Bootstrapping Biomedical Ontologies for Scientific Text
using NELL

Dana Movshovitz-Attias
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

dma@cs.cmu.edu

ABSTRACT

We describe an open information extraction system for bio-
medical text based on NELL (the Never-Ending Language
Learner)[6], a system designed for extraction from Web text.
NELL uses a coupled semi-supervised bootstrapping app-
roach to learn new facts from text, given an initial ontology
and a small number of “seeds” for each ontology category. In
contrast to previous applications of NELL, in our task the
initial ontology and seeds are automatically derived from
existing biomedical resources. We show that NELL’s boot-
strapping algorithm is susceptible to ambiguous seeds, which
are frequent in the biomedical domain. To address this prob-
lem, we introduce a method for assessing seed quality, based
on a larger corpus of data derived from the Web. In our
method, seed quality is assessed at each iteration of the
bootstrapping process. Experimental results show signifi-
cant improvements over the original NELL system on two
types of tasks: learning terms from biomedical categories,
and named-entity recognition for biomedical entities using a
learned lexicon.

1. INTRODUCTION

NELL (the Never-Ending Language Learner)[6] is a semi-
supervised learning system, designed for extraction of in-
formation from the Web. The system uses a coupled semi-
supervised bootstrapping approach to learn new facts from
text, given an initial ontology and a small number of “seeds”,
labeled examples for each ontology category. The new facts,
termed beliefs, are stored in a growing structured knowledge
base.

One of the concerns of using data gathered from the Web
is that it comes from various un-authoritative sources, and
may not be reliable. This is especially true when gathering
scientific information. Data that comes from non-experts
may be inaccurate. Sources of facts are not always cited
and it is difficult to verify their integrity. The problem is
amplified when a wrong fact, stated by one source, is re-
peated by others, like a “rumor”. Detecting this type of

William W. Cohen
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

wcohen@cs.cmu.edu

duplicated information is not trivial, especially when the
content is presented in varied forms.

In contrast to Web data, scientific text is quite reliable, as
this is ensured by the peer-review process. The facts in
published papers are written by experts in their field. Not
only that, claims are supported by experimental evaluations
so that authors may convince their peers of the validity of
their findings. Open access scientific archives make this in-
formation available for all, and they are continually updated
with newly published materials. Other sources of public sci-
entific data include databases of experimental results as well
as human-curated structured information. In fact, the pro-
duction rate of publicly available scientific data far exceeds
the ability of researches to “manually” process it, when they
are searching for information. There is a growing need for
automation of this process in a way that combines available
resources.

The biomedical field hence presents a great potential for
text mining applications. An integral part of Life Science
research involves the production and publication of large
collections of data by curators, and as part of a collabo-
rative community effort. Prominent examples include: the
publication of genomic sequence data, for example, by the
Human Genome Project; online collections of the three-
dimensional coordinates of protein structures; and databases
holding data on genes, including descriptions of gene func-
tions, and the pathways in which they are involved (if known).
These are updated by the wide community of researchers in
this field. An important biomedical resource, initiated as a
means of enforcing data standardization, is the varied collec-
tion of ontologies describing biological, chemical and medi-
cal terms. These ontologies are maintained as part of large
scale projects, spanning many years and considerable human
effort, and are therefore heavily used by the research com-
munity. With this wealth of data available through online
tools, databases, ontologies, and literature, the biomedical
field holds many information extraction opportunities.

We describe an open information extraction system adapting
NELL to the biomedical domain, using scientific resources
available from the Web. We present an implementation
of our approach, named BioNELL, which uses three main
sources of information: (1) a public corpus of scientific text,
(2) existing, commonly used biomedical ontologies, and (3)
a corpus of Web documents.



NELL’s ontology, including both categories and seeds, has
been manually designed during the system development.
Redesigning a new ontology for a technical domain is dif-
ficult without non-trivial knowledge of the domain. On-
tology design involves assembling a set of interesting cat-
egories, gathering these categories into a meaningful hier-
archical structure, and providing representative examples
(seeds) for each category. We describe an automatic process
of merging source ontologies into one hierarchical structure
of categories, with seed examples for every category. The
ontologies we use cover a wide range of terms from biology,
chemistry, and medicine, and they potentially allow for an
interesting knowledge base to be acquired.

