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My background

• Rutgers, 1986-1990: Explanation based learning (learning from
examples and prior knowledge)

• AT&T Bell Labs/AT&T Research, 1990-2000:

– Learning logic programs/description logics

– What representations work well for learners?

– Scalable rule learning (RIPPER system)

– Text categorization/information extraction

– WHIRL (this talk)
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My background

• WhizBang Labs, April 2000-May 2002

– More text categorization, IE, matching

– “Wrapper induction”: learning to extract data from a single
web site (Cohen et al, WWW-2002)

– Improving text classifiers by recognizing structure of “index
pages” (Cohen, NIPS-2002)

• Carnegie Mellon’s CALD center: last year

– Information extraction from on-line biomedical publications:
subcellular location information from text and images

– Evaluating aspect retrieval systems

– Privacy issues related to data integration
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Grand visions for information access

• The semantic web: a world-wide database as widely
distributed, fluid, and easy to extend as the web.

• Peer-to-peer databases: exchange and query structured
information across thousands of client/server machines.

• Large-scale information extraction: extract a database of
structured information from thousands or millions of
documents.

• Large-scale information integration, e.g. across deep-web
sources: make thousands of databases look like one.

• The “world wide knowledge base”: make the existing web look
like a single huge knowledge base.

4



A common thread: merging structured data

Notice: planning people
see a planning problem,
learning people see a
learning problem,
programming language
people see a language
problem, . . .

The real problem is
representation.

Site1
Site2 Site3

KB

:-)

User

World Wide Web
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What’s the research problem?

Clarification: There are two kinds of information systems:

1. Search engines, clipping services, hypertext, . . . store and
deliver potentially relevant documents to a user.

• Easy to handle information from diverse sources.

2. Databases, KR systems, . . . store facts and perform
deduction on behalf of a user.

• Very hard to handle information from diverse sources.
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What’s the research problem?

We don’t know how to
reason with information
that comes from many
different, autonomous
sources. Site1

Site2 Site3

KB

KB1 KB3

KB2

World Wide Web
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all mallards duck.jpg is duck.jpg is

are waterfowl + a picture of = a picture of

a mallard a waterfowl

Taxonomy

Order Species

waterfowl mallard

waterfowl bufflehead

raptor osprey

raptor bald eagle

. . . . . .

+

Images

Species File

robin robin.jpg

mallard duck.jpg

osprey hawk.jpg

penguin tweety.jpg

. . . . . .

=

Order Species File

waterfowl mallard duck.jpg

raptor osprey hawk.jpg

. . . . . . . . .

8



mallards are duck.jpg is duck.jpg is a

found in + a picture of = picture of something

New Jersey a mallard found in New Jersey

NJ Birds

Species

robin

mallard

osprey

. . .

+

Images

Species File

robin robin.jpg

mallard duck.jpg

penguin tweety.jpg

. . . . . .

Deduction enables

modularity.

=

Species File

robin robin.jpg

mallard duck.jpg

. . . . . .
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Why deduction requires co-operation

-? nj bird(X),image(X,File).
nj bird(mallard). nj bird(robin). . . .
image(mallard,’duck.jpg’). image(american robin,’robin.jpg’). . . .

The providers of the nj bird and image facts have to agree on:

• predicate names and argument positions (schema);

• taxonomic information;

• formal names (OIDs) for every entity they describe;

• . . .
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Deduction without co-operation

If information providers
don’t co-operate, then a
“mediator” program must
translate:

’robin’→ ’american robin’

How hard is it to
determine if two names
refer to the same thing?

KB3

KB2

Site1
Site2 Site3

KB1

World Wide Web

MEDIATOR

User
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Humongous Humongous

Entertainment

Headbone Headbone

Interactive

The Lion King: Lion King

Storybook Animated

StoryBook

Disney’s Activity The Lion King

Center, The Activity Center

Lion King

Microsoft Microsoft Kids

Microsoft/Scholastic

American Kestrel

Kestrel Eurasian Kestrel

Canada Goose Goose,

Aleutian Canada

Mallard Mallard, Mariana
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Bell Labs AT&T Bell Labs

AT&T Research AT&T Labs

Bell Telephone Labs AT&T Labs—Research

AT&T Labs–Research, Lucent Innovations

Shannon Laboratory Bell Labs Technology

Conclusion: name-coreference is an AI-complete problem.
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What’s the research problem?

