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ABSTRACT
In an entity classification task, topic or concept hierarchies are often
incomplete. Previous work by Dalvi et al. [12] has showed that in
non-hierarchical semi-supervised classification tasks, the presence
of such unanticipated classes can cause semantic drift for seeded
classes. The Exploratory learning [12] method was proposed to
solve this problem; however it is limited to the flat classification
task. This paper builds such exploratory learning methods for hier-
archical classification tasks.

We experimented with subsets of the NELL [8] ontology and
text, and HTML table datasets derived from the ClueWeb09 corpus.
Our method (OptDAC-ExploreEM) outperforms the existing Ex-
ploratory EM method, and its naive extension (DAC-ExploreEM),
in terms of seed class F1 on average by 10% and 7% respectively.
Categories and Subject Descriptors: I.2.6[Artificial Intelligence]:
Learning - Knowledge acquisition.
Keywords: Semi-supervised Learning; Hierarchical Classification;
Ontology Extension; Concept Discovery.

1. INTRODUCTION
A common way to organize information is by classification into

a concept or topic hierarchy. For example, the Open Directory
Project and the Yahoo! Directory are examples of topic hierarchies
developed to organize pages on the Web, and Wordnet, NELL and
Freebase are examples of large knowledge bases that organize en-
tities into concept hierarchies. However, in an open-domain task,
hierarchies are often incomplete, in the sense that there is mean-
ingful structure in the data not captured by the existing hierarchy.
E.g., consider a hierarchical entity classification task, with class
hierarchy ‘onto-1’ shown in Figure 1 (left). There are 2 types of
locations defined in it: ‘State’ and ‘Country’. However, the unla-
beled data about entities on the Web can include location entities of
type ‘City’, ‘Museum’, etc., that are absent in this ontology, hence
called ‘unanticipated classes’.

Dalvi et al. [12] showed that in a non-hierarchical semi-supervised
classification task, the presence of such unanticipated classes hid-
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den in the unlabeled data can cause semantic drift for seeded classes.
They also proposed an approach to solve this semantic drift prob-
lem by employing exploratory learning. This algorithm is an ex-
tension of the semi-supervised EM algorithm that can create new
classes for datapoints that do not belong to the classes known up-
front. It explores different numbers of classes while learning. In
this paper we first summarize a naive extension of this approach
(DAC-ExploreEM method), that applies exploratory learning in a
top-down divide and conquer (DAC) manner. However, we notice
that DAC-ExploreEM improves over flat ExploreEM in only some
cases. Finally we present an optimized version of it (OptDAC-
ExploreEM method [11]) that gives more significant improvements
over the baseline.

Our proposed OptDAC-ExploreEM method traverses the class
hierarchy in top-down fashion to detect whether and where to add
a new class for the given datapoint. It also uses a systematic opti-
mization strategy to find the best set of labels for a datapoint given
ontological constraints in the form of subset and mutual exclusion
constraints.

We demonstrate OptDAC-ExploreEM’s effectiveness through
extensive experiments on datasets constructed with subsets of the
NELL ontology (shown in Figure 1) and text and semi-structured
HTML table datasets derived from the ClueWeb09 corpus. In par-
ticular, OptDAC-ExploreEM improves seed class F1 on average by
13% when compared to its semi-supervised counterpart (OptDAC).
It also outperforms both previously proposed exploratory learning
approaches FLAT-ExploreEM and DAC-ExploreEM [11] in terms
of seed class F1 on average by 10% and 7% respectively.

Contributions:
Our contributions are as follows:

• We present a method that can do hierarchical semi-
supervised classification in the presence of incomplete class
hierarchies. It enriches existing knowledge base in two ways:
first, by adding new instances to the existing classes; and
second, by discovering new classes and adding them at ap-
propriate places in the ontology. Our earlier work [12] had
proposed similar approach in the context of flat classifica-
tion (or clustering) setting, i.e., no hierarchical constraints
between classes. As opposed to this, the current work does
classification (or clustering) in the presence of class hierar-
chies.

• Our proposed method, named OptDAC-ExploreEM uses di-
vide and conquer style approach to add a new class and
mixed integer programming based optimization to find the
best set of labels for a datapoint given the ontological con-
straints.
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Figure 1: Subsets of NELL [8] ontology used in our hierarchical classification experiments. Some nodes in onto-1 are bold-faced,
they are used as seeded classes in the experiments described in Section 5.

• We demonstrate the effectiveness of our method through
extensive experiments on four hierarchical entity classifica-
tion datasets constructed with subsets of the NELL ontology
(shown in Figure 1) and text, semi-structured HTML table
datasets derived from ClueWeb09 [7].

• To facilitate further research on this topic, we have made the
hierarchical entity classification datasets publicly available 1.

Outline:
Rest of the paper is organized as follows: In Section 2, we define
the problem formally and then present a generic version of the “Hi-
erarchical Exploratory EM” algorithm. Section 3 describes differ-
ent variants of this algorithm. Overview of the datasets is covered
in Section 4 followed by experimental findings in Section 5. We
discuss the related work in Section 6, and conclude in Section 7.