However, as we will show, NELL’s existing bootstrapping al-
gorithm is highly susceptible to noisy and ambiguous terms.
Such ambiguities are common in biomedical terminology
(some examples can be seen in Table 1), and some ambigu-
ous terms are heavily used in the literature. For example,
in the sentence

“We have cloned an induced white mutation and
characterized the insertion sequence responsible
for the mutant phenotype”

white refers to the name of a gene, or more specifically, a
gene mutation causing a white-eye phenotype in male flies.
Using white in the KB, as an example of a gene, may lead to
learning that green and gray are also genes, and they may
not be. In NELL, ambiguity is limited using coupled semi-
supervised learning[5]: if two categories in the ontology are
declared as mutually exclusive, positive examples of one can
be used as negative examples for the other. Thus, to solve
the problem of the white gene using mutual exclusion, we
would have to include a Color category somewhere in our
ontology, and declare it mutually exclusive with gene names.
It is hard to estimate what additional categories should be
added, and building a “complete” ontology tree is practically
infeasible. It has been shown that biomedical terminology
contains a higher rate of ambiguous terms than ordinary
English words[10], making this problem a limiting factor in
BioNELL.

Recently, NELL has been extended with a method for de-
tecting and compensating for ambiguity — a method which
we use in our experiments. A polysemy resolution compo-
nent has been added that acknowledges that one term, for
example white, may refer to two distinct concepts, say a
color and a gene, that map to different ontology categories,
such as Color and Fly Gene, if such categories are present in
the ontology[22]. By adding a Color category to the ontol-
ogy, this component can identify that white is indeed polyse-
mous. While polysemy resolution is an important ambiguity
resolver in NELL, the question remains, what other overlap-
ping categories could there be for names of genes, diseases or
molecules? Additionally, it is unclear how to avoid the use
of polysemous terms as category seeds, and no method has
been suggested for selecting seeds that are representative of
a single specific category, and can potentially make better
seeds.

To address the problem of ambiguity, we introduce a method

High PMI Seeds Random Seeds

SoxN gypsy insulator section 33 AGI
Hmger PKAc sht 28
hmgcr Drosomycin 3520 Cbs
sine oculis fkh ael LRS
Abd-A decapentaplegic chm M-2
BX-C Sxl1 dip Bob
cycA Kruppel hv TAS
achaete BR-C ripcord cac
Zth-1 zfh-1 shanti disp
MtnA tkv tou CCK
GATAe knirps Buffy zen
FMRFa Dichaete Gap Scm
D-Fos CrebA Mercurio lac
abdA alpha-Adaptin REPO subcosta
dCtBP Abd-B Slam dTCF
huckebein gusA arm Ferritin
dCBP D-raf crybaby mef
Pax-6 doublesex dad Helicase
Goosecoid Ultrabithorax mago Sufu
AbdA FaslI ora Pten
dTCF Dcr-2 pelo vu
abd-A GAGA factor sb domain IT
Tkv Antp sombre TrpRS
naked fushi yolk Debcl
cuticle tarazu protein
Ecdysone kanamycin diazepam  GABAA
receptor resistance binding receptor
inhibitor

Table 1: Two samples of genes of the fruit-fly
D. Melanogaster, taken from the complete dictio-
nary of fly genes. High PMI Seeds are the top 50
terms from the dictionary selected using PMI rank-
ing, and Random Seeds are a random draw of 50
terms. These sets of genes are used as seeds for the
Fly Gene category (described in full in Section 4.3).
Notice that the random set contains many terms
that are not distinct gene names including dad, and
Bob. Using these as category seeds can lead the sys-
tem to learn unwanted beliefs. In contrast, the PMI
seeds exhibit much less ambiguity.

for assessing the desirability of noun phrases to be used as
seeds for a specific target category. We propose ranking
seeds using a Pointwise Mutual Information (PMI) -based
collocation measure of a seed and a category name. Col-
location is measured based on a large corpus of domain-
independent data derived from the Web, accounting for uses
of the seed in many different contexts. Category names in
BioNELL are well-defined by the underlying ontologies and
so is their hierarchical relationship. We leverage this fact
and rank each seed against a lineage of categories leading to
it in the ontology structure. In other words, a Fly Gene is
also a Gene and a Molecule, and this information is available
through the relationship of these categories in our elaborate
ontology.