We need a general means
for integrating formally
unconnected knowledge
bases.

We must exploit these
facts: the individual KB’s
model the same real world,
and communicate with the
same users.

KB1
KB2 KB3

Human Users

The Real World

14



The WHIRL approach

Key points:

• Use informal names and descriptions as object identifiers.

• Use techniques from information retrieval (IR) to guess if two
descriptions refer to the same object.

• Use soft (≈ probabilistic) reasoning for deduction.

Formal reasoning methods over informally identified objects.
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Overview of WHIRL

• WHIRL (Word-based Heterogeneous Information
Representation Language) is somewhere between IR systems
(document delivery) and KR systems (deduction).

• Outline:

– Data model: how information is stored.

– WHIRL query language

– Accuracy results

– Key ideas for implementation

– Efficiency results

– More results and conclusions
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Background: Information retrieval

Ranked retrieval: (e.g., Altavista, Infoseek, . . . ) given a query Q,
find the documents d1, . . . , dr that are most similar to Q.

Similarity of di and dj is measured using set of terms Tij common
to di and dj :

SIM (di, dj) =
∑

t∈Tij
weight(t, di) · weight(t, dj)

• A term is a single word (modulo stemming, . . . )

• Heuristic: make weight(t, d) large if t is frequent in d, or if t is
rare in the corpus of which d is an element.
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Background: Information retrieval

Similarity of di and dj is measured using set of terms Tij common
to di and dj :

SIM (di, dj) =
∑

t∈Tij
weight(t, di) · weight(t, dj)

• Heuristic: make weight(t, d) large if t is frequent in d (TF), or
if t is rare in the corpus of which d is an element (IDF).

• Example: if the corpus is a list of company names:

– Low weight: “Inc”, “Corp”, . . .

– High weight: “Microsoft”, “Lucent”, . . .

– Medium weight: “Acme”, “American”, . . .
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Background: Information retrieval

It’s notationally convenient to think of a document di as a long,
sparse vector, vi.

If ~vi = 〈vi,1, . . . , vi,|T |〉, vi,t = weight(t, di), and ||vi|| = 1:

SIM (di, dj) =
∑

t∈T
weight(t, di) · weight(t, dj)

= ~vi · ~vj
Also, 0 ≤ SIM (di, dj) ≤ 1.
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Effectiveness of the TF-IDF “vector space” representation
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Cinema Movie Show Times

Roberts Brassed 7:15 - 9:10

Theaters Off

Chatham

Berkeley Hercules 4:15 - 7:30

Cinema

Sony Men In 7:40 - 8:40 -

Mountainside Black 9:30 - 10:10

Theater

listing(~vRTC , ~vBO, ~vT79), 1.

listing(~vBC , ~vH , ~vT47), 1.

listing(~vSMT , ~vMIB , ~vT789), 1.

review(~wMIB97, ~wR1), 1.

review(~wFO, ~wR2), 1.

review(~wSB , ~wR3), 1.

Each ~vi, ~wi is a document vector.

Each fact has a score s ∈ [0, 1].

Movie Review

Men in Black, 1997 (∗ ∗ ∗) One of the biggest hits of . . .

Face/Off, 1997 (∗ ∗ 1
2 ) After a slow start, . . .

Space Balls, 1987 (∗ 1
2 ) Not one of Mel Brooks’

best efforts, this spoof . . .

~vMIB = 〈. . . , vblack, . . . , vin, . . . , vmen, . . .〉
~wMIB97 =〈. . . , wblack, . . . , win, . . . , wmen, . . . , w1997, . . .〉

w1997 ≈ 0 =⇒ sim(~vMIB , ~wMIB97) ≈ 1
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Queries in WHIRL

• Syntax: WHIRL = (similarity)
Prolog − function symbols − recursion − negation + X∼Y

• Semantics (details in Cohen, SIGMOD98):

– A ground formula gets a score s ∈ [0, 1]

– Score(p(a1, . . . , ak)) = s for DB literals.

