

WebCrystal: Understanding and Reusing
Examples in Web Authoring

Kerry Shih-Ping Chang
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA 15213

kerrychang@cs.cmu.edu

Brad A. Myers
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA 15213

bam@cs.cmu.edu

ABSTRACT
Examples have been widely used in the area of web design
to help web authors create web pages. However, without
actually understanding how an example is constructed, peo-
ple often have trouble extracting the elements they want
and incorporating them into their own design. This paper
introduces WebCrystal, a web development tool that helps
users understand how a web page is built. WebCrystal con-
tributes novel interaction techniques that let the user quick-
ly access HTML and CSS information by selecting ques-
tions regarding how a selected element is designed. It pro-
vides answers using a textual description and a customized
code snippet that can be copied-and-pasted to recreate the
desired properties. WebCrystal also supports combining the
styles and structures from multiple elements into the gener-
ated code snippet, and provides visualizations on the web
page itself to explain layout relationships. Our user study
shows that WebCrystal helped both novice and experienced
developers complete more tasks successfully using signifi-
cantly less time.

Author Keywords
Web Authoring, Examples.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User Inter-
faces - Interaction styles; D.2.6 [Software Engineering]:
Programming Environments - Graphical Environments;
Design Tools and Techniques - User interfaces.

General Terms
Design, Human Factors.

INTRODUCTION
Increasingly, Internet users with minimal technical training
are creating their own web pages. This involves not only
authoring the content, but also designing the appearance
and behaviors of the web pages. Good design is important
to improve the readability and usability of the pages, and
also to reflect the unique personality of their creator. Using
templates or a “wizard” interface to build a web site are

common ways to create a well-designed web page without
writing any actual code [7]. However, these techniques
cannot fully satisfy every user’s needs since people have
different requirements and aesthetic preferences for their
web pages [13].

Previous research has shown that one popular way for users
to build a customized web page is through the use of exam-
ples, and that this results in pages with higher ratings [14].
It has also been reported that web designers in the real
world often look at other people’s websites, pick the pieces
they like, and combine these pieces in their own designs
[10]. In general, a popular way for developers to learn how
to create code for any task is to look at examples [1]. One
of the participants in our user study mentioned his own web
design experience: “The best thing about web design is that
all the code is open source… you can always go to the web-
sites you like and see how they work.” Potentially, every
web page can serve as a design example for people who
like some aspect of its design or want to learn how it
achieved some effect. Assisting reuse of desired design
elements from a web page could thus be very beneficial to
many web designers.

Figure 1: A WebCrystal user finds out how to lay out a list struc-
ture by inspecting an example web page, by (1) asking a position
question of the selected list element in WebCrystal, and (2) in-

specting the black area around the element on the web page.

 1

 2

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Even after deciding on a design for a web page element, a
person must know how to achieve that design. Thus, people
must serve as both the designers for the style of a web page,
as well as the developers, who write the code to implement
the design. Reproducing a complex design from an example
requires a person to have a decent knowledge about web
development languages, even when using modern tools like
Adobe Dreamweaver or Microsoft Expression Web. Fur-
thermore, people often just want part of the design [10] and
thus must identify which part of the code actually is respon-
sible for the design aspect that is wanted. Consequently, to
create a high-quality result, the ability to develop a web
page to achieve the desired design can be as important as
the ability to come up with a good design in the first place.
Design examples are not useful if people cannot realize
them in their own final work.

To help address this problem, we built WebCrystal (Figure
1), a tool that assists in the low-level programming tasks
required to learn from and reuse examples as part of the
web authoring process. “Examples” here can be anything
built in HTML and CSS, the two most common languages
used to create the static style of a web page. Currently,
WebCrystal does not handle JavaScript, Flash, AJAX or
other scripting languages. WebCrystal allows users to select
any web element of a page that was created with HTML
and CSS, and then choose from a set of “how” questions
about how to recreate the different aspects of the selected
element. The tool then answers the questions by (1) provid-
ing an automatically generated human-readable textual ex-
planation using the element’s HTML and CSS information,
and (2) generating a customized code snippet for the users
to recreate the design using the selected attributes.

WebCrystal makes the following contributions:

• A novel example-based web design tool for extracting
and combining styling information from existing web-
sites, and for helping designers understand how existing
sites use HTML and CSS to create desired appearances.
This includes how to achieve the positioning of elements.

• The novel use of automatically generated hierarchical
questions and explanations about existing website styling
information, in combination with element selection tech-
niques to facilitate the extraction, combination, and un-
derstanding of existing website styling code. The expla-
nations included generated code in a variety of user-
selected formats (rather than code extracted from the
source examples) that will reproduce the element.