NELL’s bootstrapping algorithm uses the morphological and
semantic features of seeds to propose new beliefs, which are
added to the knowledge base, and used as seeds in the next
bootstrapping iteration to learn more beliefs. This means



that ambiguous terms may be introduced to the system at
any learning iteration. White really is a name of a gene, and
it may very well be used in the same context as other genes
that have more “traditional” names (such as, Helicase, SoxN
or dTCF). An extraction system that is based on semantic
context would be right in suggesting that white be added as
a gene in the knowledge base, although it is more frequently
used to name a color. To resolve this problem, we propose
using seed quality measures in a Rank-and-Learn bootstrap-
ping methodology. After every bootstrapping iteration, we
rank all the beliefs that have been added to the knowledge
base by their quality as potential category seeds. Only high-
ranking beliefs are added to the collection of seeds that are
used in the next bootstrapping iteration. Low-ranking be-
liefs are stored in the knowledge base and “remembered” as
true facts, but they are not used for learning new informa-
tion. This is in contrast to NELL’s approach, in which there
is no distinction between acquired facts, and facts that are
used for learning.

The rest of this paper is organized as follows. In Section 2
we review related work, including a short review of the rea-
sons for the high rate of ambiguity in biomedical terminol-
ogy. Next, in Section 3, we present our implementation of
BioNELL. We describe the data and ontologies that have
been used, and give a background description on NELL’s
bootstrapping algorithm. We also describe the extension
of BioNELL using a seed quality collocation measure, and
the way in which it is incorporated in the Rank-and-Learn
methodology. An experimental evaluation of the system is
given in Section 4, including demonstrated use-cases. We
conclude that using ranking during bootstrapping signifi-
cantly reduces ambiguity when learning biomedical concepts
(Section 5).

2. RELATED WORK

Biomedical Information Extraction. Biomedical infor-
mation extraction systems have traditionally targeted recog-
nition of few distinct biological entities[29], with most fo-
cusing mainly on genes and proteins[23, 9, 28, 8]. Few sys-
tems (such as the ones described in [33], [15], and more
recently [30]) have been developed for fact-extraction of a
larger set of biomedical predicates, and these are relatively
small scale[33], or they account for limited biomedical sub-
domains[15] or corpora concerning specific species[30]. We
suggest a more general approach, using bootstrapping to
extend existing biomedical ontologies, which does not limit
possible corpora or predicate selection. The current imple-
mentation of BioNELL includes over 100 categories. To the
best of our knowledge, large-scale biomedical bootstrapping
has not been done before.

Bootstrap Learning and Semantic Drift. Carlson et
al. use a coupled semi-supervised bootstrap learning ap-
proach in NELLI[6] to learn a large set of category classi-
fiers with high precision. One drawback of using iterative
bootstrapping is the sensitivity of this method to the set
of initial seeds[25]. An ambiguous set of seeds can lead
to the problem of “semantic drift”, accumulation of erro-
neous terms and contexts when learning a semantic class[13].
Strict bootstrapping environments reduce this problem by
adding boundaries and limitation to the learning process,
including learning mutual terms and contexts[26] and using

mutual exclusion and negative class examples[13]. Biological
terminology, and especially gene names, have been shown to
exhibit greater ambiguity than English words[10], suggest-
ing that more aggressive restrictions are necessary in this
context to prevent semantic drift. In BioNELL, the initial
seeds given to the bootstrapping system are taken from bi-
ological, chemical and medical ontologies, that exhibit this
high ambiguity. By refining the automatically derived set of
initial seeds, we can remove ambiguous terms and minimize
semantic drift.