– Score(a ∼ b) = SIM (a, b) for similarity literals.

– Score(φ ∧ ψ) = Score(φ) · Score(ψ).

– Score(φ ∨ ψ) = 1− (1− Score(φ))(1− Score(ψ))

– Answer to a query Q is an ordered list of the r substitutions
θ1, . . . , θr that give Qθi the highest scores.
(User provides r).
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Queries in WHIRL

• Syntax: WHIRL =
unions of conjunctive SQL queries + X∼Y

• Semantics (details in Cohen, SIGMOD98):

SELECT ri1 .fi1 , ri2 .fi2 , . . .

FROM R1 as r1, R2 as r2, . . . , Rk as rK

WHERE φ(R1, . . . ,RK)

– Answer is an ordered list of tuples.

– A tuple is defined by binding each ri to a tuple
tj = 〈aj,1, . . . , aj,`〉 ∈ Ri, and then SELECT-ing the
appropriate fields.

– Answer: the n tuples with max score for φ (and tj ’s).
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– Score(a ∼ b) = SIM (a, b) for similarity literals.

– Score(φ ∧ ψ) = Score(φ) · Score(ψ).

– Score(φ ∧ ψ) = Score(φ) · Score(ψ).

– Score(φ ∨ ψ) = 1− (1− Score(φ))(1− Score(ψ))

– Score for ri → tj is taken from DB score for tj .

– Final score: Score(φ) · ΠiScore(ri → tj)
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Sample WHIRL queries

Standard ranked retrieval:

“find reviews of sci-fi comedies”.

?- review(Title,Text) ∧ Text∼“sci-fi comedy”
FROM review as r SELECT * WHERE r.text∼“sci-fi comedy”

(score 0.22): θ1 = {Title/~wMIB97,Text/~wR1}
(score 0.19): θ2 = {Title/~wSB ,Text/~wR4}
(score 0.13): θ2 = . . .
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Sample WHIRL queries

Standard DB queries: “find reviews for movies playing in
Mountainside” (assume single-term “movie IDs” in DB)

?- review(Id1,T1,Text) ∧ listing(C,Id2,T2,Time)
∧ Id1∼Id2 ∧ C∼“Sony Mountainside Theater”

FROM review as r,listing as l SELECT *

WHERE r.id=l.id AND l.cinema∼“Sony Mountainside Theater””

(score 1.00): θ1 = {Id1/~v93, Id2/~w93,Text/~wR1, . . .}
(score 1.00): θ2 = . . .

Cinema Id Movie Time

. . . 21 Brassed Off . . .

Sony . . . 93 Men In Black . . .

Id Movie Review

93 Men in Black, 1997 . . .

44 Face/Off, 1997 . . .
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Sample WHIRL queries

Mixed queries: “where is [Men in Black] playing?”

?- review(Id1,T1,Text) ∧ listing(C,Id2,T2,Time)
∧ Id1∼Id2 ∧ Text∼“sci-fi comedy with Will Smith”

FROM review as r,listing as l SELECT *

WHERE r.id=l.id AND r.text∼“sci-fi comedy with Will Smith”

(score 0.22): θ1 = {Id1/~v93, Id2/~w93,Text/~wR1, . . .}
(score 0.13): θ2 = . . .

Cinema Id Movie Time

. . . 21 Brassed Off . . .

Sony . . . 93 Men In Black . . .

Id Movie Review

93 Men in Black, 1997 . . .

44 Face/Off, 1997 . . .
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A realistic situation

Cinema Movie Show Times

Roberts Brassed 7:15 - 9:10

Theaters Off

Chatham

Berkeley Hercules 4:15 - 7:30

Cinema

Sony Men In 7:40 - 8:40 -

Mountainside Black 9:30 - 10:10

Theater

With real Web data, there

will be no common ID fields,

only informal names.

Movie Review

Men in Black, 1997 (∗ ∗ ∗) One of the biggest hits of . . .