• A between-subjects evaluation of the prototype system
compared to standard tools for copying desired HTML
and CSS from existing websites. This evaluation showed
that WebCrystal users had significantly higher task com-
pletion rate and faster task completion time in reproduc-
ing web elements from a given web page, compared with
people using Firebug [5], a state-of-the-art web develop-
ment tool.

WebCrystal is inspired by previous systems Crystal [17]
(which focused on desktop applications) and FireCrystal
[19] (which focused on JavaScript). In WebCrystal, the goal
is to make the construction of the HTML and CSS parts of
web design “crystal clear” to the user, so that the user
would be able to easily reuse them in their own pages. The
tool was originally intended for novice and intermediate
HTML and CSS developers, which we believe are the ma-
jority of the web authors today (and blog posts seem to in-
dicate that even many “professional web designers” may
not have particularly advanced coding skills—e.g., [8]). In
fact, in our user study, we found that even advanced devel-
opers also benefited from and liked using WebCrystal.

RELATED WORK
WebCrystal was inspired by several previous systems that
allow users to ask questions about a program’s execution,
as a way to provide more focused answers. Crystal [17]
explains a word processor’s behaviors by letting users ask
about why elements look the way they do. Crystal not only
provides a textual explanation, but also highlights the user
operations that affect the element, so the user can more eas-
ily fix problems and control the operations. The Java
Whyline [12] is a debugging tool that allows developers to
ask “why” and “why not” questions about a Java program’s
output and leads developers backward to its causes. In
WebCrystal, we adapted this idea of letting users ask ques-
tions in the different domain of web authoring.

WebCrystal allows its users to select the element they want
from a rendered web page, and presents a code snippet that
can recreate that element. Some prior systems have used a
related approach in helping people make use of an example
more efficiently by interacting with the output and display-
ing the corresponding source code. FireCrystal [19], for
example, lets users record the interactive behavior of a web
page and shows the JavaScript code that might be responsi-
ble for that behavior. Rehearse [2] is an extension for the
Processing IDE that highlights each line of code in an ex-
ample as it is executed to help programmers quickly identi-
fy which line of the code is relevant.

Many systems help with finding and presenting examples.
Some systems allow users to specify layout information
through sketches to retrieve desired designs [9], while oth-
ers [14][15][20] support retrieving and browsing related
designs from example galleries. WebCrystal helps after the
examples have already been found, and assists users to in-
corporate desired examples into their own work. Some prior
systems have focused on reusing examples without requir-
ing users to look at or understand any code. CopyStyler [6]
copies the style of text elements from one page to another.
Adaptive Ideas [14] pre-annotates examples with metadata
about properties and ranges of values, and then it can com-
bine the user-selected attributes into a new page. Bricolage
[13] maps some aspects of the style of one web page onto
the content of another using an AI algorithm to rapidly gen-
erate a new web page. In contrast to these systems,

WebCrystal gives users complete control of the results,
since it does not use heuristic algorithms..It also exposes
the underlying code to users, which might help them learn
it.

THE WEBCRYSTAL USER INTERFACE
The main goal of WebCrystal is to enable the users to
quickly reuse one or more aspects of an example in their
own work. Ideally, WebCrystal would be integrated with a
code editor, so the code extracted from the example could
be directly inserted into the user’s code. For now, in order
to explore the appropriate user interface for discovering the
appropriate code, WebCrystal instead runs as a plugin for
the Firefox browser, and the user can copy-and-paste the
code into a separate editor window. WebCrystal is a Firefox
extension written in XUL [16] and JavaScript, using the
jQuery [11] library. WebCrystal accesses the document
object model (DOM) of the web page, and treats every
DOM node in the web page as a web element. WebCrystal
is activated by clicking on the magnifying glass icon button
in the browser’s status bar (Figure 1, bottom left). When
activated, it tracks the current element under the mouse
cursor as users move their mouse around the web page. The
current element is highlighted using a semi-transparent box,
with a small label showing the element’s tag name (Figure
2 at 1). At the same time, a set of questions about how to
recreate the various aspects of the underlying element are
dynamically generated and displayed in the left of the
WebCrystal window (Figure 2 at 2). The user can “freeze”
a selection by left clicking on the desired element and then
can start to inspect that element by browsing questions from
the tool interface. A selection is “unfrozen” by left clicking
anywhere on the web page.