Seed Set Refinement. Vyas et al. suggest a method for
reducing ambiguity in seeds provided by human experts[31],
by selecting the K tightest clusters based on context sim-
ilarity, for a pre-selected K. The method is described for
groups in the order of 10 seeds. In a large ontology contain-
ing hundreds of potential seeds per class, it is unclear how
to estimate the correct number of clusters to choose from.
Another interesting approach is suggested by Kozareva et
al.[20] using only constrained contexts where both seed and
class are present in the sentence. Extending this idea, we
consider a more general collocation metric, looking at entire
documents including both the seed and its category. Ac-
cording to this metric we rank the initial set of seeds and all
learned beliefs, and we use the rank as a measure for their
suitability to be used as seeds in later bootstrapping rounds.

‘Word Collocation. Various collocation measures are used
in the context of information extraction, including pointwise
mutual information (PMI)[12], the t-test[11], and binomial
log-likelihood ratio test (BLRT)[16]. A review of the bene-
fits and short-coming of several collocation methods can be
found in [1]. We elaborate on the limitations of using BLRT
for seed refinement in Section 3.4.3.

Sources of Ambiguity in Biomedical Terminology. It
has been shown that biomedical terminology suffers from
a higher level of ambiguity than what is found in ordinary
English words, with even greater ambiguity found in gene
names[10]. This problem is manifested in two main forms.
The first is the use of short-form names, lacking mean-
ingful morphological structure, including abbreviations of
three or less letters as well as isolated numbers. The sec-
ond is ambiguous and polysemous terms used to describe
names of genes, organisms, and biological systems and pro-
cesses. For examples, peanut is used as both the name of
a plant and a gene, and many gene names are often shared
across species. What’s more, with a limited possible num-
ber of three-English-letter abbreviations, and an estimate of
around 35,000 human genes alone, newly introduced abbre-
viations are bound to overlap existing ones. Krallinger et
al. provide an in-depth review of the applications of infor-
mation extraction to biology, and discuss the characteristics
of this domain-specific terminology in greater detail[21].

3. IMPLEMENTATION

We have implemented BioNELL based on the system de-
sign and bootstrapping approach of NELL. In this section
we include a short background description of NELL’s boot-
strapping algorithm (more details on NELL’s implementa-
tion are presented in [6]). We then describe the data used to
build BioNELL, including the text corpus and base ontolo-
gies. We describe an automatic process for merging these



into one ontology with seed examples for every category.
Finally, we define a metric for seed ranking using a PMI col-
location measure, and present how this ranking is used in
BioNELL in a Rank-and-Learn bootstrapping methodology.
We also describe an alternative collocation measure, which
we used as a baseline to PMI.

3.1 NELL’s Bootstrapping System

NELL’s bootstrapping algorithm is initiated with an input
ontology structure and seeds, labeled examples for every on-
tology category. These are used to populate a knowledge
base of learned facts, termed beliefs. Three underlying sub-
components operate to suggest candidate facts to the knowl-
edge base. One component extracts free text from the corpus
using semantic patterns[7]. The second builds Web queries
using currently known facts from the knowledge base, and
mines the results for new candidate beliefs[32]. The final
component classifies noun phrases according to their mor-
phological attributes. At every iteration, each component
proposes new candidate facts, specifying the supporting ev-
idence for each candidate. Finally, all proposed candidates
are examined, and the ones with the most strongly sup-
ported evidence are promoted to the status of beliefs, and
added to the knowledge base. With this process, the KB
of beliefs grows with every iteration. This process and all
system sub-components are described in greater detail by
Carlson et al.[6] and Wang and Cohen[32].

At every learning stage, all the beliefs in NELL’s knowledge
base are used as seeds in the next iteration of learning. This
makes the system susceptible to noisy and ambiguous beliefs.
As a general approach, ambiguity in NELL is avoided by
using mutual exclusion between ontology categories. Beliefs
from one category are then used as negative examples for
a mutually exclusive category. The use of mutual exclusion
relationships in NELL is explained in greater detail in [6].

At present, the Web version of NELL has accumulated a
knowledge base of 986K asserted beliefs of 266 categories
and 199 relations.