Face/Off, 1997 (∗ ∗ 1
2 ) After a slow start, . . .

Space Balls, 1987 (∗ 1
2 ) Not one of Mel Brooks’

best efforts, this spoof . . .
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Sample WHIRL queries

“Similarity” joins: “find reviews of movies currently playing”

?- review(Title1,Text) ∧ listing( ,Title2,Time) ∧ Title1∼Title2
FROM review as r,listing as l SELECT *

WHERE r.title∼l.title

(score 0.97): θ1 = { Title1/~vMIB , Title2/~wMIB97, . . .}
(Men in Black) (Men in Black, 1997)

. . .
(score 0.41): θ2 = { Title1/~vBO, Title2/~wFO, . . .}

(Brassed Off) (Face/Off)

. . .
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How well do similarity joins work?

?- top500(X), hiTech(Y), X∼Y
FROM top500,hiTech SELECT * WHERE top500.name∼hiTech.name

top500:

Abbott Laboratories

Able Telcom Holding Corp.

Access Health, Inc.

Acclaim Entertainment, Inc.

Ace Hardware Corporation

ACS Communications, Inc.

ACT Manufacturing, Inc.

Active Voice Corporation

Adams Media Corporation

Adolph Coors Company

. . .

hiTech:

ACC CORP

ADC TELECOMMUNICATION INC

ADELPHIA COMMUNICATIONS CORP

ADT LTD

ADTRAN INC

AIRTOUCH COMMUNICATIONS

AMATI COMMUNICATIONS CORP

AMERITECH CORP

APERTUS TECHNOLOGIES INC

APPLIED DIGITAL ACCESS INC

APPLIED INNOVATION INC

. . .
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Sample company-name pairings

WHIRL output on business.html
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Evaluating similarity joins

• Input: query

• Output: ordered list of documents

1
√

a1 b1

2
√

a2 b2 Precision at K: GK/K

3 × a3 b3 Recall at K: GK/G

4
√

a4 b4

5
√

a5 b5

6
√

a6 b6

7 × a7 b7

8
√

a8 b8 G: # good pairings

9
√

a9 b9 GK : # good pairings in first K

10 × a10 b10

11 × a11 b11

12
√

a12 b12
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Evaluating similarity joins

• Pick relations p, q with > 2 plausible keys

• Perform “similarity join” using first key field

• Mark a pairing correct (“relevant”) if secondary key matches

• Compute precision and recall over first 1000 rankings

• Examples

– Business: company name, web site

– Animals: common name, scientific name

– etc
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Evaluating similarity joins
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Evaluating WHIRL queries

Additional experiments:

• Repeat with more datasets from more domains.
– Average precision (≈ area under precision-recall curve) ranges from

85% to 100% over 13 joins in 6 domains.

• Repeat for more complex join queries.
– Average precision drops from 94% for 2-way joins to 90% for 5-way

joins (averaged over many queries in one domain).

• Evaluate other things to do with WHIRL.

• How can you implement WHIRL efficiently?
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An efficient implementation

Key ideas for current implementation:

• Central problem: given Q, find best substitution.

– Currently, using A∗ search.

• Search space: partial substitutions.

e.g., for “?- r(X),s(Y),X∼Y”, possible state is {X = ~x}.
• Key operator: when Q contains “~x∼Y”, find good candidate

bindings for Y quickly.

– Use inverted indices.
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An efficient implementation

• Key step: state is a substitution θ, Qθ contains “s(Y),~x∼Y”.
Need to find good candidate bindings for Y quickly.

