Model Reduction for Verification of Hybrid Systems

Zhi Hana, Bruce H. Krogha Carnegie Mellon University

Objective

Verification of Embedded Control Systems

- **Control Loop**
 - Embedded Controller
 - Actuator
 - Plant
 - Sensor

Verification Methods

- Computing reachable sets in continuous state space (difficult for systems with order > 7)
- Verifying safety properties using conservative approximation
- Using counterexamples to guide the refinement procedure

Model Reduction

- Approximating a high order component with a lower order one
- The error of approximation is bounded** for Linear Time Invariant Systems (LTI)

*Using oriented rectangular hull approximation. B. H. Krogh and O. Strusberg, On efficient representation and computation of reachable sets for hybrid systems, in Hybrid Systems: Computation and Control (HSCC’03). Lecture Notes in Computer Science (LNCS), Springer

Applying Model Reduction in Verification

- Reachable sets are restricted to the states of interests (output states + states used in control loop)
- Computing reachable sets in reduced state space, then projecting to the states of interests
- Including the error introduced by model reduction in the results

Case Study

Electrical Throttle Control (ETC) System

- Sliding-Mode Controller
- PD Controller
- Actuator/Plant
- Filter
- Sensor

2 inputs: set-point, sliding mode signal
2 outputs: throttle angle, sliding surface

Conservative Flow-pipes for different reduced models

(Using balanced truncation*** method)

- 7th order
- 6th order
- 5th order
- 4th order

Future Work

- Implementation as subroutines in CheckMate/VTB
- Applying Model Reduction in Counterexample-Guided Verification scheme
- Composition of reduced models