3.2 Text Corpora

We used a corpus of 200K full-text biomedical articles taken
from the PubMed Central Open Access Subset (extracted in
October 2010)*, which were processed using the OpenNLP
package?. This is the main BioNELL corpus and it is used
by the bootstrapping algorithm to extract beliefs that are
added to the knowledge base.

BioNELL’s seed-quality collocation measure (described in
Section 3.4) is based on a domain-independent Web corpus,
the English portion of the ClueWeb09 data set[4], which
includes 500 million web documents.

3.3 Ontology

BioNELL’s ontology includes terms from six base ontolo-
gies, covering a wide range of terms from biology, chem-
istry, and medicine: the Gene Ontology (GO)[2], describ-
ing genes and gene product attributes; NCBI Taxonomy for

"http:/ /www.ncbi.nlm.nih.gov/pme/
http://opennlp.sourceforge.net

model organisms[27]; Chemical Entities of Biological Inter-
est (ChEBI)[14], a dictionary of molecular entities and small
chemical compounds; the Sequence Ontology (SO)[17] for
describing biological sequences; the Cell Type Ontology[3];
and the Human Disease Ontology[24].

We used an automatic process for merging the base ontolo-
gies into one ontology tree, as follows (also see illustration in
Figure 1). First, we group the six ontologies under one hier-
archical structure, producing an ontology tree of over 1 mil-
lion entities, including 856K terms and an additional 154K
synonyms. We then separate these into potential categories
and potential seeds for the ontology categories. Categories
are terms that are unambiguous (have a single parent in the
ontology tree), for which we have many potential examples
(at least 100 descendants in the sub-tree of the term). This
results in 4188 potential categories. In the experiments of
this paper we selected only the top (most general) 20 poten-
tial categories in the tree of each base ontology. We are left
with 109 final categories, as some base ontologies had less
than 20 potential categories under these restrictions. In the
final ontology tree, only leaf categories are assigned seeds,
and these are extended using the learning process. Potential
seeds are taken from the remaining terms and all synonyms,
around 1 million entities, from the full tree. Each populated
category is assigned the potential seeds from the sub-tree of
the term representing the category. Seed set refinement is
described in Section 3.4.

The ontologies we have chosen are mutually exclusive with
respect to the domains they cover. For this reason, cat-
egories from each base ontology are declared as mutually
exclusive with the categories of every other base ontology.
Within each base ontology, categories are mostly not mutu-
ally exclusive, with the exception of the top three categories
of GO: Biological Process, Cellular Component, and Molec-
ular Function. These three categories are treated as base
ontologies for the purpose of mutual exclusion.

3.4 Extending BioNELL with

Rank-and-Learn Bootstrapping

For each category in the BioNELL ontology we have at least
a hundred potential seeds, derived from a base ontology def-
inition. Many of these seeds are used ambiguously in the
biomedical literature. Using them as initial examples to
ontology categories, and using NELL’s bootstrapping algo-
rithm to expand that ontology, results in a fast growing set
of facts that are irrelevant to the category being learned (as
is demonstrated in our evaluations below). We wish to define
a method for assessing seed quality, based on a large corpus
of data derived from the Web. Seeds are ranked according
to their “quality”, and this ranking is used in a Rank-and-
Learn bootstrapping process, where only high-ranking seeds
are incorporated in any further learning iterations. Below
we use the term seeds, not only with reference to initial la-
beled examples for a category, but also to learned beliefs
that are used for learning and expanding a category at any
of the bootstrapping steps.

3.4.1 PMI Collocation with the Category Name
We consider a category’s semantic class as the set of docu-
ments that contain a mention of that category. We assess the
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Figure 1: Illustration of the building process of BioNELL’s ontology tree: (A) Six base ontologies are grouped
under one root. Then, the terms in the trees of each base ontology (triangles) are divided into a set of cat-
egories and seeds; (B) In the final ontology, only leaf categories (dashed rectangles) are populated by the
bootstrapping algorithm. The seeds for each category are taken from the sub-tree of the term represent-
ing that category (triangles) in the full tree of 1 million terms (the final sub-tree of the category Cellular

Component is shown).

quality of seeds by their direct connection to the semantic
class, as measured by their collocation with the class name.
We avoid selecting ambiguous seed by penalizing those which
are frequent in the entire data, relative to their frequency in
the constrained set of documents belonging to the class.