1. Pick some term t with large weight in ~x.

2. Use inverted index to get

It,s,1 = {~y : s(~y) ∈ DB and yt > 0}

• To compute heuristic value of state, use fact that

score(~x ∼ Y ) ≤ max
~z∈It,s,1

(
∑
t

xt · zt) ≤
∑
t

xt · ( max
~z∈It,s,1

zt)

• Indexing and bounds well-known in IR
(Buckley-Lewitt, Turtle-Flood’s maxscore alg)
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An efficient implementation

• Controlled experiments: for 2-relation soft joins WHIRL is:

– about 20x faster than naive use of inverted indices

– from 4-10x faster than Turtle-Flood’s maxscore

• In practice, for typical queries to two real web-based
integration systems:

– Game domain: 15 sites, 23k+ tuples, avg 0.3sec/query

– Birding domain: 35 sites, 140k+ tuples, avg 0.2sec/query
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The extraction problem

Sometimes it’s difficult to extract even an informal name from its
context:

• Fox Interactive has a fully working demo version of the Simpsons

Cartoon Studio. (Win and Mac)

• Vividus Software has a free 30 day demo of Web Workshop (web

authoring package for kids!) Win 95 and Mac

• Scarlet Tanager (58kB) Piranga olivacea. New Paltz, June 1997.

“...Robin-like but hoarse (suggesting a Robin with a sore throat).”

(Peterson) “..a double-tone which can only be imitated by strongly

humming and whistling at the same time.” (Mathews)
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The extraction problem

Idea: use text without trying to extract names.
?- paragraph(X),name(Y),X∼Y

80.26 Ubi Software has a demo of Amazing

Learning Games with Rayman.

Amazing Learning

Games with Rayman

√

78.25 Interplay has a demo of Mario

Teaches Typing. (PC)

Mario Teaches Typing
√

75.91 Warner Active has a small interactive

demo for Where’s Waldo at the

Circus and Where’s Waldo?

Exploring Geography (Mac and Win)

Where’s Waldo?

Exploring Geography

√

74.94 MacPlay has demos of Marios Game

Gallery and Mario Teaches Typing.

(Mac)

Mario Teaches Typing
√

71.56 Interplay has a demo of Mario

Teaches Typing. (PC)

Mario Teaches Typing 2 ×
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Deduction without extraction
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Deduction without extraction
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Movie 1: full review (no extraction).

Movie 2: movie name, cinema name & address, showtimes.
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More uses of WHIRL: Classification?

review(“Putt-Putt Travels Through Time”, url1).
category(“Putt-Putt’s Fun Pack”, “adventure”).
category(“Time Traveler CD”, “history”).
. . .
“find me reviews of adventure games”
v(Url) ←

review(Game1,Url) ∧ category(Game2,Cat)
∧ Game1∼Game2 ∧ Cat∼“adventure”

To answer this query, WHIRL guesses the class “adventure” based
on similarities between names.
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More uses of WHIRL: Classification

category(Cat) ← test(X) ∧ train(Y,Cat) ∧ X∼Y

• Here train contains a single unclassified example, and test
contains a set of training examples with known categories.
(from Cohen&Hirsh, KDD-98)

• WHIRL here performs a sort of K-NN classification.

1. Find r best bindings for X,Y,Cat

2. Combine evidence using noisy-or:

Score(φ ∧ ψ) = Score(φ) · Score(ψ)
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Using WHIRL for Classification

• Created nine representative datasets using data from Web.

• All instances were short “names”

– book title: inst=“The Humbugs of the World by P. T.
Barnum (page images at MOA)”, class=“General Works”

– company name: inst=“National City Corporation”,
class=“Banks–Midwest”

– Also bird names, Web page titles, . . .

• # classes ranged from 6 to 228, #instances ranged from ≈ 300
to ≈ 3000.
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Benchmark classification problems

problem #train/ #classes/ text-valued field/label

#test #terms

memos 334/10cv 11/1014 document title/category

cdroms 798/10cv 6/1133 CDRom game name/category

birdcom 914/10cv 22/674 common name of bird/phylogenic order

birdsci 914/10cv 22/1738 common+sci name/phylogenic order

hcoarse 1875/600 126/2098 company name/industry (coarse grain)

hfine 1875/600 228/2098 company name/industry (fine grain)

books 3501/1800 63/7019 book title/subject heading

species 3119/1600 6/7231 animal name/phylum

netvet 3596/2000 14/5460 URL title/category
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Using WHIRL for Classification
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Classification with “side information”

Consider classification. . .

• Observation: Performance can often be improved by obtaining
additional features about the entities involved.