Browsing the Elements Hierarchically
HTML is a hierarchical language. An element’s position on
the web page is related to its parents (containers) and sib-
lings. For example, in Figure 1 the selected is posi-
tioned relative to the position of its parent . Therefore,
WebCrystal allows users to directly select any element us-
ing the mouse, but also allows users to move the selection
around the hierarchical structure. Users can explore the
hierarchy using the arrow keys to go up to the parents (con-
tainers) (e.g., from to its), down to the children
(to), and left and right to the previous and next
siblings (to next). In our user study, we found this
feature also was useful for participants to select overlaid
elements that have a similar size, by navigating up to par-
ents and sideways to other siblings.

When WebCrystal is enabled, it disables the default func-
tion of mouse left button (navigating to hyperlinks) and
arrow keys (scrolling the web page) so these events can be
used to select and browse elements in WebCrystal. When
the regular web page behavior is desired, WebCrystal can
simply be disabled by clicking on its magnifying glass icon
again to turn the tool off.

Asking Web Construction Questions
WebCrystal explains web construction by allowing users to
select different “how” questions. All questions are in a
similar form, such as “how do I get my … to be like this?”
Previous studies in web design showed that when looking at
an example, people only wanted part of the design and
wanted to incorporate this specific part of the design in their
own web page [10]. The key to successfully reusing an ex-
ample is therefore to identify which lines of code are rele-
vant to the user’s needs, which is often difficult [2]. To ad-
dress this requirement, WebCrystal generates questions on

Figure 2: (1) is the web page under investigation, showing the purple highlight and the dotted box around the selected element. (2) is a list
of questions the user can ask about recreating the selected element, with the selected question highlighted with a yellow background.

(3) shows the textual response that answers the question selected in (2). Here, it explains the text properties. (4) is a sub-menu of
commands that the user can pick to generate a code example using the selected properties. (5) shows the generated code.

 1

 2 3

 4

 5

both how to recreate an element as a whole, and how to
recreate each aspect of the element. The first question in the
list is always “how do I get my element to be exactly the
same as this one?”, which shows users how to recreate eve-
rything about the element. Next is a set of sub-questions
that allow users to ask about recreating more specific as-
pects of the element. WebCrystal reads the HTML and CSS
attribute values of the selected element and uses them to
generate sub-questions in 11 categories (see Table 1). For
questions about text, background, and border, WebCrystal
also dynamically renders the style of the element’s text,
background and border, and shows it in the question de-
scription (Figure 2 at 4). Besides showing the properties
immediately, we found this particularly important when the
selected element’s style is caused by other elements. For
example, when DOM elements overlay on each other, the
look of an element can be caused by the element behind it.
Another example is that a vertical line can be made by us-
ing a background image inside a table cell or by turning on
the left border of the next cell. By showing the feedback in
the questions themselves, the user can select the correct
element to ask the questions about. See Figure 5 for more
examples.

After selecting a question, the middle pane will update and
show the answer (Figure 2 at 3). The first part of the answer
is a computer-generated human-readable textual explana-
tion of what tag and attributes the element uses to generate
the aspect(s) selected in the left pane. WebCrystal compares
each attribute with its default value, and only shows the
attributes that have a value different from their defaults, and
thus would need to be specified by the user.

Generated Code
Under the textual explanation is a set of checkboxes with
which users can select specific aspects of the property they
are interested in (Figure 2 at 4). WebCrystal automatically
generates an item for each CSS attribute that is relevant.
When the user selects one or more of these, the system gen-
erates an example code snippet that will cause an element to
have the same values for those attributes as the example.
These choices are phrased as requests of the form: “Give
me an example of making my element attribute = value.”
As a shortcut, the first checkbox says “Give me an example
of making my element have all the same attributes” to get a
result the same as the example. Attributes are also rendered
in their style when possible to help users quickly identify
what they want and understand the effect of the attributes.

The generated code snippet is shown in the code window on
the right of the WebCrystal’s interface (Figure 2 at 5).
WebCrystal can provide code snippets in either inline-CSS
or separate-CSS formats, chosen by the drop down menu, to
let users generate the most appropriate kind of code for
their situation (Figure 3). For cases where inline CSS is not
allowed (such as for hover dynamic behaviors explained
below), then the inline CSS option is removed.

The user can copy and paste the generated code into their
editor to reproduce the effect. In addition, showing this
code may help users learn the appropriate coding tech-
niques. In a study of online code example usage [1], re-
searchers found that using example code not only helped
programmers finish their tasks more quickly, but also
helped them learn new knowledge and clarify existing
knowledge.