Let s and ¢ be a seed and a target category, respectively. For
example, we can take s = “white”, the name of a gene of the
fruit-fly, and ¢ = “fly gene”. Now, let D be a document cor-
pus (Section 3.2 describes the corpus used for ranking), and
let D, be a subset of the documents containing a mention of
the category name. We measure the collocation of the seed
and the category by the number of times s appears in D.,
|Occur(s, Dc)|. The overall occurrence of s in the corpus is
given by |Occur(s, D)|. Following the formulation of Church
and Hanks[12], we compute the PMI-rank of s and c as

|Occur (s, Dc)|

PMI =7
(5,0) |Occur(s, D)|

(1)

Since this measure is used to compare seeds of the same
category, we omit the log from the original formulation. In
our example, as “white” is a highly ambiguous gene name,
we find that it appears in many documents that do not dis-
cuss the fruit fly, resulting in a PMI rank close to 0. This
intuitive and simple-to-calculate measure captures an im-
portant relationship between the category and seed and our
experiments show that using it alleviates many ambiguities.

Categories in BioNELL’s ontology are part of a hierarchical
structure. We leverage this structure to extend seed ranks
by measuring the collocation of seeds with their three recent
ancestors in the ontology tree. In other words, a Fly Gene is
also a Gene, and this fact is captured in the ontology struc-
ture by the fact that the Fly Gene category is a descendant
of the Gene category. We combine these ranks, placing an
emphasis on collocation with the immediate ancestor, the
category, by

combined-PMI(s, c) = (2)
A1 - PMI(s,¢) +
A2 - PMI(s, A(c)) +
As - PMI(s, A(A(c)))

where A(z) denotes the ancestor of = in the ontology struc-
ture, \;1 = %, and A2, A3 = i. For categories with only
a single ancestor the PMI ranks are averaged (effectively,
A2 = 3 and the third term is not used), and in the case
of a category with no ancestors, only PMI(s, ¢) is used. In
the following evaluations we use the combined-PMI rank for

seeds and categories.

3.4.2 Rank-and-Learn Bootstrapping

We incorporate PMI ranking into BioNELL using a Rank-
and-Learn bootstrapping methodology. After every boot-
strapping iteration, we rank all the beliefs that have been
added to the knowledge base. Only high-ranking beliefs
are added to the collection of seeds that are used in the
next iteration. Beliefs with low PMI rank are stored in the
knowledge base and “remembered” as true facts, but they
are not used for learning any new information. Using this
methodology, the bootstrapping system is initialized with an
unambiguous set of category examples, and no further am-
biguous examples are added to it at any point. The learning
sub-components of the system can then use a “clean” set of
examples from which they infer meaningful morphological
patterns and semantic context representative of the cate-
gory. We consider a high-ranking belief to be one with PMI
rank higher than 0.25, which means it has a high colloca-
tion rank with at least one of its early ancestors, or moderate
collocation with the category itself.

3.4.3 Alternative Ranking Models Based on

Binomial Log-Likelihood Ratio Test (BLRT)

We used the binomial log-likelihood ratio test (BLRT)[16]
as an alternative collocation measure. We use it to compare
the occurrence of a seed, s in two sets of documents, D. and
D (as defined above). The idea behind BLRT is to compare
the ratio of occurrence of a word in two text corpora, while
assuming an underlying binomial distribution of words. Two
possible hypotheses are considered: (1) the two ratios are
drawn from different distributions, and (2) from the same
distribution.



The BLRT rank for a seed s is given by

L(p1, k1,n1)L(p2, k2, n2) 3)
L(p7 khnl)L(pa k27n2)

where k1 = |Occur(s, D.)|, k2 = |Occur(s, D)|, n1 = |D¢|,

— 7 — kithks
ney =|D|, pi = £, p= 22 and

BLRT(s,c) = 2log

L(p,k,n) =p* (1 —p)" " (4)

The main drawback of using this approach is the symme-
try in considering the two random variables being tested.
Seeds that are highly frequent in the general corpus but
not in the category corpus (i.e., with p2 >> p1) get a high
score, simply because the ratios are very different. In view-
ing this rank as a measure of relevance of a seed to a category,
we can assume that such seeds would make for undesirable
bootstrapping examples. To address this, we also consider
a modified-BLRT rank where a seed with higher occurrence
ratio in the general corpus (p2 > p1) gets rank 0.