• Question: Can performance be improved using weaker “side
information”—like additional features that might or might not
be about the entities involved in the classification task?
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Instance Label

Itzak Perlman BMG classic

Billy Joel RCA pop

Metallica . . . pop

. . . . . . . . .

Guest Artists: Spring 2000

• Apr 9, Itzak Perlman

• May 3, Yo Yo Ma

• May 17, The Guanari Quartet

• . . .

Goal: from the data above, learn

to classify musical artists as classi-

cal vs. popular.

Basic ideas: introduce new features

for artist names that

• appear in certain lists or ta-

bles; (e.g., italicized names in

the ‘Guest Artist’ page)

• are modified by certain words

(e.g., “K∅∅L”)

Biff’s K∅∅L Band Links

• Nine Inch Nails (new!)

• Metallica!! Rockin’ ! Anyone

know where can I find some

MP3s?

• . . .

. . .
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The extraction algorithm

1. From HTML pages, create a table of (possible-name, position)
pairs.

2. Soft-join with instance names to get (instance-name, position)
pairs.

Position is a new feature for the instance.

3. Can also create features from (possible-name, header-word)
pairs.
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html(head(. . . ),
body(

h2(K∅∅L Band Links),
table(

tr(td(Metallica),
td(Nine Inch Nails (new!))),

tr(td(Barry Manilow),
. . .

Instances:
. . .

Metallica

Nine Inch Nails

Itzak Perlman

. . .

(“K∅∅L Band Links”, www.biff.com/html body h1)
(“Metallica”, www.biff.com/html body table tr td)
(“Nine Inch Nails (new!)”, www.biff.com/html body table tr td)
(“Barry Manilow”, www.biff.com/html body table tr td)

soft-join with instances and threshold
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h2(K∅∅L Band Links),
table(

tr(td(Metallica),
td(Nine Inch Nails (new!))),

tr(td(Barry Manilow),
. . .

(instance-name, position)
(“Metallica”, www.biff.com/html body table tr td)
(“Nine Inch Nails”, www.biff.com/html body table tr td)
(“Barry Manilow”, www.biff.com/html body table tr td)
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Features from “header words”

h2(K∅∅L Band Links),
| table(
| tr(td((Metallica)),
| td(Nine Inch Nails (new!))),

. . .
(instance-name, position)
(“Metallica”, www.biff.com/html body table tr td) . . .
(instance-name, header-word)
(“Metallica”, “K00L”)
(“Metallica”, “Band”)
(“Metallica”, “Links”)
. . .
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Benchmark problems

#example #class #terms #pages #features

added

music 1010 20 1600 217 1890

games 791 6 1133 177 1169

birdcom 915 22 674 83 918

birdsci 915 22 1738 83 533

• original data: names as bag-of-words

• music: (Cohen&Fan,WWW00) others: (Cohen&Hirsh,KDD98)

• note: test data must be processed as well (transduction).
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RIPPER: 200 training examples, 100 trials

Average error Improvement

W-L-T text expanded

music 86-0-14 58.3 51.5 11.6%

cdroms 29-7-64 67.2 65.8 2.1%

birdcom 77-2-21 27.7 21.2 23.5%

birdsci 35-8-57 26.4 23.6 10.6%
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Results (with RIPPER)
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Results
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The show so far:

• Motivation: why this is the big problem.

• WHIRL: Data model, query language, efficient implementation

Results & applications:

• Queries without formal identifiers

• Queries that don’t require extraction

• Queries that generalize (Cohen & Hirsh, KDD98)

• Queries that automatically collect background knowledge for
learning (Cohen ML2000, Cohen&Fan WWW2000)

• Comparison of TFIDF metric with other distance metrics for
strings (Cohen, Ravikumar, Fienberg, in progress)
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Other common distance metrics for strings

• Bioinformatics: edit distance metrics like Levenstein,
Needleman-Wunch, Smith-Waterman, . . .

Can cope with misspellled tokens; not sensitive to frequency
statistics (matching “Incorp” ≈ matching “Lucent”).

• Information retrieval: token-based distance metrics like
TFIDF (used in WHIRL), Jaccard, Dice, . . . , statistical
distances based on language modeling, . . .