Explaining Position and Layout
WebCrystal provides additional questions and visualiza-
tions to explain the position and layout of elements by high-
lighting both the selected element’s parent (container) and

Property for
“How do I get my …

to look like this?” This question is displayed when:

Text Tag is not

Background Every time

Position and Layout Every time

Size Every time

Border or Outline CSS attribute “border-style” or
“outline-style” is not “none”

Input element Tag is “input”, “select, “textarea”
or “button”

Link Tag is <a>

List Tag is , , , <dd>,
<dl>, or <dt>

Image Tag is

Table Tag is <table>, <th>, <tr>, <td>,
<thead>, <tbody>, or <tfoot>

Dynamic behavior System detects there is a style
change of the element before and
after mouseover effect

Table 1: The 11 sub-question categories and their display conditions

Figure 2: WebCrystal generates example code in both (1) inline
CSS format and (2) separate CSS format.

 1 2

siblings on the web page (Figure 4 at 1), and allowing users
to inspect the blank areas around the selected element that
are generated by CSS layout attributes such as margin, pad-
ding, top, left, bottom, and right. Users can inspect a blank
area by hovering the mouse on it, and WebCrystal will dis-
play a label with the CSS attribute that caused this blank
space, along with its value (Figure 4 at 3). Alternatively, if
the user hovers the mouse over the CSS attribute in the tex-
tual explanation on WebCrystal’s interface, then the corre-
sponding blank space will be highlighted (Figure 4 at 4).

Explaining Dynamic Behaviors
A key feature of web pages is that they are interactive, not
just static drawings. CSS adds the ability to support hover
behaviors that show different styles depending on the
mouse location. Therefore, WebCrystal adds additional
questions so the user can ask for an explanation and code
for these behaviors.

For hover behaviors that change the style of an element, the
user can demonstrate to WebCrystal the styles by first se-
lecting the element and then moving the cursor on and off
of the element, to cause the style change. During the inter-
action, WebCrystal detects that the element changes styles.
In this case, WebCrystal will show a message in the textual
area that tells the user that this is a dynamic element, and
which style of the element is being used right now. The
message also includes a toggle button with which the user
can see the other style for this element; that is, alternating
between showing a description of the hovered and not-
hovered styles for a link. The questions also toggle so the
user can find out the details of how each of the styles is
achieved. WebCrystal also adds a question so the user can
ask “how do I get my element to have this dynamic effect”,
and will then provide the HTML and CSS skeleton code for

the appropriate hover effect as the answer (Figure 5 at 2).

Storing and Combining Multiple Elements
Many web design examples consist more than one DOM
element. For example, the 3-grid menu structure in Figure 6,
or the text and image layout in Figure 4, both use multiple
elements to achieve those designs. The positioning of these
elements results from their CSS layout attributes and their
nesting in the HTML hierarchy, such as being siblings or

Figure 3: When answering position questions, WebCrystal (1)
highlights the container and the siblings of a selected element, and

(3) allows user to inspect blank areas around the element on the
web page or (4) inside the textual explanation using the mouse.

 1

 2 3 4

Figure 5: WebCrystal answers how to recreate (1) an image background, (2) an interactive link element, and (3) a search button, with the
generated code snippets.

 1 2 3

parent and children. WebCrystal enables users to investi-
gate this kind of layout design of multiple elements, and
even to select which specific aspects are desired from each
element.

Another reason to investigate multiple web elements is to
combine separate examples together. Inspired by Brico-
lage’s approach of generating a new design by combining
two web pages [13], WebCrystal supports creating a “style
mashup” for users. For example, if the user likes the text
style of one element, the background of another element
and the size of a third element, WebCrystal can generate a
code snippet for the user that creates a single element con-
taining all of these desired design aspects.

The user interface for this feature is shown in Figures 2 and
6. First, the user selects the desired aspects of the first ele-
ment in the usual way, which will cause the appropriate
code for the first aspect to be displayed in the code pane.
Then, the user selects the “save this code for later use” but-
ton (see Figure 2 at 5). The user then selects and shows the
code for the other elements, and saves the code for each.
The storing idea is inspired by the fact that designers in the
real world often store the examples they like and retrieve
them later in their design process [10].