4. EXPERIMENTAL EVALUATION

We start this section with suggestions of possible use-cases of
BioNELL as a knowledge source for two types of information
extraction tasks: (1) extending a lexicon for a biomedical
category, and (2) named-entity recognition for biomedical
entities using a learned lexicon. These tasks are described
in order to motivate our evaluation of the system. Next, we
describe the experimental settings and evaluation process.
Finally, we evaluate the system’s performance over the two
described tasks. Through these evaluations we give a quali-
tative measure of the benefits of using PMI seed ranking as
well as Rank-and-Learn bootstrapping.

4.1 Use-Cases for BioNELL

BioNELL was designed to populate a KB of biomedical cat-
egories with facts. The process begins with a partial lexi-
con (the seeds) for each pre-defined concept (the categories).
With every iteration, the lexicon of each concept is extended
as new beliefs are being introduced by the bootstrapping al-
gorithm. At the end of every iteration, BioNELL contains a
lexicon that has been learned for every biomedical concept
in the ontology.

A given lexicon for a concept can be used to recognize this
concept in free text, for example, using a simple strategy
of matching words in the text with terms from the lexicon.
Lexicons learned using BioNELL can be used for this task
when no complete lexicons are available for a concept. In
fact, in our evaluation we show that, for some biomedical
concepts, it is better to use an incomplete learned lexicon
than a complete one.

4.2 Experimental Settings
4.2.1 Configurations of the Algorithm

In our experiments, we ran BioNELL using the following
configurations of the algorithm (described below and sum-
marized in Table 2), all using the biomedical corpus and the
ontology described in Sections 3.2 and 3.3. The system ran
for 50 iterations under all configurations, in order to evaluate
the long term effects of ranking on the knowledge base.

Under each system configuration we distinguish a test cate-
gory for which we assess the quality of the beliefs predicted
by the system, comparing it against a Gold Standard dictio-
nary (data for these is described in Section 4.2.3). The set of
seeds used to initialize the test category as well as the boot-
strapping algorithm used for expansion are described below.
The rest of the categories are initialized with a random set
of seeds and expanded with the baseline bootstrapping algo-
rithm of NELL. This testing methodology allows to evaluate
the effect of ranking on one category in isolation of the rest
of the ontology.

To expand the test category we used one of two bootstrap-
ping methods: (1) BioNELL’s Rank-and-Learn bootstrap-
ping (described in Section 3.4.2), and (2) NELL’s bootstrap-
ping algorithm (see Section 3.1 and [6] for more details). In
each of those configurations, we used one of two possible
sets of 50 initial seeds: (1) the top 50 seeds using PMI rank-
ing with the category name, and (2) a random set of seeds
taken from the category’s potential seeds. As a baseline
to the PMI ranking model, we used two additional configu-
rations using BioNELL’s bootstrapping methodology where
PMI ranks were replaced with BLRT and modified-BLRT
ranks (described in Section 3.4.3). Table 2 contains a suc-
cinct summary of all configurations.

Learning System Bootstrapping Initial Seeds

Configuration Algorithm

BioNELL Rank-and-Learn PMI top 50
with PMI

BioNELL+Random Rank-and-Learn Random 50
with PMI

NELL NELL’s algorithm  PMI top 50

NELL-+Random NELL’s algorithm Random 50

BioNELL+BLRT Rank-and-Learn BLRT top 50
with BLRT

BioNELL+mBLRT Rank-and-Learn mBLRT top 50
with mBLRT

Table 2: Learning system configurations used in

the evaluation, including the main configuration
BioNELL, and five baseline configurations used for
testing the ranking and bootstrapping approach
used in the main configuration.