2. OUR APPROACH
Our method is derived from the Exploratory EM algorithm pro-

posed by Dalvi et al. [12]. Exploratory learning takes the same
inputs as traditional Semi-Supervised Learning (SSL) methods, i.e.
a set of classes C1, C2, . . . Ck, a few labeled datapoints Xl and a
large number of unlabeled datapoints Xu. Xl contains a (usually
small) set of “seed” examples of each class, the task is to learn a
model fromXl and use it to label datapoints inXu. Every example
x may be predicted to be in either a known class Ci ∈ C1 . . . Ck,
or a newly discovered class Ci ∈ Ck+1 . . . Cm.

There are two main differences between the Exploratory EM
algorithm (ExploreEM) and standard classification-EM (Semisu-
pEM) approaches to SSL. First, in the E step, each of the unlabeled
datapoint x is either assigned to one of the existing classes, or to
a newly-created class. A new class is introduced when the prob-
abilities of x belonging to existing classes are close to uniform.
This suggests that x is not a good fit to any of the existing classes,
and that adding x to any existing class will lower the total data
likelihood substantially. Second, in the M-step of iteration t, we
choose either the model proposed by ExploreEM method which
1Datasets used in this paper are available to download at http:
//rtw.ml.cmu.edu/wk/WebSets/hierarchical_
ExploratoryLearning_WSDM2016/index.html

might have more classes than the previous iteration t − 1, or the
baseline model with same number of classes as iteration t−1. This
choice is based on whether exploratory model satisfies a model se-
lection criterion in terms of increased data likelihood and model
complexity. This intuition is derived from the Structural EM ap-
proach [14].

As per the experimental results presented in [12], the ExploreEM
method is comparable or better than “Gibbs sampling with Chinese
Restaurant Process (CRP) approach” and does not involve tuning
the concentration parameter for CRP. However, ExploreEM is lim-
ited to flat class hierarchies. In this paper we propose the Hierar-
chical Exploratory EM algorithm which can work with incomplete
class hierarchies and small amount of seed labels.

2.1 Problem Definition
Given a set of class constraints Zk, a small set of labeled data

points Xl, their labels Y l, and a large set of unlabeled data points
Xu; the task is to label data points fromXu, addingm new classes
if needed and extending the class constraints to Zk+m. Here, each
point from Xl can have multiple labels at different levels of the
hierarchy satisfying constraints Zk, and Zk+m defines the class
constraints on k seed and m newly added classes, Zk ⊆ Zk+m
and the labels Y u of Xu satisfy Zk+m. Next let us see different
methods proposed to solve this problem.

2.2 Flat Exploratory EM
One simple way to use ExploreEM algorithm [12] for our pur-

pose will be to run it as it is at each level of hierarchy. Hence-
forth, we refer to this approach as FLAT-ExploreEM and consider
it as a baseline for our proposed Hierarchical Exploratory EM ap-
proach. At each level, it selects one of the existing classes or creates
a new class in case the datapoint doesn’t clearly belong to one of the
known classes. This algorithm does not make explicit use of class
constraints while making class assignments at each step. Hence the
assignments done by this algorithm might not be consistent, since
assignments at level 3 are not influenced by assignment at level 2.

2.3 Hierarchical Exploratory EM
We summarize a generic Hierarchical exploratory learning al-

gorithm that can take a set of class constraints in terms of sub-
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Algorithm 1 Generic Hierarchical Exploratory EM
1: function Hierarchical-ExploreEM (Xl, Y l, Xu, Zk): θk+m,
Zk+m, Y u

2: Input: Xl labeled data points; Y l labels of Xl;
Xu unlabeled data points;
Zk manually input constraints on k seed classes⇐=

3: Output: {θ1, . . . , θk+m} parameters for k seed and m newly added
classes; Y u labels for Xu;
Zk+m Set of class constraints between k +m classes;⇐=
{Initialize classifiers θj for class Cj using seeds provided for Cj}

4: θ01 . . . θ0k = argmaxθL(X
l, Y l)

5: while class assignments AND #classes not converged do
6: kold is #classes before E step. Log-likelihood BaseLL =

logP (X|θ(t)kold , Z
(t)
kold

)

{E step: (Iteration t) Classify each datapoint at each level}
7: for i=1 to |X| do
8: Find P (Cj |Xi) for all classes Cj

{Assign a bit vector of labels for each unlabeled datapoint. A
new class gets created for a datapoint that does not fit into existing
classes.}

9: Y
(t)
i = ConsistentAssignment(P (Cj |Xi), h, Z(t))⇐=

{If a new class is created, then class constraints are updated ac-
cordingly.}

10: Z(t) = UpdateConstraints(Xl, Y l, Xu, Y u, Z(t)) ⇐=
11: end for
12: knew is #classes after E step. Log-likelihood ExploreLL =

logP (X|θ(t)knew
, Z

(t)
knew

)

{M step: Recompute model parameters based on Y (t) }
13: if Model selection criterion(kold, BaseLL, knew , ExploreLL) se-

lects exploratory model then
{Adopt the new model with knew classes}

14: θ
(t+1)
knew

= argmaxθL(X
l, Y l, Xu, Y u(t)|θ(t)knew

, Z
(t)
knew

)

15: Z(t+1) = Z(t)
knew

16: else
{Keep the old model with kold classes}

17: θ
(t+1)
kold

= argmaxθL(X
l, Y l, Xu, Y u(t)|θ(t)kold , Z

(t)
kold

)

18: Z(t+1) = Z(t)
kold

19: end if
20: end while
21: end function

class or mutual exclusion constraints (proposed in our preliminary
work [11]). This algorithm, in each iteration, assigns a bit vector
to each data point with one bit per class. Class constraints decide
whether a bit vector is consistent or not, e.g. if class constraints in-
clude “Car is of type Machine”, then for consistency, when the bit
for “Car” is set, the bit for “Machine” should also be set. Further
new classes can be added during each iteration, hence the length of
these bit vectors changes dynamically and the algorithm maintains
class constraints containing old as well as newly added classes. The
generic Hierarchical Exploratory EM algorithm is described in Al-
gorithm 1. The important differences from the FLAT-ExploreEM
algorithm are marked using ⇐= . There can be multiple ways
to implement functions “ConsistentAssignment” and “UpdateCon-
straints”, which we will discuss below.