Each saved code snippet is represented by a button with a
system or user-defined name at the bottom of the WebCrys-
tal window (see Figure 6 at 1). The user can select multiple
snippets using the check boxes. The original element(s)
from which the selected snippet(s) are copied from are
highlighted on the web page in an orange semi-transparent

box (Figure 6 at 2). Selecting multiple snippets takes users
out from the question-asking interface to the “combining”
interface, in which users give “I want to…” commands to
the system to say how they want to combine the selected
code (Figure 6 at 3). Clicking on “I want to merge multiple
elements together” executes the “style mashup” feature, and
WebCrystal generates code that has a single element with
all the attributes in the selected code (Figure 6 at 4). If the
saved snippets are elements of different types (e.g., one is a
 and another is a), then a menu is generated to
allow the user to select which type is desired in the code. If
the same attribute has different values in different selected
snippets (for example, if one snippet used the color gray
and another used blue), WebCrystal will generate a menu
for users to select which value they want (Figure 6 at 5).

The other top-level command in Figure 6 at 3 is “I want to
put multiple elements into a structure.” This is used when
multiple items at different levels are desired to be combined
into a multi-level structure in the result. For example, if one
snippet is a styled list and another snippet is a styled
list element , and the desired result is a with the
 inside of it. WebCrystal uses the hierarchical relation
of the elements, and generates new code that has the appro-
priate code in the same hierarchy. Currently, WebCrystal
knows how to combine elements that are siblings or that are
parent and children into the same structure. In the future,
we will investigate support for creating sensible structures
from elements with no well-defined relations to each other,
such as a <dt> with a or a <div> with a <h1>.

Figure 6: The interface for combining multiple elements. (1) the elements stored to be combined. (2) elements selected in (1) being high-
lighted in the web page in brown boxes. (3) the two commands of how to combine the elements. (4) the generated code for all selected
elements merged together. (5) when an attribute is in multiple elements with conflicting values, the user can select which one to use.

 1

 2

 3
 4

 5

USER STUDY
We evaluated the usefulness of WebCrystal in a small lab
study. We polled a few web designers and web developers,
and they reported that the most common ways that are used
today to investigate code are the “View Source” menu item,
along with tools such as Firebug [5] and the Chrome De-
veloper Tool [4], which allow users to browse all of the
HTML and CSS source code. Since WebCrystal is imple-
mented as a Firefox plugin, we decided to compare it to
Firebug in our user study.

Study Design
The study used a between-subject design. Participants were
randomly assigned into two groups, the experimental group
was given WebCrystal, and the control group was given
Firebug [5]. In addition, both groups could use any of the
standard FireFox features, such as View Source. Partici-
pants were also allowed to use any desired online resources
to help with their tasks. In both conditions, the participants
used the same special-purpose testing environment we cre-
ated. This environment contains a text pane for entering the
code, a “your output” pane that shows a preview of what a
rendering of the code in the text pane will produce, and a
“desired output” pane showing a preview of the correct
answer (Figure 7). The participants’ goal was to make the
“your output” pane look and behave the same way as the
“desired output” pane. Inside the text pane for each task,
there was a small piece of code automatically inserted by
the testing environment, for the participants to start from.
Participants were told that they had to use this code as part
of their answers. We did this to shrink the solution space
and focus the task on just the reuse of the example code.
We measured both the success rate and completion time on
each task.

Participants
Both groups had 6 participants, all graduate students in our
university. All participants had previous experience in writ-
ing HTML and CSS code. Participants rated their proficien-
cy with both HTML and CSS language on a 4-point scale
from “novice” to “superior”. The average rating for HTML
proficiency of all participants was 2.3 and for CSS was 2
out of 4. We also asked the participants to rate their level of
experience with using Firebug or other web inspection tools
on a 4-point scale of “none” to “expert”. The average rating
was 2.3. There were no significant differences in these
measures between groups.

Tasks
All participants received the same 10 tasks in the same or-
der. We designed the tasks to have 3 different levels of dif-
ficulty. The first 5 questions were the easiest, and were
about reproducing the style of a single element. For exam-
ple, one was to recreate a vertical separation line pointed to
by the arrow in Figure 8 at 1. Next were 2 medium-
difficulty questions, which were about reproducing the in-
teractive behavior of an element. For example, one was to
recreate a button that will change its style from green to red
when hovered over by the mouse cursor like the one in Fig-

ure 8 at 2. The last 3 questions were the hardest, and were
about reproducing the style of multiple elements. For ex-
ample, recreating a same 3-grid structure like the one in
Figure 8 at 3, but changing the color of the text to the blue
color pointed by the arrow. The time limit for answering
easy and medium tasks was 6 minutes and for hard tasks
was 8 minutes. If users had not finished the task by the end
of the time limit, they were marked as “uncompleted.”

