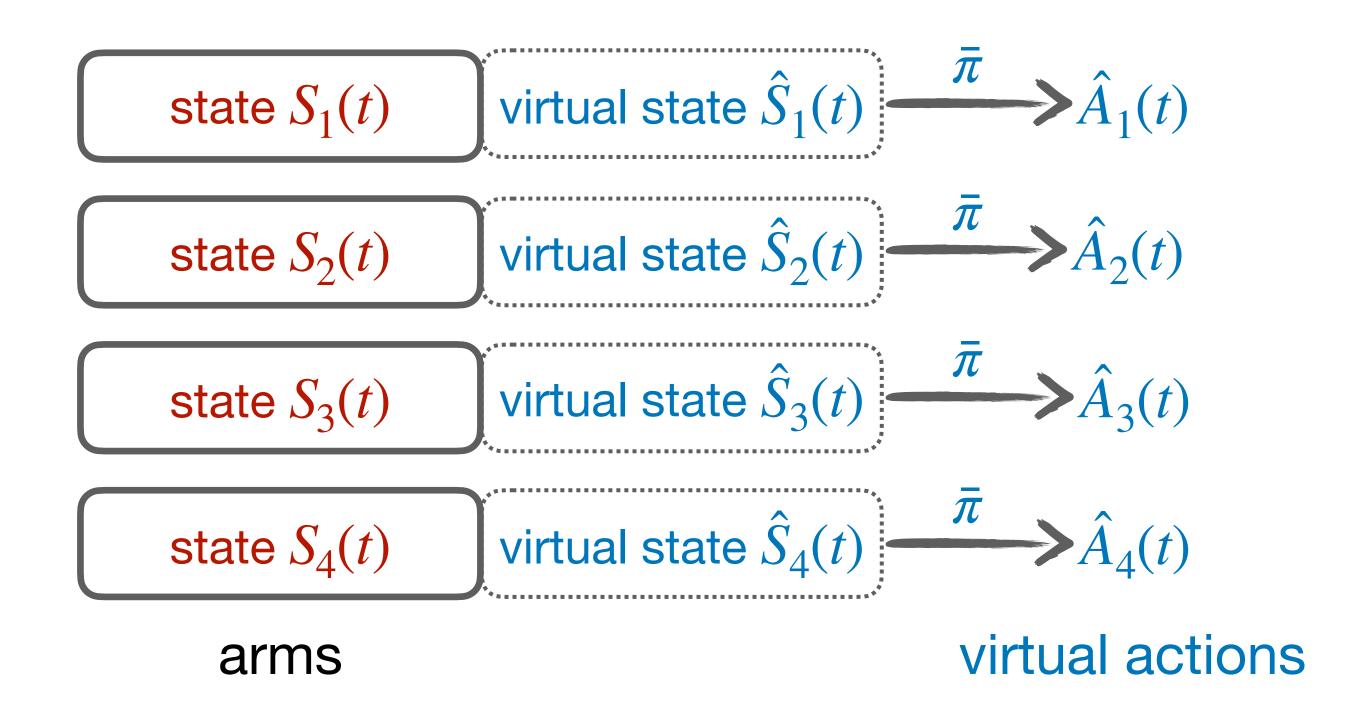
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible

```
\begin{array}{c} \operatorname{state} S_1(t) \\ \\ \operatorname{state} S_2(t) \\ \\ \operatorname{state} S_3(t) \\ \\ \operatorname{state} S_4(t) \\ \\ \operatorname{arms} \end{array}
```

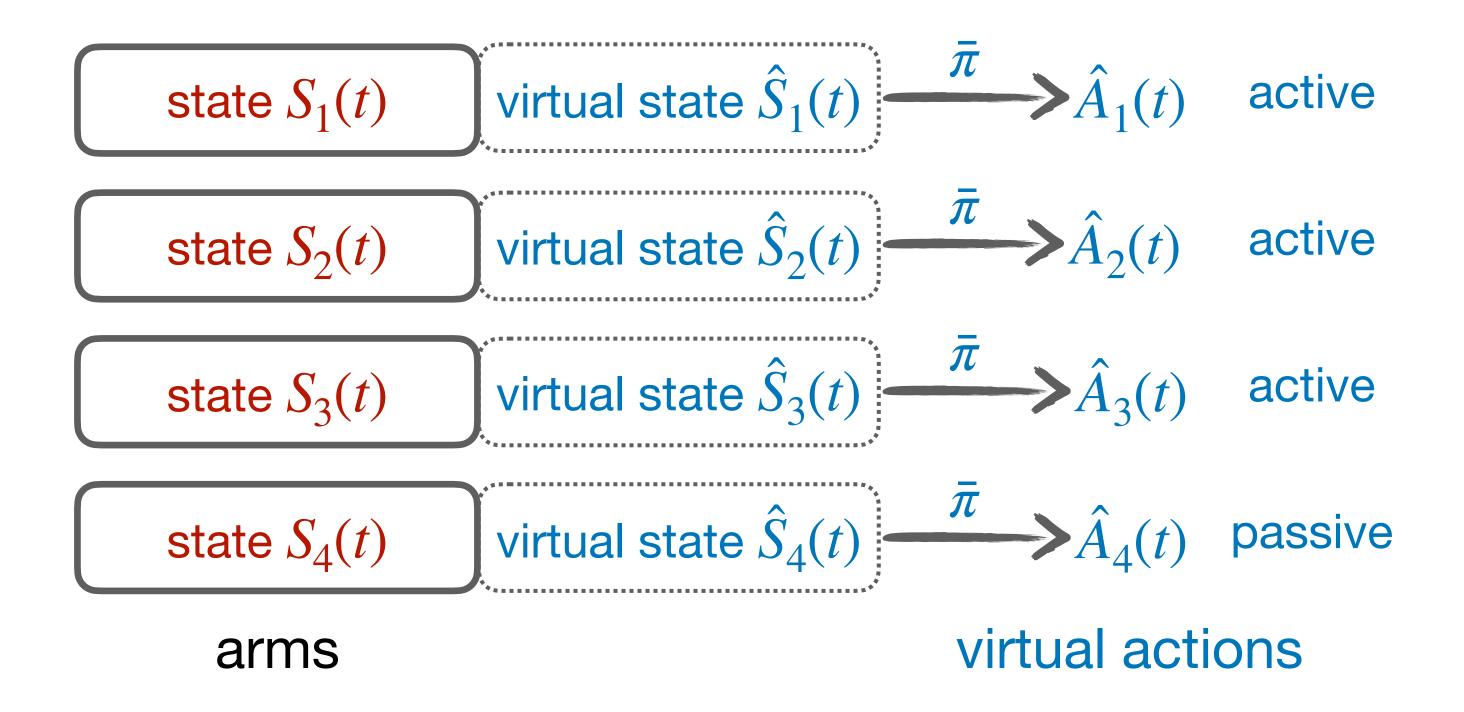
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible



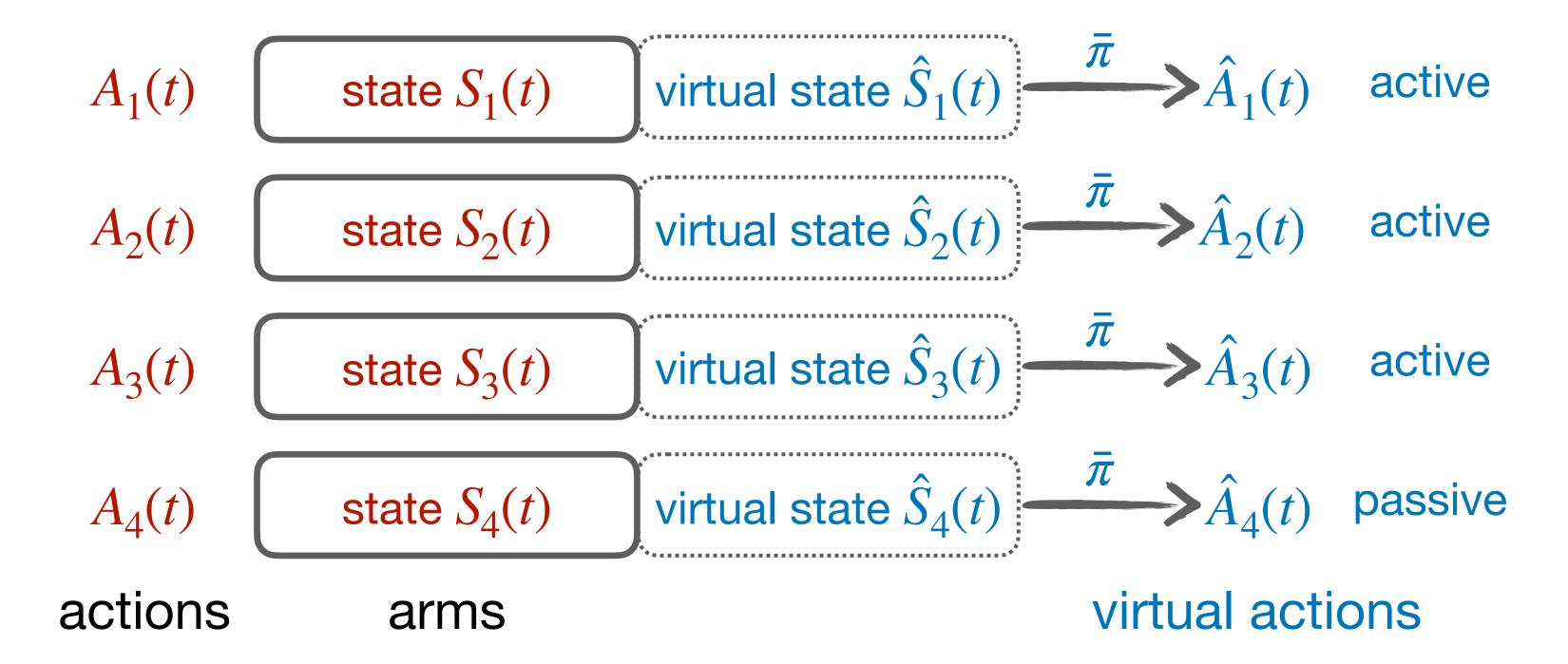
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible



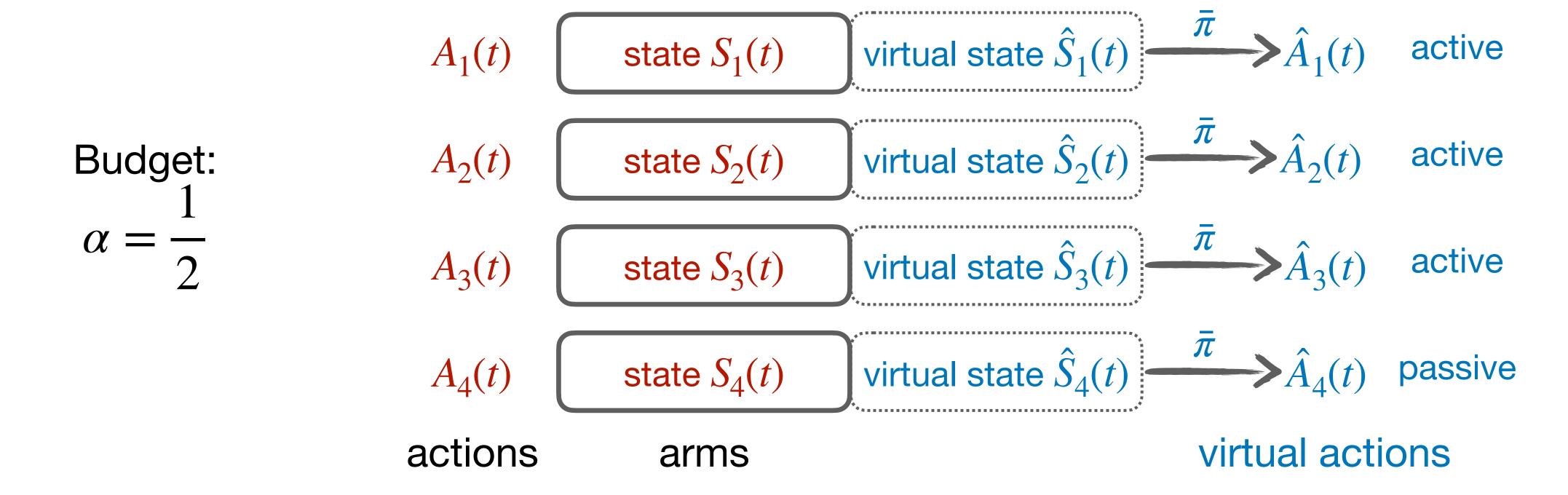
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible



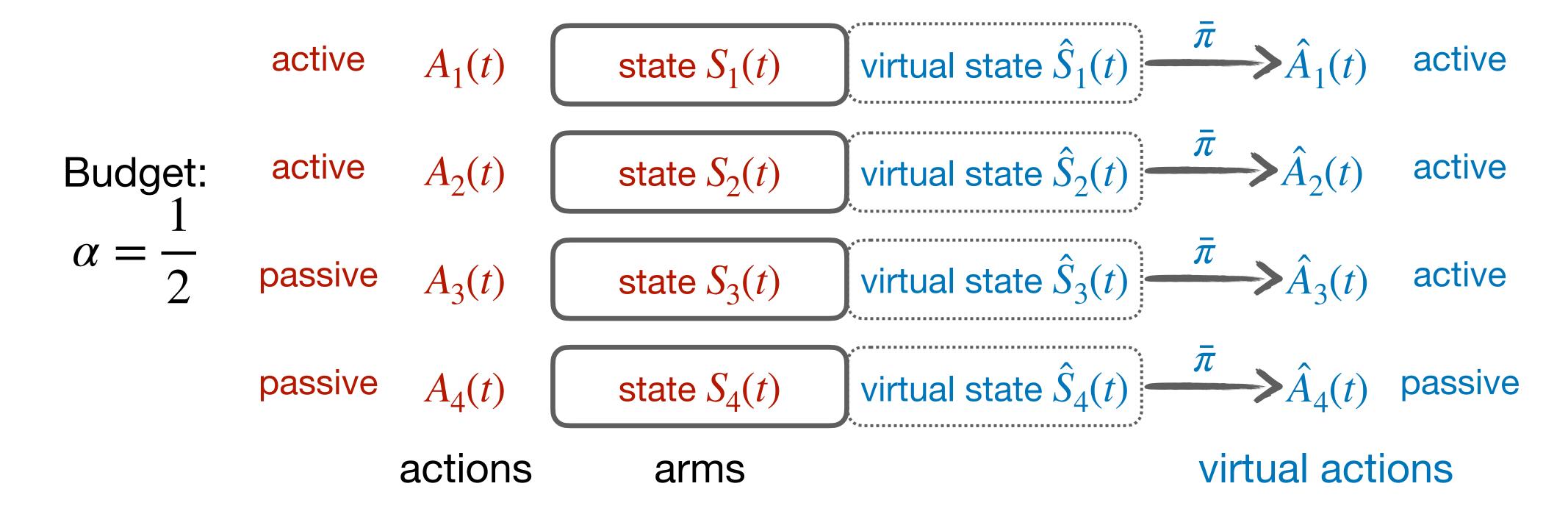
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible



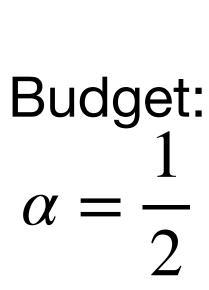
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible

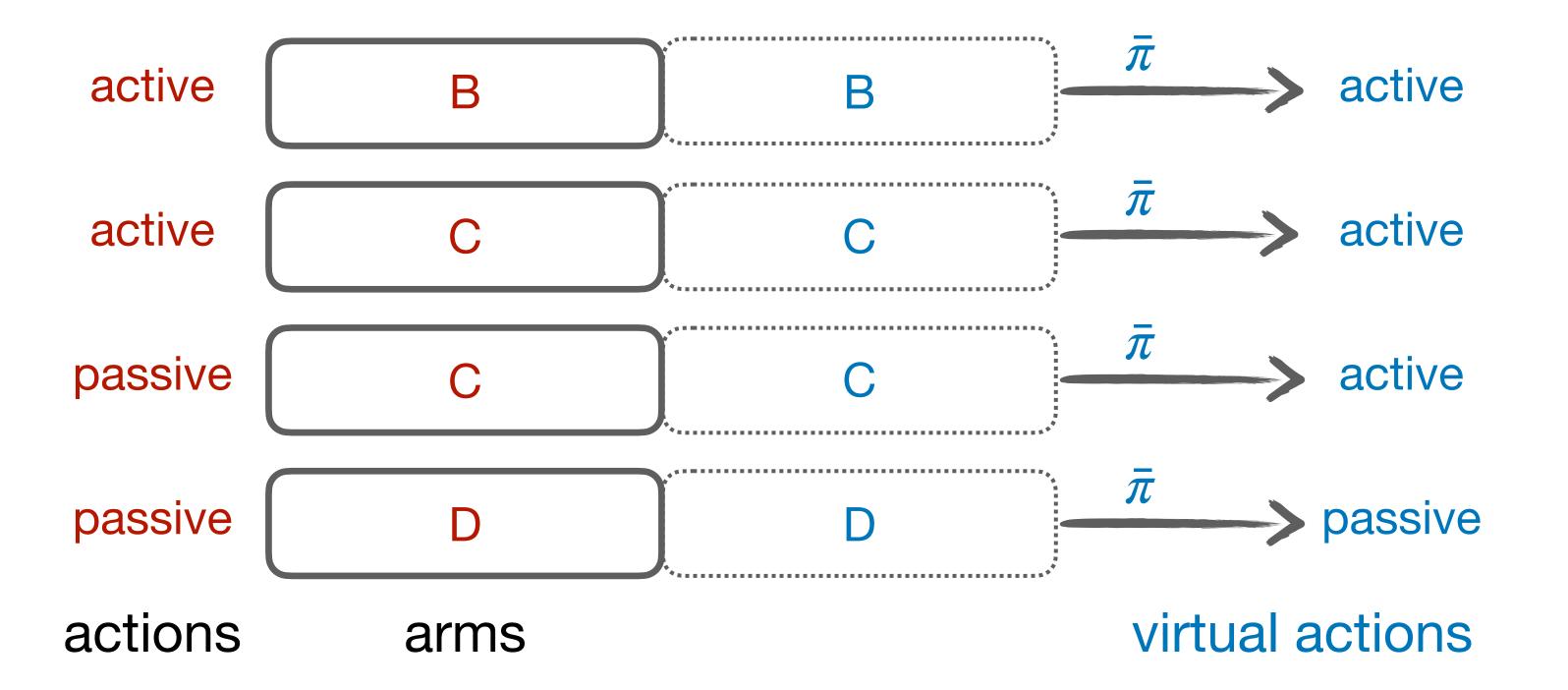


- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible

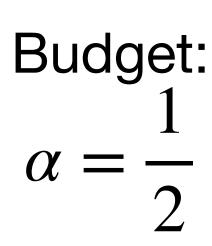


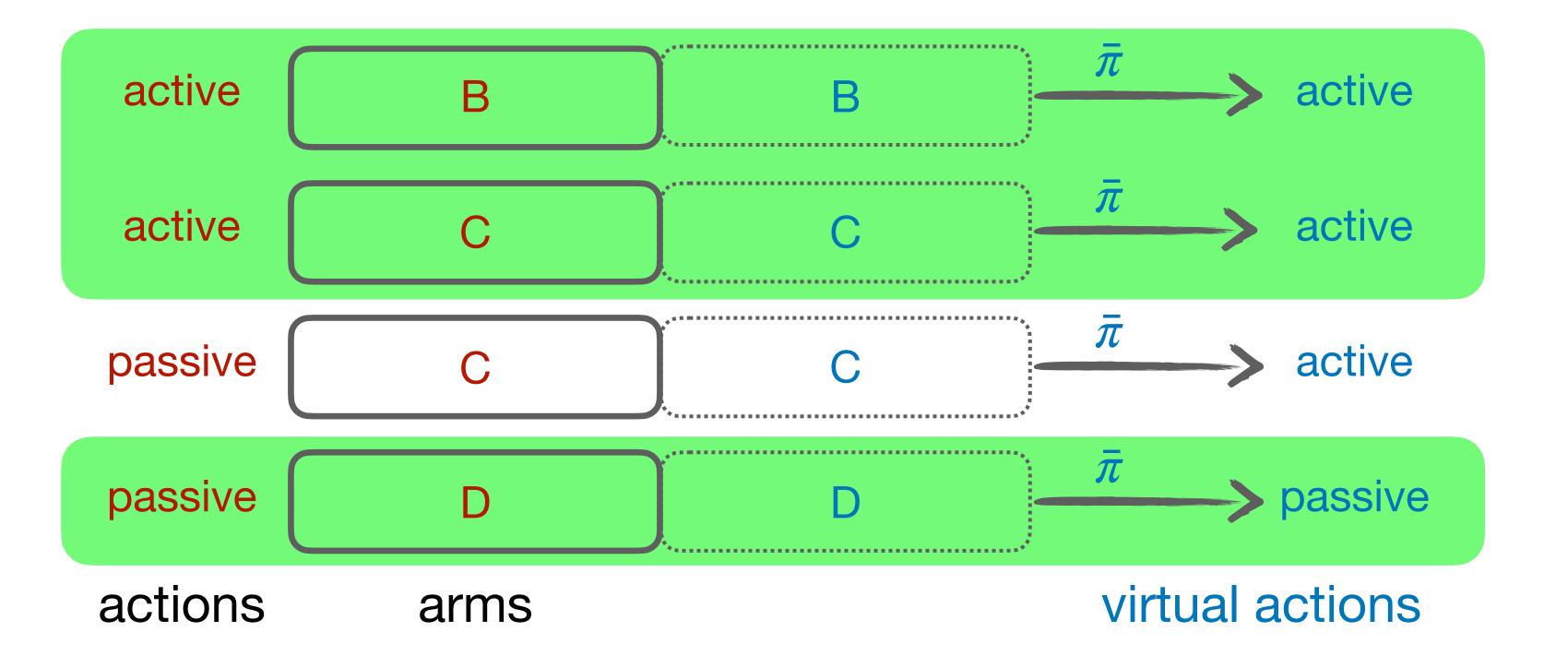
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible



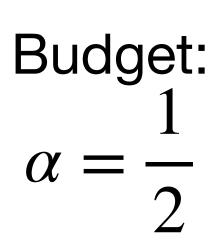


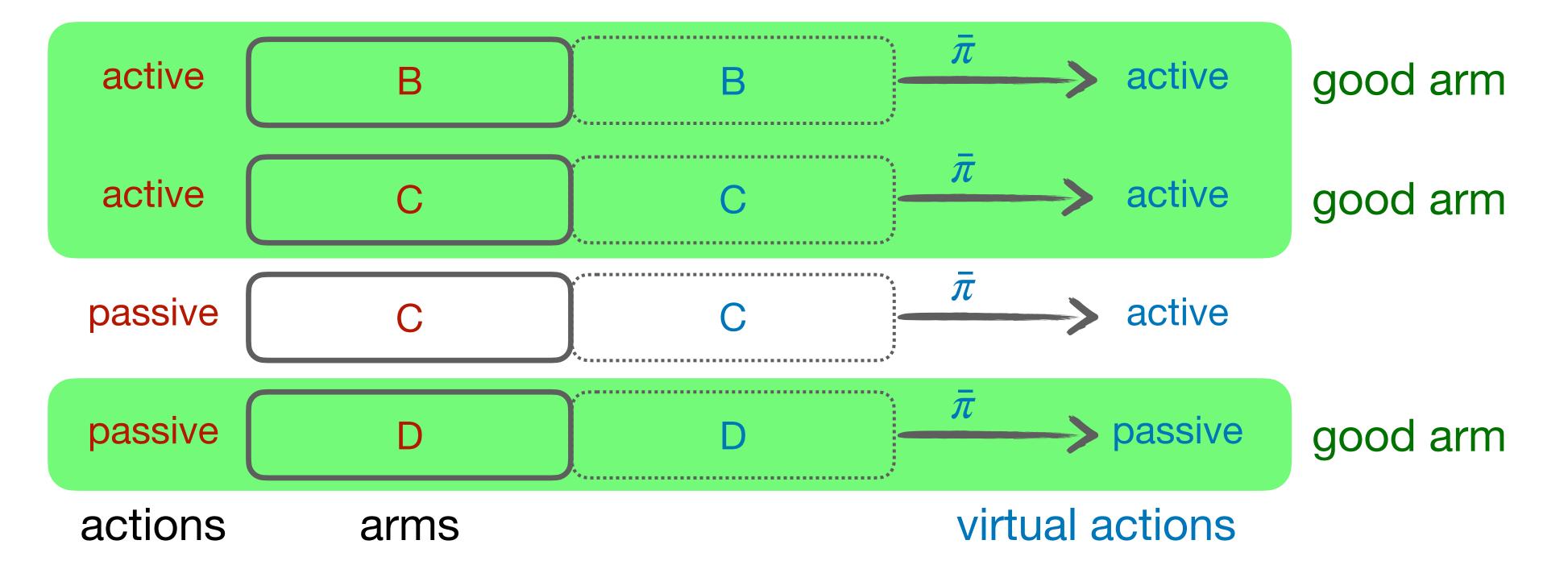
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible



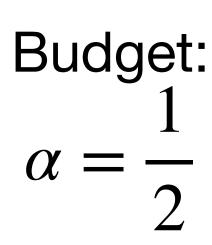


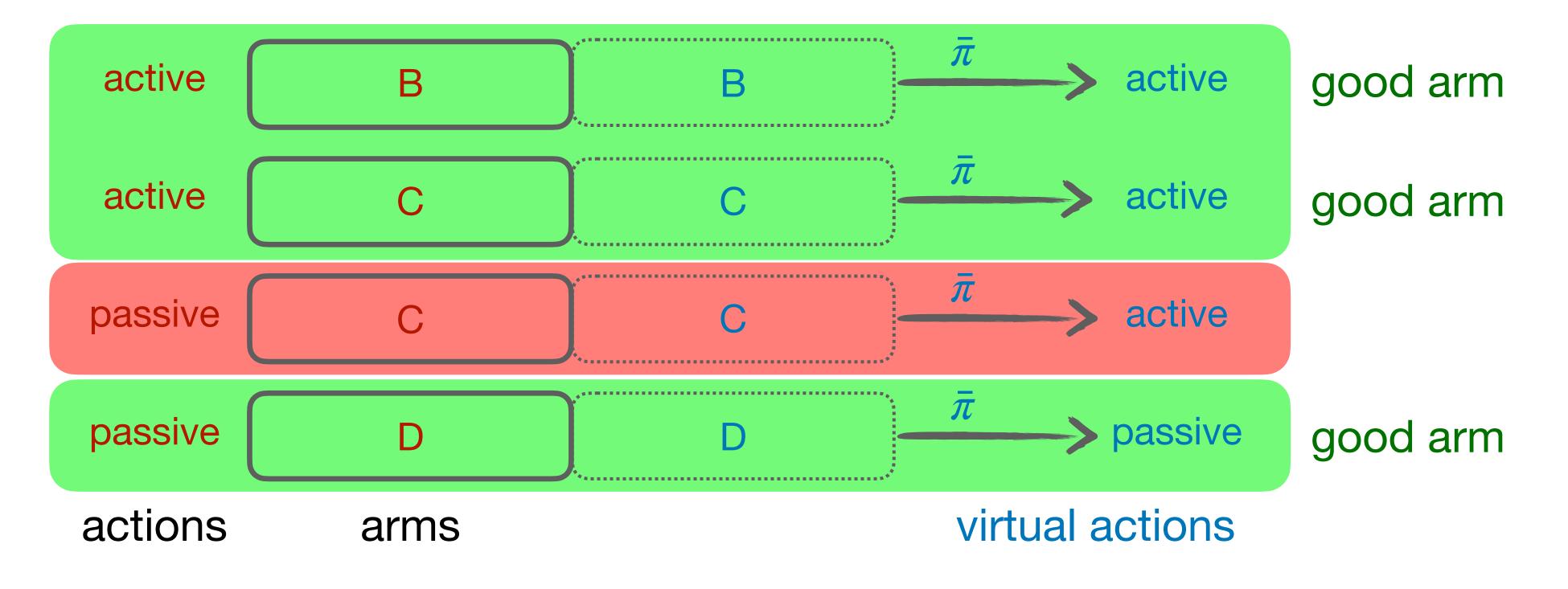
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible



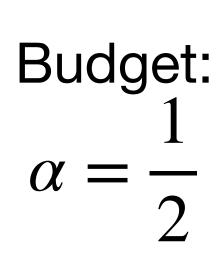


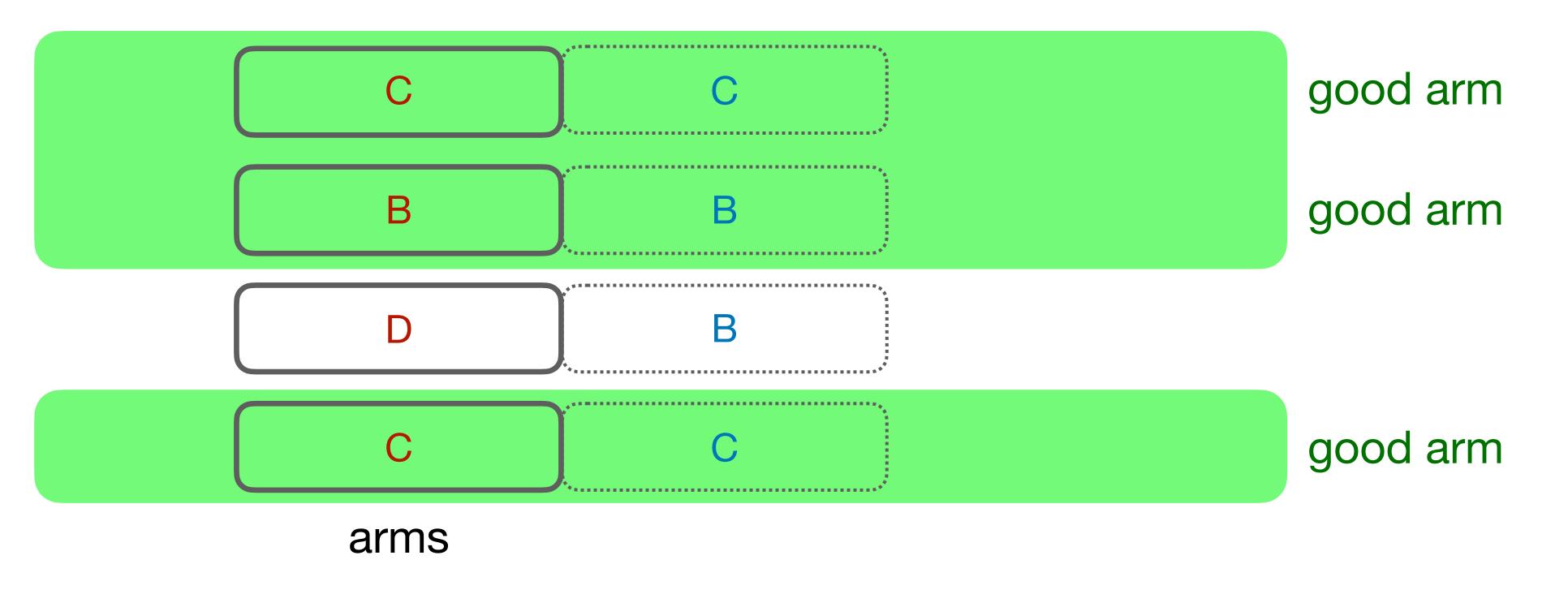
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible



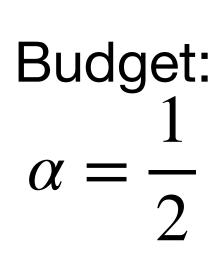


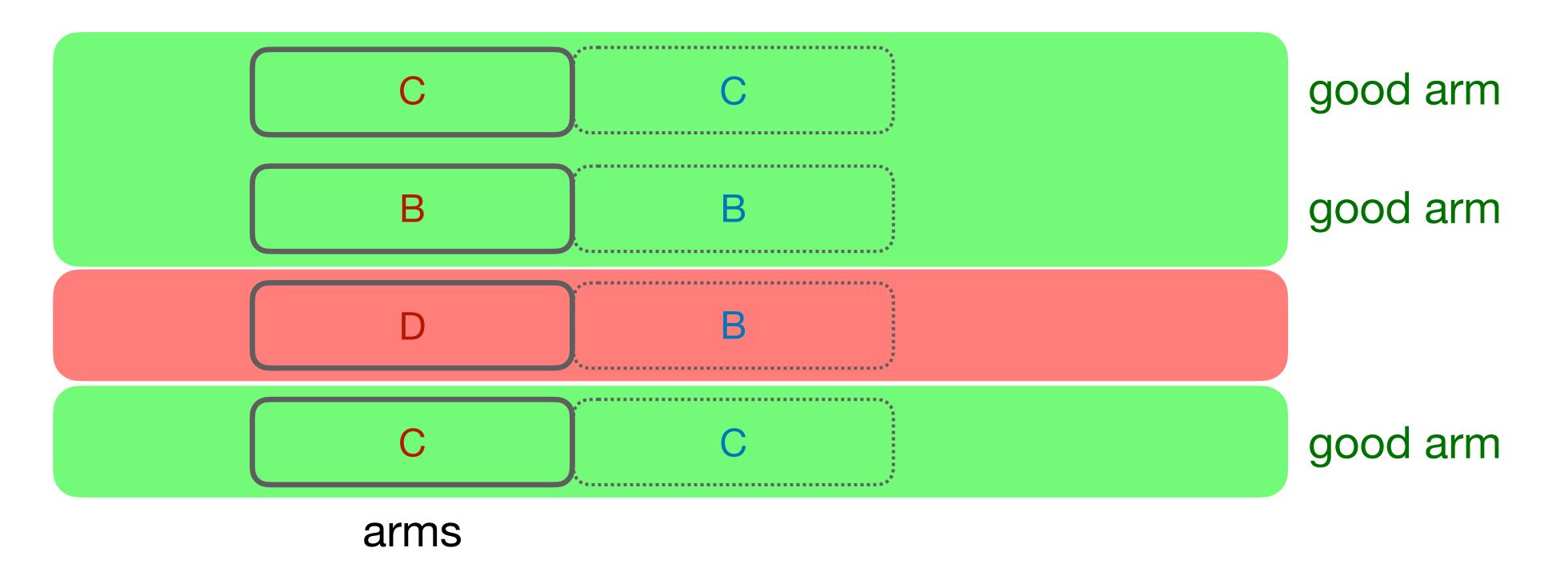
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible



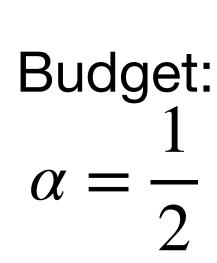


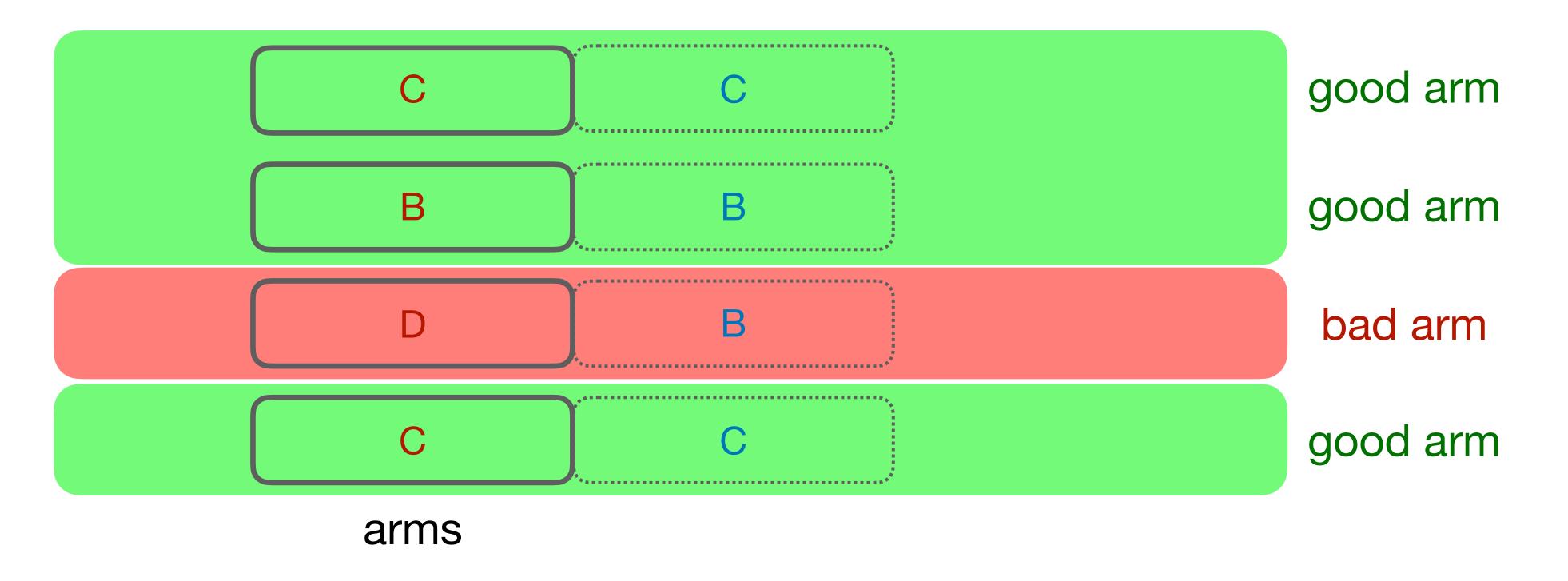
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following π
- Take actions following virtual actions as much as possible





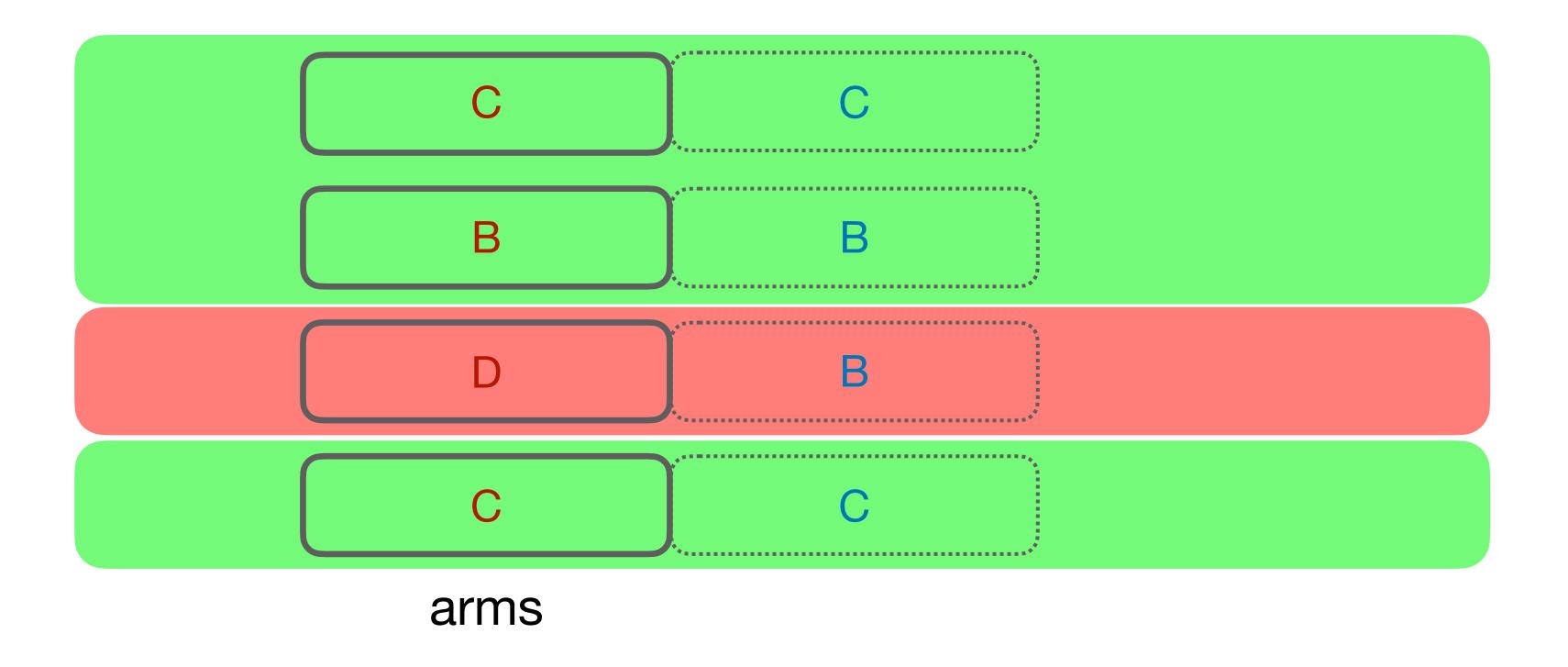
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible





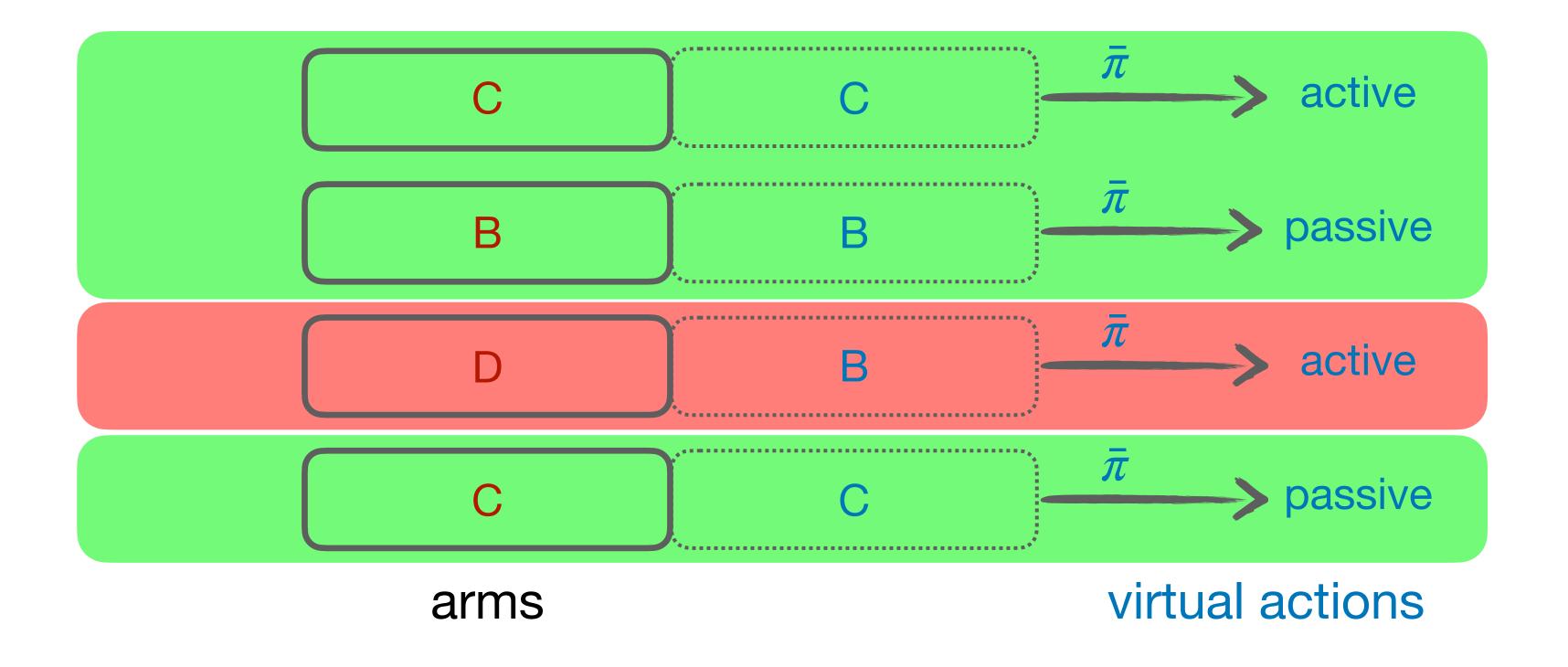
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible

Budget:
$$\alpha = \frac{1}{2}$$



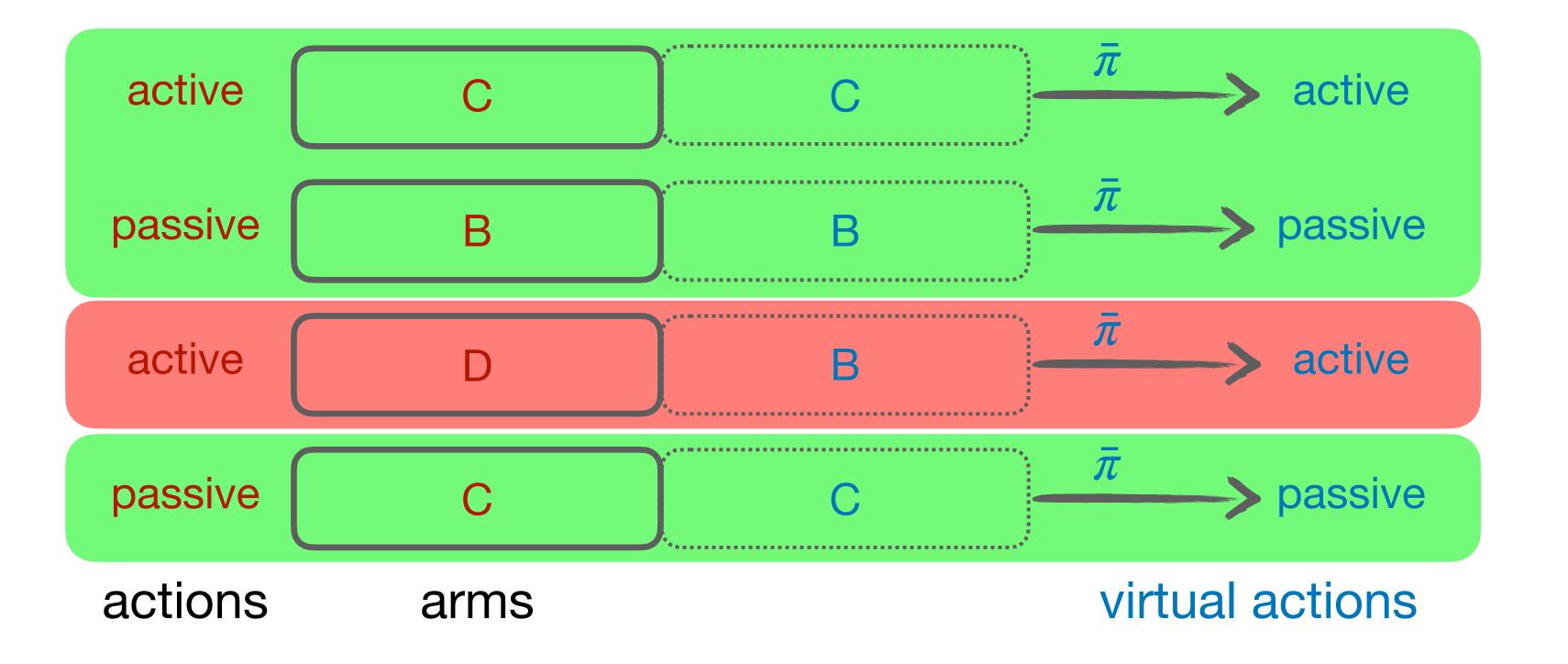
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following π
- Take actions following virtual actions as much as possible