Lines 13-19 of Algorithm 1 does model selection. Similar to
Exploratory EM [12], at the end of every E step, we evaluate two
models, one with and one without adding extra classes. These two
models are scored using a model selection criterion like AIC, BIC
or AICc, and the model with best penalized data likelihood score
is selected in each iteration. The extended Akaike information
criterion (AICc) suited best for our experiments since our datasets
have large number of features and small number of data points.

Algorithm 2 MinMax criterion for new class creation
1: function Is Nearly Uniform([P (C1|x) . . . P (Ck|x)]):
2: Input: [P (C1|x) . . . P (Ck|x)]: probability distribution of ex-

isting classes given a data point x
3: Output: decision : true iff new class needs to be created
4: k : current number of classes
5: maxProb = max(P (Cj |x))
6: minProb = min(P (Cj |x))
7: if maxProb/minProb < 2 AND maxProb < 2/k then
8: decision = true
9: else

10: decision = false
11: end if
12: end function

Computing Probability of Classes given a Datapoint (Al-
gorithm 1: Line 8)

This step computes probabilities P (Cj |xi; θj), where θj is the
current estimate of model parameters for class Cj . A variety of
techniques may be used for this estimation, we briefly describe
one such choice here: the seeded version of K-Means, proposed by
Basu and Mooney [3]. In this model P (Cj |x) ∝ P (x|Cj)∗P (Cj),
and we define P (x|Cj) ∝ x · Cj , i.e., the inner product of a vec-
tor representing x and a vector representing the centroid of cluster
j. Specifically, x and Cj both can be represented as L1 normal-
ized feature vectors. The centroid of a new cluster is initialized
using feature counts from x. Since the EM algorithm can be used
for both classification and clustering tasks, we will use the terms
“class” and “cluster” interchangeably.

Modeling Class Constraints
Consider a toy example of ontological class constraints in Figure
2. Here, we can see two kinds of class constraints imposed by the
ontology. Following are example constraints:
(1) The “Subset” constraint between “Fruit” and “Food” categories
suggests that if a datapoint is classified as “Fruit”, then it should
also be classified as “Food”. (2) The “Mutual Exclusion” constraint
between “Food” and “Organization” says if a datapoint is classified
as “Food”, then it should not be classified as “Organization”, and
vice versa.

Let {C1, . . . CK} be the Knowledge Base (KB) categories. Let
Subset_k be the set of all subset or inclusion constraints, and Mu-
tex_k be the set of all mutual exclusion constraints. In other words,
Subset_k = {〈i, k〉 | Ci ⊆ Ck} and Mutex_k = {(i, k) | Ci ∩Ck =
φ}. The class constraints referred to as Zk in Algorithm 1 can be
defined as Zk = {Subset_k, Mutex_k}.

3. VARIANTS OF HIERARCHICAL
EXPLORATORY EM

Hierarchical Exploratory EM (described in Algorithm 1) is a
generic algorithm that can be instantiated in different ways, by
changing the functions “ConsistentAssignment” and “UpdateCon-
straints”. Next we describe two such variants namely, DAC-
ExploreEM and OptDAC-ExploreEM.

3.1 Divide and Conquer (DAC-ExploreEM)
One simple instantiation of Algorithm 1 can be done by using

Divide-and-Conquer (DAC) strategy introduced in [11]. Here we
assume that classes are arranged in a tree hierarchy, and classes at
any one level are mutually exclusive. To do class assignments for
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Figure 2: An example of ontological class constraints.

any unlabeled datapoint, we traverse the class ontology from root
to leaf level. Every data point belongs to the root node. Then at
each level we chose the best label at that level and consider only its
children as candidates at the next level.

Further we check whether the probability distribution among the
candidate classes at each level is nearly uniform (using heuristic
described in Algorithm 2) to decide whether to create a new class
at that level. We do not describe the “ConsistentAssignment” and
“UpdateConstraints” functions formally, however they can be eas-
ily derived by setting parameter q = 1 in the OptDAC-ExploreEM
algorithm that we present next.

Also, note that the example ontologies in Figure 1 have tree
structure. However, in practice, class constraints can be more com-
plicated (e.g., overlapping classes can exist). The DAC-ExploreEM
algorithm is limited to a tree structured ontology and assumes mu-
tual exclusion of classes at any level of hierarchy. Next we present
the OptDAC-ExploreEM algorithm that can work with more com-
plicated class constraints.

3.2 Optimized Divide and Conquer
(OptDAC-ExploreEM)

DAC-ExploreEM can do semi-supervised learning in the pres-
ence of unanticipated classes. However, we will see in the ex-
perimental evaluation (refer to Section 5.2) that DAC-ExploreEM
could provide marginal improvements over the baseline (Ex-
ploreEM). During the error analysis we found that the classifica-
tion at higher levels of hierarchy is not perfect, and once we make
a decision at level i of the ontology, there is no way to change the
decision once we move on to level i + 1. Here we present a softer
version of this method, that keeps track of top-q labels at each level
instead of keeping only the best label.