Procedure
After giving consent to the study, the participants in both
groups received a 15-minute tutorial on their tool (Firebug
or WebCrystal) followed by a 5-minutes tutorial on the test-
ing environment (Figure 7). The WebCrystal group was
shown all the features described in the previous sections,
and the Firebug group was shown all of its features that are
relevant to HTML and CSS investigations, including view
source, enabling and disabling CSS properties, and inspect-
ing the CSS layout. We did not train participants in using

Figure 7: The testing environment contains (1) a question de-
scription, (2) a text pane for entering code. When clicking on the
“Click to see the result” button, (3) will show a preview of (2).

The correct output is shown at (4).

 1

 2

 3

 4

 1

 2

 3

Figure 8: Tasks of 3 levels of difficulty.

other Firebug features , such as network monitoring or Ja-
vaScript debugging, since they were irrelevant to the tasks.

After the tutorials, participants started to do the first task.
For each task, the experimenter would read the task descrip-
tion and then after reading the whole description would
start timing. Participants were told to inform the experi-
menter when they thought they had the correct answer. The
experimenter then stopped the clock, checked their work,
and told them if they gave a correct answer. If the answer
was wrong, participants could choose to work on it some
more or give up. However, in our study, none of the partici-
pants chose to give up on any of the tasks. All participants
worked until the time ran out or they succeeded. After at-
tempting all the tasks, the participants answered a short
interview to provide feedback. Participants were paid $15
after the study.

Results
We analyzed the data using a random-effect logit model to
predict task completion rate, and a random-effect linear
model to predict task completion time, with all the observa-
tion of one person as a group. The results are presented in
Figures 9 and 10. Participants in the WebCrystal group
completed an average of 9.67 (97%) of the tasks, whereas
participants in the Firebug group completed an average of
7.83 (78%). The difference in task completion rate between
two groups is significant (coef. = 2.49, p=.013).

We also analyzed the average time per task for all those
participants who completed successfully. Participants using
WebCrystal spent an average of 94.27 seconds (SD =
75.29) on tasks, whereas participants using Firebug spent
115.09 seconds (SD = 98.26). The difference is significant
(coef. = -30.47, p = .036). As shown in Figure 10, the dif-
ference increases a bit as the tasks get more difficult. Tak-
ing the ”hard” tasks alone, successful participants were
43% faster with WebCrystal (147.91 seconds vs 211.91
seconds).

The user study confirmed that our difficulty ratings were
valid since across both groups, the main effect of task diffi-
culty was significant on both task completion rate (coef. =
-1.42, p < .001) and task completion time (coef. = 53.58, p
< .001).

In the interviews, participants in the WebCrystal group ex-
pressed a great interest in using WebCrystal in real life:

“This is cool… are you gonna release it?”
“Can I have it?”
“Do you have this in Chrome?”
“This is definitely useful… I’ll pay a little money for it.”

Among the 6 WebCrystal users, 5 of them asked about the
tool’s availability, and 3 of them volunteered to help on
testing and reporting bugs after its release. This is particu-
larly encouraging since most of our participants have previ-
ous experience in using other web development tools.

DISCUSSION
The key to successfully finishing the tasks in our user study
is to quickly identify all of the required attributes and com-
bine them to form usable code, while avoiding including
inappropriate attributes. This is especially critical with the
difficult tasks because they involve more attributes. We feel
this study has external validity since reproducing a design
aspect in real life almost always requires copying multiple
related attributes. For example, to recreate text that has the
same style as in Figure 2 at 1 requires users to specify 6
different text attributes. WebCrystal users took advantage
of the way that attributes are already classified into differ-
ent categories. They accessed the appropriate attributes by
selecting different questions to ask the system to show them
what they wanted. In contrast, the Firebug users were pre-
sented with all of the attributes by the system and needed to
determine on their own which ones were related to the task.
When identifying an individual attribute, WebCrystal users
viewed the rendered style of the attribute in each checkbox
description to understand the effect of that attribute. Partic-
ipants reported that this “graphical indicator” of an attribute

Figure 9: The completion rate of two groups in three levels of
difficulty tasks and the overall average. Taller bars are better.