Generally applied to long documents (prior to WHIRL).

• Probabilistic record linkage: statistical agreement measures
like Fellegi-Sunter; ad hoc string distance metrics like Jaro,
Jaro-Winkler.

Generally used in a hand-constructed statistical model of
matching/non-matching records, not as “hands-off” metrics.
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Evaluation datasets

Name Src #Strings #Tokens

animal Whirl 5709 30,006

bird1 Whirl 377 1,977

bird2 Whirl 982 4,905

bird3 Whirl 38 188

bird4 Whirl 719 4,618

business Whirl 2139 10,526

game Whirl 911 5,060

park Whirl 654 3,425

fodorZagrat Ariadne 863 10,846

ucdFolks Monge-Elkan 90 454

census Winkler 841 5,765
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Evaluation metrics

From IR community:

• 11-pt interpolated average precision, averaged across all
datasets.

• Non-interpolated average precision, on each dataset.

• Maximum F1-measure on each dataset (see paper).
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Edit distance metrics:

• Measure distance between strings s and t as cost of the least
expensive sequence of edit operations that transform s to t.

• Example: to transform “Will Cohon” to “William Cohen”
might use: copy, copy, copy, copy, insert(i), insert(a), insert(m),
copy, copy, copy, copy, replace(o,e), copy.

• Different operations/costs lead to different metrics:

– Levenstein: cost(cpy)=0, cost(ins(x))=1, cost(replace(x, y))=1.

• Minimal cost edit sequence usually can be found with dynamic
programming in time O(|s| · |t|).
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W i l l C o h o n

-------------------------------

W| 0 1 2 3 4 5 6 7 8 9

i| 1 0 1 2 3 4 5 6 7 8

l| 2 1 0 1 2 3 4 5 6 7

l| 3 2 1 0 1 2 3 4 5 6

i| 4 3 2 1 1 2 3 4 5 6

a| 5 4 3 2 2 2 3 4 5 6

m| 6 5 4 3 3 3 3 4 5 6

| 7 6 5 4 3 4 4 4 5 6

C| 8 7 6 5 4 3 4 5 5 6

o| 9 8 7 6 5 4 3 4 5 6

h| 10 9 8 7 6 5 4 3 4 5

e| 11 10 9 8 7 6 5 4 4 5

n| 12 11 10 9 8 7 6 5 5 4

• Insert in s: move east,

pay $1

• Insert in t: move south,

pay $1

• Copy: move southeast,

pay $0

• Replace: move south-

east, pay $1

• Matrix i, j: cheapest

path from northwest

corner to i, j.

• Edit cost: cheapest

path to southeast cor-

ner (4).
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t e d c h e n

n 0 0 0 0 0 0 0 1

e 0 1 0 0 0 0 1 0

d 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

c 0 0 0 0 1 0 0 0

o 0 0 0 0 0 0 0 0

h 0 0 0 0 0 1 0 0

o 0 0 0 0 0 0 0 0

n 1 0 0 0 0 0 0 1

Jaro distance metric

Jaro(s, t) =

1

3
·
(
|s′|
|s| +

|t′|
|t| +

|s′| − Ts′,t′
|s′|

)

• Find matching letters near the main diagonal, then find “common parts”

of s and t: here s′ = t′ =“ed chn”

• Count transpositions in s′ relative to t′: Ts′,t′

• Average fraction of s, t that are “common” with fraction of s′ in the same

order as t′.

• Jaro-Winkler: increase weight for weak matches if first few characters

match well.
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t e d c h e n

n 0 0 0 0 0 0 0 1

e 0 1 0 0 0 0 1 0

d 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

h 0 0 0 0 0 1 0 0

o 0 0 0 0 0 0 0 0

c 0 0 0 0 1 0 0 0

o 0 0 0 0 0 0 0 0

n 1 0 0 0 0 0 0 1

Jaro distance metric

Jaro(s, t) =

1

3
·
(
|s′|
|s| +

|t′|
|t| +

|s′| − Ts′,t′
|s′|

)

• Find matching letters near the main diagonal, then find “common parts”

of s and t: here s′ =“ed hcn”, t′ =“ed chn”

• Count transpositions in s′ relative to t′: Ts′,t′

• Average fraction of s, t that are “common” with fraction of s′ in the same

order as t′.