Algorithm 3 describes how the “ConsistentAssignment” and
“UpdateConstraints” functions are implemented for this approach.
It is similar to DAC-ExploreEM method in the sense that we tra-
verse the classes in top down fashion, and check whether new class
needs to be created at each level of the hierarchy. However, at each
level l of the class hierarchy, a mixed-integer program is run to get
optimal class assignments for the active classes from levels 1 to
l. Further instead of considering only the best classes in previous
levels, the top-q classes from each level are selected to be added
into the set of active classes, which are used in turn to select the
candidate classes at the next level of hierarchy.

This method combines the Divide-and-Conquer strategy to de-
tect/place new classes and the mixed integer programming based
optimization strategy to assign an optimal set of labels to a data-
point given the ontological constraints. The optimal label assign-

ment method is generic enough to support any set of subset and
mutual exclusion class constraints. The new class detection based
on Divide and Conquer can be extended for non-tree hierarchies us-
ing a breadth first search strategy that can be applied to any graph.
Hence the OptDAC-ExploreEM method can be extended easily for
non-tree structured ontologies.

Note that like DAC-ExploreEM, it makes greedy decisions about
new cluster creation. However, it performs overall optimization
of label assignments while satisfying the ontological constraints.
This lets us correct any sub-optimal decisions made by the greedy
heuristic at higher levels of the class hierarchy. Generally as we in-
crease the value of q, we may get some improvement in accuracy at
the cost of increased runtime. Since the value of q directly decides
the size of active nodes set used while taking the decision at each
level of the hierarchy, there is a trade-off between time complexity
and solution optimality. For all the experiments in this paper, we
added the top two classes per level to the set of selected classes (i.e.
q = 2) in Line 21 of Algorithm 3. This approach is referred to as
OptDAC-ExploreEM below.

Optimal Label Assignment given Class Constraints
(Algorithm 3: Line 20)
Let X = {x1, . . . xN} be the datapoints, and {C1, . . . CK} be the
KB categories. Let yji ∈ {0, 1} be an indicator variable spec-
ifying whether xi belongs to Cj . Let θj denote the centroid for
category Cj . Using the model parameters θj for class Cj , we can
estimate P (Cj |xi), the probability of xi belonging to Cj . Given
the category membership probabilities {P (Cj |xi)} estimated in
the E step, this step computes the category membership variables
{yji, ∀ 1 ≤ i ≤ N, 1 ≤ j ≤ K}. We solve a Mixed-Integer
Program (MIP) to estimate yji’s. One such problem is solved for
each datapoint. This MIP takes the scores {P (Cj |xi)}, and class
constraints Zk as input and produces a bit vector of labels yji’s as
output.

maximize
{yji},ζjk,δjk

(∑
j

yji ∗ P(Cj|xi)−
∑

〈i,k〉∈Subset

ζik

−
∑

(i,k)∈Mutex

δik

)
subject to,

yji ≥ yki − ζjk, ∀〈j, k〉 ∈ Subset_k

yji + yki ≤ 1 + δjk, ∀(j, k) ∈ Mutex_k

ζjk, δjk ≥ 0, yji ∈ {0, 1}, ∀j, k

(1)
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Algorithm 3 OptDAC-ExploreEM
1: function ConsistentAssignment-OptDAC (P (Cj |x), Zk}): Yx,
Zk+m

2: Input: P (Cj |x) probability distribution of classes given a datapoint x;
Zk class constraints on k seed classes.

3: Output: label(x) assignment of x to classes satisfying Zk;
Zk+m extended set of class constraints on k +m classes.

4: h is the height of the class ontology.
5: for l = 1 to h do
6: if x has seed label at level l then
7: label(x, levell) = seed label;
8: else
9: candidateC = children of active classes

10: if candidateC is not empty then
11: Let Pcand = probability distribution over candidateC
12: if Is Nearly Uniform (Pcand) (using Algorithm 2) then
13: Create a new class Cnew at level l
14: Initialize parameters for class Cnew using x
15: Set parent(Cnew) = class choice at level l − 1
16: Add Cnew to active classes
17: end if
18: Pactive = probability distribution over active classes
19: Zactive = class constraints between active classes
20: Choose label(x, levell) by computing optimal label assign-

ment considering (Pactive, Zactive) (using Eq. 1)
21: Add top-q classes to the set of active classes using Pactive as

scores
22: end if
23: end if
24: end for
25: end function
26: function UpdateConstraints-OptDAC (X , Y , Zold): Znew
27: Input: X: Dataset; Y : Class assignments for each point in X;

Zold: Old constraints on the existing set of classes.
28: Output: Znew: Updated set of class constraints,
29: Each newly created class is assigned a single parent at the time of cre-

ation
30: Add each parent, child relationship as a constraint in Zk′
31: end function

The MIP formulation for a datapoint xi is presented in Equation
1. For each datapoint, this method tries to maximize the sum of
scores of selected labels, after penalizing for violation of class con-
straints. Let ζjk be the slack variables for Subset_k constraints, and
δjk be the slack variables for Mutex_k constraints. To solve these
mixed integer linear programs we used the MOSEK solver [2].