Figure 10: For the participants who completed the tasks, the aver-
age time they took in 3 levels of difficulty, and the overall average

with standard errors. Shorter bars are better.

and its effect were very helpful, because they actively pro-
vided the relevant information. This led the users to ask the
right questions. On the other hand, Firebug users used the
live editing feature in Firebug to turn the attributes on and
off to view the changes in the web page. Although this fea-
ture also successfully explained the effect of an attribute to
the user, it required the users to be the initiator of the in-
quiry process, and since it modifies the example page, it can
interfere with appropriate rendering. In other words, with
Firefox, all the attributes were passively waiting to be ex-
plored, and users had to first guess or know which attribute
could be relevant and then decide if they wanted to use the
live editing feature to check if it was truly the one they
needed. We observed much trial-and-error clicking since
users’ first guesses were often not correct. We also found
that for some of the tasks which Firebug participants failed
to complete, there were attributes which participants never
explored because they incorrectly assumed these attributes
were irrelevant.
We observed that all WebCrystal users benefitted from the
customized, ready-to-use code snippet generated by the
system when doing both easy and hard tasks. Participants in
the WebCrystal group liked using the checkboxes to select
attributes to include in the code snippet, and thought it was
very easy and efficient to use. Copying and pasting the gen-
erated code snippet prevented users from having any poten-
tial syntax errors and typos. In the Firebug group, some
users chose to retype the attributes they thought were rele-
vant rather than copying and pasting. This is because attrib-
utes are separated into different lines in Firebug, which
would therefore require users to perform multiple selecting,
copying and pasting operations. The result of this retyping
was that more typos occurred, which users often did not
notice at first. The typos often caused incorrect output,
which made the users think that they had identified the
wrong attribute. Then, instead of checking their code, users
went searching in the example code again and got more and
more confused, until they finally discovered that it was the
typo that caused the wrong output. Conventional web edi-
tors such as Dreamweaver have the ability to check syntax
errors for users, but still may not identify if there is a typo
in an attribute name or value. These observations suggest
that having a customized, ready-to-use code snippet ex-
tracted from the example file not only saves the users’ time
but also might result in higher-quality code.
When performing the tasks, we often observed very explor-
atory usage of sample code by the WebCrystal users. In
WebCrystal, because selecting all attributes under a catego-
ry was so easy (simply by checking one checkbox), when
participants where not sure about the effect of individual
attributes, some would just check everything that related to
the task description, and see how the resulting code snippet
worked using the preview pane in the answering environ-
ment. We observed fewer attempts like this in the Firebug
group, because both identifying the relevant attributes and
copying them were time-consuming.

Both WebCrystal and Firebug users considered the tool
they used to be very helpful for their tasks. Some partici-
pants with advanced knowledge of HTML and CSS ex-
pressed that the textual explanations WebCrystal provided
were less useful for them because they already knew most
of the attribute names and effects. The main performance
difference in completion time between expert users in the
two groups seemed to be caused by the fast copy-and-paste
ability in WebCrystal, which saved them from typing (and
typos) and kept track of the attributes one by one. For nov-
ice and intermediate HTML and CSS users, WebCrystal’s
textual descriptions seemed to be more useful. Both expert
and novice participants reported that they liked the ques-
tion-asking style of the interface. They thought it was very
intuitive to use and easy to learn. While novice and inter-
mediate participants in the Firebug group struggled to iden-
tify the right attributes to use and even to form syntactically
correct code, novice and intermediate participants in the
WebCrystal group found the correct attributes by asking a
higher-level question and directly copying the ready-to-use
code as their answer.

LIMITATIONS
WebCrystal focuses on explaining HTML and CSS, and
does not handle JavaScript, Flash, or other scripting lan-
guages for interactive behaviors. WebCrystal currently flat-
tens any CSS inheritance in the example, and generates
code that contains all the required attribute values together.
Our motivation for this was to help users quickly reproduce
a desired element by directly copying the example code into
their own web page. The downside of this piece-by-piece
styling approach is that it does not take advantage of the
cascading nature of CSS, and might result in a difficult-to-
maintain file as the number of copied elements become
larger. Also, the style of an element is affected by its par-
ents because some of the attributes can be inherited. There-
fore, we cannot be sure whether the example code pasted
from WebCrystal will work exactly the same in the target
web page as in the example without knowing the hierar-
chical structure of where it is pasted. As a simple example,
WebCrystal leaves out attributes which have their default
value in the source file, and these attributes may have dif-
ferent default values in the target file. This could be ad-
dressed by integrating WebCrystal with a web editor to
support the user’s choice of whether to override or inherit
any attributes that differ in the example and target files.

CONCLUSIONS AND FUTURE WORK
WebCrystal is a tool that helps users to understand how an
example is constructed and to reproduce the example in
their own web page. Its interaction techniques based on
asking and answering questions proved effective, easy-to-
learn and well-liked by both novice and experienced web
developers. WebCrystal successfully allowed fast copying-
and-pasting of desired attributes, and the storing and com-
bining of attributes from multiple examples. The ability to
specify the desired attributes and have the tool generate
appropriate combined code for them proved to be an im-

portant advantage, compared to requiring users to combine
the code by hand. WebCrystal is now available at
http://www.cs.cmu.edu/~webcrystal/.