Budget:
$$\alpha = \frac{1}{2}$$

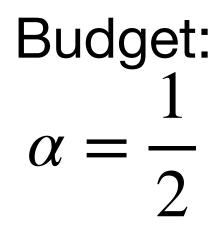


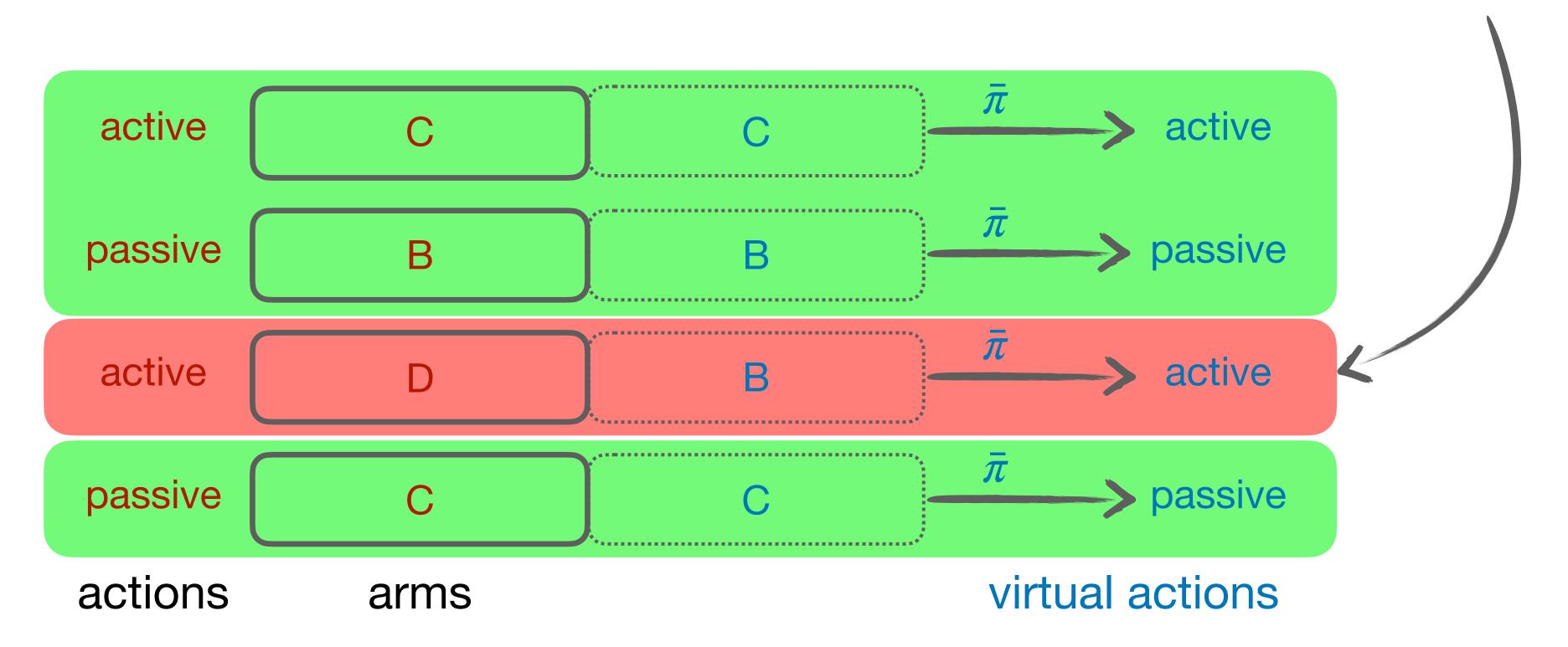
- Input: a single-armed policy $\bar{\pi}$
- Each arm simulates a virtual single-armed system following $\bar{\pi}$
- Take actions following virtual actions as much as possible

Budget:
$$\alpha = \frac{1}{2}$$



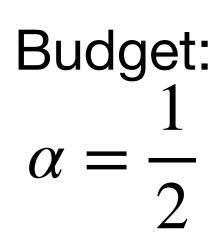
Follow the virtual action even when an arm is a bad arm

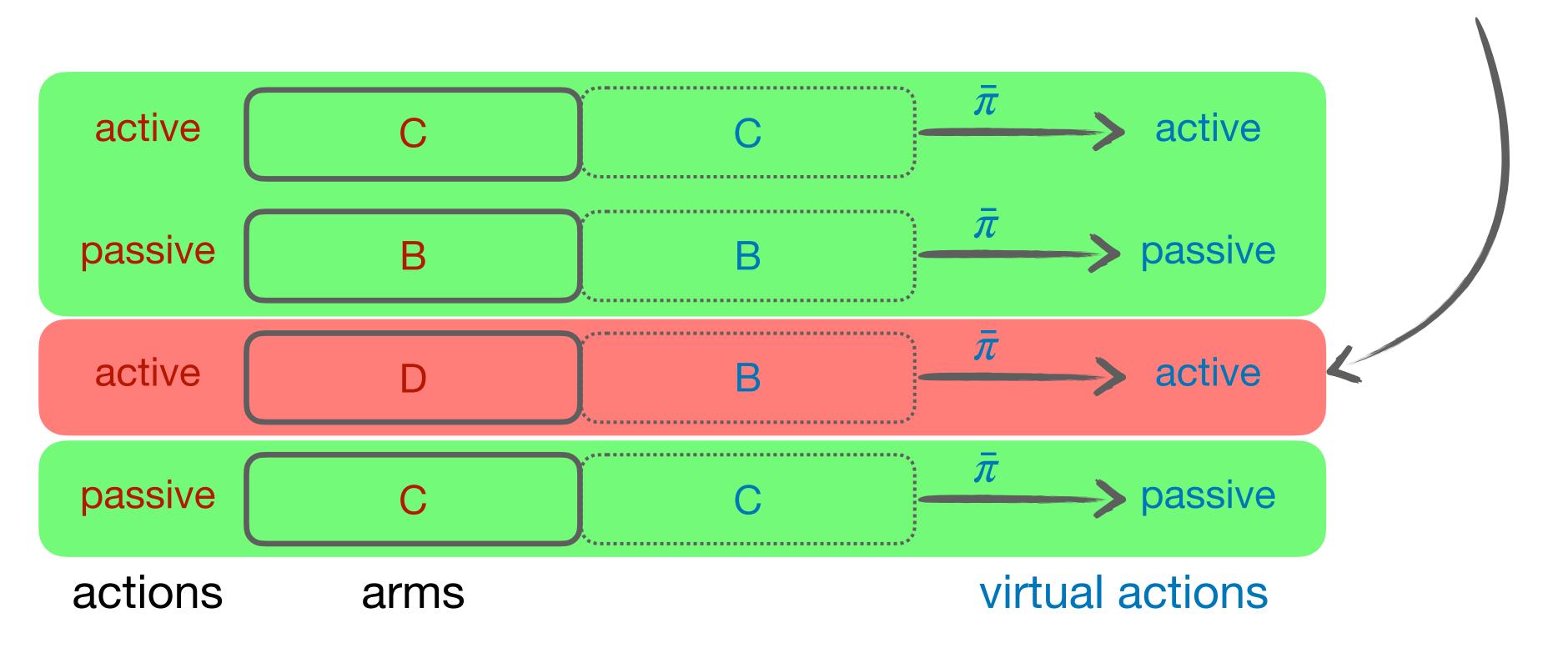




The SA assumption assumes that the states will couple again within a finite time

Follow the virtual action even when an arm is a bad arm



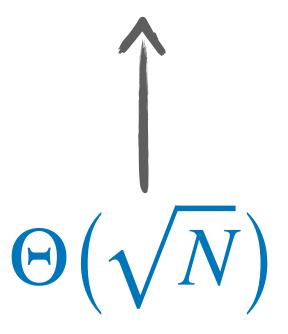


Little's law:

 $\mathbb{E}[\text{\# bad arms}] = \text{rate of generating bad arms} \times \mathbb{E}[\text{time being a bad arm}]$

Little's law:

 $\mathbb{E}[\# \text{ bad arms}] = \text{rate of generating bad arms} \times \mathbb{E}[\text{time being a bad arm}]$



Little's law:

 $\mathbb{E}[\# \text{ bad arms}] = \text{rate of generating bad arms} \times \mathbb{E}[\text{time being a bad arm}]$

Summary

- We considered the restless bandit problem with average reward in the large N regime
- We propose a policy named Follow-The-Virtual-Advice (FTVA), which achieves an $O(1/\sqrt{N})$ optimality gap without UGAP
- Discrete-time setting: our result needs an intuitive synchronization assumption
- Continuous-time setting: our result does not need any assumptions beyond the standard unichain

Restless bandits

MDP with known parameters

MDP with known parameters

MDP with known parameters

MDP with known parameters

N arms