Such optimization techniques have been shown to be effective
for the task of semi-supervised learning in the presence of multiple
data views and hierarchical class constraints [9, 13]. Here we use
this formulation for the task of hierarchical exploratory learning.

4. DATASETS AND EXPERIMENTAL
METHODOLOGY

In this section we present the experimental results of our Hier-
archical Exploratory EM approach. Figure 1 shows two ontologies
that we used in this paper, each being a subset of NELL’s ontology
at different point in NELL’s development.

4.1 Datasets
Our task includes discovering new classes that are not present in

the input class ontology. To make the evaluation easier, we created
datasets that have ground truth labels for all entities in them, i.e. the
entire class hierarchy is known. However, only part of that hierar-
chy and corresponding training data is given as input to the algo-
rithm. Rest of the classes and corresponding labels are unknown to
the algorithm, and used only during evaluation. Thus we are simu-
lating the scenarios where some classes are known while others are

unanticipated. To achieve this, we derived four datasets using the
two ontologies (shown in Figure 1) and two feature sets extracted
from the ClueWeb09 corpus. The first ontology, named onto-1 in
Figure 1 (left), has 3 levels and 11 classes. The second ontology,
named onto-2 in Figure 1 (right), has 4 levels and 39 classes.

We created our datasets using the two corpora: Text-Patterns
and HTML-Tables, both derived from ClueWeb09 data [7]. Text-
Patterns corpus contains frequency counts of text context patterns
that occurred with each entity w.r.t. text sentences that appeared
in ClueWeb09 dataset. HTML-Tables corpus contains frequency
counts of table columns in which entities occurred, derived from
HTML tables that appeared in ClueWeb09 dataset. E.g. an en-
tity “Pittsburgh” having a Text-Patterns feature, value being (“lives
in _arg1”, 1000) means that the entity “Pittsburgh” appeared in
arg1 position of the context “lives in _arg1” for 1000 times in
the sentences from ClueWeb09 dataset. Similarly, an entity “Pitts-
burgh” having a HTML-Tables feature, value being (“clueweb09-
en0011-94-04::2:1”, 1) means that the entity “Pittsburgh” appeared
once in HTML table 2, column 1 from ClueWeb09 document id
“clueweb09-en0011-94-04”.

To create a dataset from an ontology, we took all entities that
are labeled with at least one of the classes under consideration,
and retrieved their feature representation in terms of occurrences
with text patterns or HTML table columns. Thus we created four
datasets Text-Small to Table-Medium, using combinations of two
ontologies and two corpora. Table 1 describes the statistics about
these four datasets. These datasets are made publicly available 2.

4.2 Methods
We experimented with three different methods for the entity

clustering task: FLAT, DAC, and OptDAC. Each of them have
SemisupEM and ExploreEM variants. The SemisupEM variant
performs semisupervised learning with the seeded classes, whereas
ExploreEM variant can add extra classes discovered from unlabeled
data. SemisupEM and ExploreEM variants of the FLAT method are
the baselines proposed in [12]. DAC and OptDAC methods are new
contributions of this paper.

• FLAT: This method performs flat entity classification at each
level of the class hierarchy. Decisions made at each level are
independent.

• DAC: This is a greedy method for hierarchical classification
described in Section 3.1.

• OptDAC: This is the hierarchical classification method de-
scribed in Section 3.2.

Further we used seeded K-Means algorithm for clustering (as de-
scribed in Section 2.3) and the MinMax criterion [12] for new class
creation (described in Algorithm 2).

4.3 Methodology
For the experiments in this paper, we feed a part of the ontology

(seed classes) to the algorithm and rest of the part (unanticipated
classes) is hidden from the algorithm. SemisupEM variant of each
method learns classifiers only for seed classes. Along with this,
ExploreEM variant of each method can add new classes. To make
the semi-supervised and exploratory variants of each method com-
parable, we use “macro-averaged seed class F1” as the evaluation
metric. It is computed by macro averaging F1 values of seed classes
2Datasets used in this paper can be download from http:
//rtw.ml.cmu.edu/wk/WebSets/hierarchical_
ExploratoryLearning_WSDM2016/index.html
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Dataset Feature Ontology #Classes #Levels #Classes #Entities #Contexts #(Entity, #(Entity,
Type per level context) label)

pairs pairs
Text-Small Text onto-1 11 3 1, 3, 7 2.5K 3.4M 8.8M 7.2K
Text-Medium onto-2 39 4 1, 4, 24, 10 12.9K 6.7M 25.8M 42.2K
Table-Small Tables onto-1 11 3 1, 3, 7 4.3K 0.96M 6.3M 12.2K
Table-Medium onto-2 39 4 1, 4, 24, 10 33.4K 2.2M 21.4M 126.1K

Table 1: Statistics of the hierarchical entity classification datasets used in this paper. Refer to Section 4.1 for more details.

Dataset Level Macro-avg. Seed Class F1
W/o constraints W constraints

FLAT DAC OptDAC
SemisupEM SemisupEM SemisupEM

Text-Small 2 46.6 47.1 52.0
3 23.5 26.1 25.8 M

Text-Medium 2 53.2 53.7 53.3
3 27.9 33.4 N 33.9 N
4 17.4 24.5 26.8 M

Table-Small 2 69.5 74.6 N 74.8 N
3 36.8 38.8 M 38.9 N

Table-Medium 2 62.7 64.8 62.2
3 43.7 46.4 N 48.0 N
4 47.3 57.7 N 57.1 N

Table 2: Comparison of FLAT, DAC, and OptDAC methods in the semi-supervised setting. N (and M) indicates that improvements
of the DAC and OptDAC methods are statistically significant compared to the FLAT method with 0.05 (and 0.1) significance level.
Please refer to Section 5.1 for details.

only. Further, if ExploreEM variant improves the seed class F1 over
SemisupEM variant, it indicates that adding extra classes helped to-
wards keeping the seed classes pure (i.e. reducing semantic drift).