Future work could be in many directions. One is to inte-
grate WebCrystal with web editing tools such as Dream-
weaver or Eclipse to facilitate intelligent pasting of the ex-
ample code in a way that would consider the hierarchy rela-
tions among elements, as described in the previous sections.

Another direction is to extend the system’s ability to be able
to explain the construction of interactive behaviors of a
webpage. A previous system, FireCrystal [19], lets its users
playback the interactions with web pages using a timeline
and displays relevant code. From our user study, we ob-
served that participants benefitted from selecting and aug-
menting desired code snippets through a hierarchical ques-
tion-asking interface. Combining the interaction techniques
in WebCrystal and FireCrystal, one could imagine a system
that records interactions in a web page, divides complex
interactions into smaller and easily understandable parts,
and lets users access relevant code of each part by asking
hierarchical questions.

Finally, we are also interested in observing web developers
using WebCrystal for real-world tasks. What elements are
most web developers interested in? What are the most
common questions that web developers ask when recreating
an element? How does WebCrystal affect on the design
process? Understanding these questions would give us more
insights on designing future tools that support reusing ex-
amples in web authoring.

ACKNOWLEDGMENTS
We would like to thank Ruogu Kang, Yanjin Long, Haiyi
Zhu and Colleen Stuart for their help with the statistics for
the paper, and Andrew Faulring for his help with the user
study. This research was funded in part by the NSF under
grant IIS-1116724. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect those of the NSF.

REFERENCES
1. Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M.,

Klemmer, S. R. Two studies of opportunistic program-
ming: interleaving web foraging, learning, and writing
code. Proc. CHI (2009), ACM, pp. 1589-1598.

2. Brandt, J., Pattamatta, V., Choi, W., Hsieh, B., Klem-
mer, S. R. Rehearse: Helping Programmers Adapt Ex-
amples by Visualizing Execution and Highlighting Re-
lated. Tech. rep. CSTR 2010-05, Stanford, Oct. 2010.

3. Buxton, B. Sketching User Experiences. Morgan Kauf-
mann, 2007.

4. Chrome Developer Tools.
http://code.google.com/chrome/devtools/

5. Firebug. http://getfirebug.com/

6. Fitzgerald, M. CopyStyler: Web design by example.
Master Thesis, Dept. of EECS, MIT, May 2008.

7. Gibson, D., Punera, K., Tomkins, A. The volume and
evolution of Web page templates. Proc. WWW (2005),
ACM, pp. 830-839.

8. Graphic Mania. http://www.graphicmania.net/are-web-
designers-required-to-know-how-to-code/

9. Hashimoto, Y., Igarashi, T. Retrieving web page layouts
usingsketches to support example-based web design.
2nd Eurographics Workshop on Sketch-Based Interfaces
and Modeling (2005).

10. Herring, S. R., Chang, C.-C., Krantzler, J., Bailey, B. P.
Getting inspired!: understanding how and why examples
are used in creative design practice. Proc. CHI (2009),
ACM, pp. 87-96.

11. jQuery. http://jquery.com/

12. Ko, A. J., Myers, B. A. Finding Causes of Program Out-
put with the Java Whyline. Proc. CHI (2009), ACM, pp.
1569-1578.

13. Kumar, R., Talton, J. O., Ahmad, A., Klemmer, S. R.
Bricolage: Example-Based Retargeting for Web Design.
Proc. CHI (2011), ACM, pp. 2197-2206.

14. Lee, B., Srivastava, S., Kumar, R., Brafman, R., Klem-
mer, S. R. Designing with interactive example galleries.
Proc. CHI (2010), ACM, pp. 2257-2266.

15. Marks, J. et al. Design galleries: a general approach to
setting parameters for computer graphics and animation.
Proc. SIGGRAPH (1997), ACM, pp. 389-400.

16.MDC Doc Center. https://developer.mozilla.org/en/xul

17. Myers, B. A., Weitzman, D. A., Ko, A. J., Chau, D. H.
Answering why and why not questions in user interfac-
es. Proc. CHI (2006), ACM, pp. 397-406.

18. Nardi, B. A small matter of programming. MIT Press.
1993.

19. Oney, S., Myers, B. A. FireCrystal: Understanding In-
teractive Behaviors in Dynamic Web Pages. IEEE Symp.
On VL/HCC (2009), pp. 105-108.

20. Ritchie, D., Kejriwal, A. A., Klemmer, S. R. d.tour:
style-based exploration of design example galleries.
Proc. UIST (2011), ACM, pp. 165-174.