• Jaro-Winkler: increase weight for weak matches if first few characters

match well.
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Edit-distance and Jaro-based distances
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Monge-Elkan: edit distance with well-tuned costs, affine gaps.
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Token-based distance metrics

• View strings as sets (or bags) of tokens, S and T .

• Jaccard distance: |S∩T ||S∪T | .

• View set S of tokens as a sample from an unknown distribution
PS , and consider differences between PS and PT :

Jensen-Shannon(S, T ) =
1
2

(KL(PS ||Q) +KL(PT ||Q))

where KL(P ||Q) =
∑
x p(x) log p(x)

q(x) , Q = avg(PS , PT ).
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Token-based distance metrics

• Simplified Fellegi-Sunter: estimate log-odds of
P (S, T |s and t match) as

∑

w∈S∩T
log

1
P (w)

−
∑

w∈(S−T )∪(T−S)

−k log
1

P (w)

• TFIDF (WHIRL method): weight w by

log (1+freq of w in string)× log(
#strings

#strings containing w
)

Scale vectors to unit length, then similarity is:
∑

w∈S∩T
weight(w, S) · weight(w, T )
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Token-based distance metrics
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Hybrid distance measures

Assume sets of tokens S, T and a similarity measure for tokens
sim(w, v).

• Monge-Elkan propose a Level two similarity function between
S = {w1, . . . , wK} and T = {v1, . . . , vL}:

Level2(S, T ) =
1
K

K∑

i=1

L
max
j=1

sim(wi, vj)
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Hybrid distance measures

• We propose a “softer” TFIDF measure. Recall:

TFIDF(S, T ) =∑

w∈S∩T
weight(w,S) · weight(w, T )

SoftTFIDF(S, T ) =∑

w∈CLOSE(θ,S,T )

weight(w, S) · weight(w, T ) · c(w, T )
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Hybrid distance measures

• We propose a “softer” TFIDF measure:

SoftTFIDF(S, T ) =∑

w∈CLOSE(θ,S,T )

weight(w, S) · weight(w, T ) · c(w, T )

where

– CLOSE (θ,S ,T ) = {w ∈ S : ∃v ∈ T and sim(w, v) > θ}
(Similar tokens in S and T )

– c(w, T ) = maxv∈T sim(w, v)
(Similarity to closest token in T )

• Will use θ = 0.9, sim=Jaro-Winkler.
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Hybrid distance metrics
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Grand summary of best metrics
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Prospective test: two more datasets

UVA CoraATDV

(Monge-Elkan) (JPRC)

Method MaxF1 AvgPrec MaxF1 AvgPrec

SoftTFIDF 0.89 0.91 0.85 0.914

TFIDF 0.79 0.84 0.84 0.907

SFS 0.71 0.75 0.82 0.864

Level2 J-W 0.73 0.69 0.76 0.804
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Conclusions

• The next step (?) after distributing text world-wide: learn how
to reason with a world-wide knowledge base.

• Integrating structured data from multiple sources is a crucial
problem.

– Object identity issues dominate in many domains.

• WHIRL efficiently propogates uncertainty about object
identity.

• TFIDF distance is fast and surprisingly robust.

• WHIRL data model and query language allow an intermediate
between “document delivery” and “deductive” information
systems.
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Beyond data integration, WHIRL is useful for many other tasks:

• Querying imperfectly extracted data

• Queries that generalize (Cohen & Hirsh, KDD98)

• Automatically collecting features for learning (Cohen, ML2000)

• Queries that suggest extraction rules (Cohen, AAAI99)

• Content-based recommendation (Basu et al, JAIR2001)

• Bootstrapping-based extraction of relations from text
(Agichtein & Gravano, DL2000)

• Extensions for semistructured data (Chinenyanga &
Kushmerick, SIGIR2001)

• Stochastic matrix multiplication for better performance on
conjuctive chain queries (Gravano et al, WWW2003)
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