This “macro-averaged seed class F1” metric is further averaged
for 10 runs of each algorithm. Each run’s input consists of different
seed ontologies and randomly sampled 10% of relevant datapoints
as seed examples. The same set of inputs is given to all algorithms
being compared. Note that, for a given dataset with a choice of
of seed classes and training percentage, there are many ways to
generate a train-test partition. We report results using 10 random
train-test partitions of each dataset. The same partitions are used to
run all the algorithms being compared and to compute the statistical
significance of results.

For Text-Small and Table-Small, we generated 10 sets of seed
examples, for the same seed ontology. The chosen seed ontology is
bold-faced in Figure 1 (left). Here seed ontology always contains
the same 7 out of 11 classes. For Text-Medium and Table-Medium,
seed ontology also varies across runs. In each run, we randomly
chose 10 leaf nodes according to their class frequency (i.e. popular
class is more likely to be chosen in each run). After sampling 10
leaf nodes (sampling without replacement), we included all their
ancestors to create the seed ontology for that run. The average on-
tology size generated using this method was 16.7. Table 3 column
2 shows avg. number of seed classes chosen at each level of the
hierarchy. 10% of the datapoints from leaf classes are them ran-
domly sampled, and hierarchical labels of this datapoints are used
as training data for the run.

5. EXPERIMENTAL RESULTS
In this section we will compare semi-supervised and exploratory

variants of FLAT, DAC and OptDAC methods, in order to answer
certain research questions.

5.1 Do ontological constraints help?
Table 2 shows the comparison between semi-supervised versions

of all three methods. The best values in each row (per dataset per
level in the hierarchy) are bold-faced. We can see that for every row,
the best performance was given by a method that uses ontological
constraints while clustering. Hence we can conclude that using
ontological constraints do help.

We also did statistical significance tests with 0.05 (and 0.1) sig-
nificance level denoted by N (and M) in Table 2. Results show
that in 5 out of 10 cases the gains of DAC over FLAT are statisti-
cally significant, whereas OptDAC method proved to be better by
producing statistically significant gains over FLAT in 7 out of 10
cases.

5.2 Is Exploratory learning better than semi-
supervised learning for seed classes?

We present the comparison of Semi-supervised vs. Exploratory
versions of all three methods in Table 3. The best performance in
each row is bold-faced. From Table 3 we can see that, ExploreEM
version of each algorithm improves seed class F1 when compared
to SemisupEM for all three methods in 24/30 cases. Our proposed
approach OptDAC-ExploreEM improves seed class F1 on average
by 13% when compared to its semi-supervised counterpart.

While comparing among the ExploreEM approaches, OptDAC
method independently beats previously proposed FLAT and DAC
methods in 8/10 cases each. Empirically, OptDAC-ExploreEM out-
performs FLAT-ExploreEM and DAC-ExploreEM in terms of seed
class F1 on average by 10% and 7% respectively.

Further we did statistical significance tests for performance im-
provements of DAC-ExploreEM and OptDAC-ExploreEM over
FLAT-ExploreEM, with 0.05 (and 0.1) significance level denoted
by N (and M) in Table 3. It shows that improvements of DAC-
ExploreEM are statistically significant in 2/10 cases, whereas im-
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Dataset #Seed Level Macro-avg. Seed Class F1
/#Ideal FLAT DAC OptDAC
classes SemisupEM ExploreEM SemisupEM ExploreEM SemisupEM ExploreEM

Text-Small 2/3 2 46.6 64.4 47.1 61.8 52.0 62.6
4/7 3 23.5 32.7 26.1 36.3 25.8 42.3 N

Text-Medium 3.9/4 2 53.2 50.2 53.7 47.2 53.3 52.5
9.4/24 3 27.9 27.0 33.4 26.8 33.9 34.9 N
2.4/10 4 17.4 25.8 24.5 29.4 26.8 31.6 N

Table-Small 2/3 2 69.5 75.8 74.6 76.2 74.8 80.0 N
4/7 3 36.8 43.9 38.8 40.9 O 38.9 41.5

Table-Medium 3.9/4 2 62.7 61.3 64.8 65.0 N 62.2 65.0 N
9.4/24 3 43.7 49.1 46.4 48.6 48.0 50.1
2.4/10 4 47.3 52.2 57.7 59.9 N 57.1 58.4 N

Table 3: Comparison of FLAT, DAC, and OptDAC methods using KM representation on Text-Small to Table-Medium. N (and M)
indicates that improvements of the DAC-ExploreEM and OptDAC-ExploreEM methods are statistically significant when compared
to the FLAT-ExploreEM method with 0.05 (and 0.1) significance level. Please refer to Section 5.1 for more details.
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Figure 3: Comparison of OptDAC-ExploreEM method with different training percentage on datasets Text-Small (left) and Table-
Small (right).

provements of OptDAC-ExploreEM are significant in 6/10 cases.
Thus OptDAC-ExploreEM turns out to be the best method being
compared.

Note that the results presented in Table 2 are subset of results
presented in Table 3, however the statistical significance is com-
puted against different baselines. In Table 2, statistical significance
is computed against FLAT SemisupEM method, whereas in Table
3, it is computed against FLAT ExploreEM method, hence repre-
sented in separate tables.

5.3 What is the effect of varying the number
of labeled examples?

We ran OptDAC-ExploreEM method on datasets Text-Small and
Table-Small with different values of training percentage averaged
over 10 random train/test partitions of our data.

In Figure 3, we can see that as the training percentage increases
the performance of OptDAC-ExploreEM method improves. Also
note that as we go down the hierarchy relative improvements are
more larger. For example, there are larger relative improvements at
Level 3 compared to Level 2 of the hierarchy.

5.4 How do the methods compare in terms of
runtime?

Here we compare runtimes of all methods averaged over all the
runs with different seed ontologies and seed training data. In our
MATLAB implementation, the running time of Exploratory EM is
much longer. Table 4 shows that the increase in runtime of Ex-
ploreEM variants compared to their SemisupEM counterparts is by
the factor 3.2 on average across all methods and datasets. Further
the exploratory methods take on average 10.3 times the time of
SemisupEM variant of the FLAT method.

In particular, OptDAC-ExploreEM method is on average twice
as expensive as DAC-ExploreEM. This is due to the fact that
DAC-ExploreEM takes greedy decisions at each level of the
hierarchy, whereas OptDAC-ExploreEM keeps track of the top-q
active nodes. We set q = 2 in these experiments. Thus the value of
q results in a trade-off between improvement in seed class F1 and
increased runtime of the algorithm.

5.5 Evaluation of extended cluster hierarchies
In this section, we present the evaluation of extra clusters added

by our Hierarchical Exploratory EM algorithm to the incomplete
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Avg. runtime in sec. Average run-time in multiple of FLAT-SemisupEM
Dataset FLAT FLAT DAC OptDAC

SemisupEM ExploreEM SemisupEM ExploreEM SemisupEM ExploreEM
Text-Small 53.5 8 1 6 7 17
Table-Small 50.7 3 3 6 10 21
Text-Medium 524.7 5 7 11 11 25
Table-Medium 5932.4 4 6 7 7 10

Table 4: Comparison of average runtimes of all methods. Please refer to Section 5.4 for more details.

Figure 4: An example extended ontology applying our OptDAC-ExploreEM method on the Table-Small dataset. The seeded classes
are bold-faced, whereas the newly added classes are in Blue and are not bold-faced. Please refer to Section 5.5 for details.

class ontology given as input. If it started with k classes, and pro-
duced k+m classes as output, we first need to label these m extra
classes. Since our datasets are completely labeled, each new class
can be assigned a majority label based on entities assigned to that
class and level of the class in the hierarchy. E.g. if the class is at
level 2 in the hierarchy then we choose the best label at level 2 of
the class hierarchy.

Figure 4 shows an example of an extended class hierarchy gen-
erated by OptDAC-ExploreEM algorithm on Table-Small starting
with 7 seed classes from onto-1. The bold-faced nodes are from
seed ontology, and nodes in blue (non bold-faced) are the ones
added by our proposed exploratory learning methods. It is labeled
using the above described majority label approach. (Note that there
are multiple clusters with same label, to differentiate them we have
labeled them as “Food_1”, “Food_2” etc.)

Once this labeling is done, we can measure the precision of la-
bels across (parent, child) links in the cluster hierarchy. E.g. in Fig-
ure 4, parent-child link between (Food_2, Beverage_2) is correct,
however the link between (Location, Beverage) is incorrect. These
links can be classified into seed or extra links based on whether
the child cluster was one of the seed clusters or introduced by the
Hierarchical Exploratory EM algorithm.

Dataset Fraction of %Precision of (parent,
unanticipated child) edges
classes Seed Extra All

Text-Small 0.36 88.3 84.5 85.5
Table-Small 0.36 100.0 90.4 92.4
Text-Medium 0.62 80.7 22.6 46.8
Table-Medium 0.62 95.7 36.1 63.9

Table 5: Precision of child, parent edges created by OptDAC-
ExploreEM. Please refer to Section 5.5 for details.

Table 5 shows the link precision values for OptDAC-ExploreEM
algorithm when run on all four datasets. We can see that for
seed clusters, accuracy numbers are high (81 - 100%) for all four

datasets. In terms extra clusters, for the Text-Small and Table-
Small datasets with smaller ontology (onto-1), and unanticipated
class fraction being low, the precision of edges for extra clusters is
very high in around 85%.

However for the Text-Medium and Table-Medium datasets, with
a medium sized ontology (onto-2), and with higher fraction of
unanticipated classes, the precision for extra clusters is quite low
around 30%. This indicates that the task of detecting new classes
and adding them at right positions in the ontology is a challenging
task, and it gets even more challenging with the complexity and
degree of incompleteness of the input ontology.

Even though the newly created clusters are not perfect, we ob-
served that these hierarchical exploratory learning methods im-
prove seed class F1 on all four entity classification datasets (refer
to Table 3). Thus, these techniques help reduce semantic drift of
seeded classes by filtering out those datapoints that do not belong
to any of the existing classes.

6. RELATED WORK
Here we propose a novel hierarchical SSL method that is robust

when the unlabeled data contains unanticipated classes i.e. classes
other than those present in the class hierarchy given as input. To
the best of our knowledge this specific problem is relatively less
explored, even though in real-world settings, there can be unantic-
ipated (and hence unseeded) classes in any large-scale hierarchical
SSL task.

There has also been some work in unsupervised hierarchical
clustering [17, 23, 5] that can discover cluster/topic hierarchies
given a large unlabeled dataset, however they do not make use of
any supervision that might be available. Exploratory learning dif-
fers in that we learn the number of clusters as well as centroids for
those clusters jointly in a single run of the EM algorithm, while us-
ing the available supervision for seed clusters. Apart from standard
K-Means, our EM framework can also be used with other clus-
tering/classification algorithms like Naive Bayes and von Mises-
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Fisher, and we specifically evaluate the performance difference on
the seeded classes.

There has been a lot of research done in the area of supervised
hierarchical classification [6, 16, 24]. These methods assume that
the class hierarchy is complete and there is enough training data to
learn classifiers for each node in the class hierarchy. On the other
hand we considered the situation where only part of the ontology
is known upfront with very few seed examples for each of the seed
class. Further our method can be easily extended to cases where
class constraints are more complicated than the examples consid-
ered in this chapter, e.g. overlapping classes and mutual exclusion
constraints.

Another related research area is constructing web-scale knowl-
edge bases [8, 1] by doing information extraction from vari-
ous data-sources. NELL internally uses Coupled semi-supervised
learning [8] that takes into account subclass and mutual exclusion
constraints among classes to filter extraction patterns and instances
at the end of each bootstrapping iteration. The ontology (class hi-
erarchy) is not explicitly used in the prediction process. I.e. it does
flat classification with class constraints applied as post-processing
in between two iterations of bootstrapping. Our approach on the
other hand does collective hierarchical classification.

There has also been some work to extend existing ontologies.
Mohamed et al. [19] propose a co-clustering based two step ap-
proach to discover new relations between two already existing
classes in the knowledge base. These new relations are named
using centroid features of the intermediate clusters. This method
is focused on relation discovery between known classes. Snow
et al. [22] discover new WordNet synsets by using evidence from
multiple sources, however their approach is focused on discovering
new isA relations, and not meant for building hierarchical classi-
fiers for the learnt hierarchy. Pal et al. [20] proposed a technique
based on Indian Buffet Process that could learn with existing fea-
ture hierarchies as well as extend them based on structure discov-
ered from unlabeled data. Their method relies only on the contain-
ment relationships and the hierarchies they experimented with are
domain specific e.g. restaurants domain.

Reisinger and Paşca [21] addressed the same problem as ours,
working with the Wordnet hierarchy. Their fixed-structure and
sense selective approaches use the Wordnet hierarchy directly and
annotate existing concepts with generic property fields (attributes).
On the other hand, Nested Chinese Restaurant Process (nCRP) ap-
proach is hierarchical extension of LDA to infer arbitrary fixed-
depth tree structures from data. nCRP generates its own annotated
hierarchy whose concept nodes do not necessarily correspond to
Wordnet concepts. Our method is in the middle of these two ap-
proaches, as it uses the existing class hierarchy with small amount
of training data and extends it dynamically as new clusters of data-
points are discovered.

Another set of techniques focus on completely unsupervised
information extraction and ontology discovery [15, 4, 21, 10].
Though very effective, these approaches are not making use of the
valuable information hidden in the existing knowledge bases. Our
approach is relatively novel in the sense that it is in between semi-
supervised and unsupervised learning, where some part of ontology
is known, and this knowledge is used to discover the missing parts
of the ontology along with populating it with new data instances.

To define the similarity among two entities we use bag of
word features about co-occurrences of text patterns with the noun-
phrases. There can be more effective approaches of document rep-
resentation like the lower dimensional continuous Skip-gram fea-
tures, proposed by Mikolov et al. [18]. Their technique learns

low dimensional vectors that potentially embed semantics of noun-
phrases.
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7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose the Hierarchical Exploratory EM ap-

proach that can take an incomplete class ontology as input, along
with a few seed examples of each class, to populate new instances
of seeded classes and extend the ontology with newly discovered
classes. Experiments with subsets of NELL ontology and and text,
semi-structured HTML table datasets derived from the ClueWeb09
corpus show encouraging results in terms of seed class F1 scores.
We will make our hierarchical entity classification datasets publicly
available to encourage future research in this area.

Our proposed hierarchical exploratory EM method, named
OptDAC-ExploreEM performs better than flat classification and hi-
erarchical semi-supervised EM methods at all levels of hierarchy,
especially as we go further down the hierarchy. Experiments show
that OptDAC-ExploreEM outperforms its semi-supervised variant
on average by 13% in terms of seed class F1 scores. It also outper-
forms both previously proposed exploratory learning approaches
FLAT-ExploreEM and DAC-ExploreEM in terms of seed class F1
on average by 10% and 7% respectively.

In future, we would like to apply our method on datasets with
non-tree structured class hierarchies. We briefly discussed how our
proposed OptDAC-ExploreEM method can be used for this task.
Further, our experiments focused on an information extraction task
of classifying entities into a knowledge base class hierarchy. How-
ever, our techniques can also be applied to other tasks like docu-
ment classification into topic hierarchies on datasets like Reuters,
and classifying images into a class hierarchy for datasets like Ima-
geNet.
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