4.2.2  Evaluation Methodology

Using BioNELL we can learn lexicons, collections of terms,
for categories in the ontology. The lezicon is the collection of
instance names that were learned for a category after using
the system.

One approach for evaluating a set of learned lexicons, the
knowledge base, is to select some set of beliefs from the
knowledge base and assess their correctness[6]. This is a
relatively easy task when data is extracted for general cate-
gories like City or Sports Team. For example, it is easy to
say that the statement “London is a City” is correct. This
task becomes more difficult when assessing domain-specific
facts such as “Beryllium is an S-block molecular entity” (in
fact, it is). We cannot, for example, use the help of Mechan-
ical Turk for this task, as most people are not necessarily
familiar with the details of the periodic table. This leads
to a possible alternative evaluation approach, asking an ex-



pert. On top of being a costly and slow approach, the range
of topics covered by BioNELL is large and any single expert
is not likely be able to assess all of them.

We thus evaluated lexicons learned by BioNELL by com-
paring them to available semantic resources. For example,
lexicons of gene names for certain species are available, and
the Freebase database[18], an open repository holding data
for millions of entities, includes several biomedical concepts.
For most biomedical categories, however, complete lexicons
are scarce. We evaluated three categories from our ontology
for which we found corresponding dictionaries in Freebase,
and we extended the ontology with an additional category,
evaluated with data from the BioCreative challenge.

4.2.3 Data Sets

To estimate BioNELL’s ability in learning lexicons of bio-
medical categories, we compared the final lexicons learned
after 50 iterations, to category dictionaries, lists of terms
for a concept taken from the following sources, which we
consider as a “Gold Standard”.

We used three lexicons of biomedical categories taken from
the Freebase database[18]: Disease (9420 terms), Chemical
Compound (9225 terms), and Drug (3896 terms).

To evaluate gene names we used data from the BioCre-
ative Challenge[19], an evaluation competition focused on
annotations of genes and gene products. The data includes
a complete dictionary of genes of the fruit-fly, Drosophila
Melanogaster. The dictionary specifies a list of gene iden-
tifiers, including the common name for each gene and all
possible alternative forms of the gene name, a total of 7151
terms.

We used additional data from BioCreative for performing
a named-entity recognition task using BioNELL’s lexicons.
The data includes a set of 108 scientific abstracts, manually
annotated by BioCreative with gene identifiers for genes of
the fruit-fly that are discussed in the text. The abstracts
may contain the common gene name or any of the alternative
forms.

4.3 Extending Lexicons of Biomedical
Categories

4.3.1 Recovering a Closed Category Lexicon

We used BioNELL to learn the lexicon of a closed category,
representing the genes of the fruit-fly, D. Melanogaster, a
long-established “model organism”; used to study genetics
and developmental biology. We added this category to the
ontology as a descendant of an existing category Gene. As
potential seeds to this new category we used the full dictio-
nary of gene names, taken from BioCreative.

Two samples of genes from the full dictionary of fruit-fly
genes are shown in Table 1: High PMI Seeds are the top
50 dictionary terms selected using PMI ranking, and Ran-
dom Seeds are a random draw of 50 terms. Notice that the
random set contains many seeds that are not distinct gene
names including dad, and Bob. In contrast, the PMI seeds
exhibit much less ambiguity. We used BioNELL to learn
lexicons of genes using the system configurations described

Learning System Precision Lexicon Size

BioNELL 83 132
BioNELL~+Random 73 338
NELL 38 1049
NELL+Random 29 651
BioNELL+BLRT 40 430
BioNELL+mBLRT 45 348

Table 3: Precision and lexicon size of lexicons of
fly genes, learned using BioNELL, and compared
against the full dictionary.
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Figure 2: Precision of gene lexicons over bootstrap-
ping iterations.
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Figure 3: Size of gene lexicons over bootstrapping
iterations.

in Section 4.2.1 (also see Table 2), with the seed sets shown
in Table 1. We measured precision and recall of the lexicons
learned from each learning system against the full dictionary
of genes. Table 3 summarizes the comparison results.

Using the Rank-and-Learn methodology, seed refinement us-
ing PMI ranking at every learning iteration, significantly im-



Learning System Precision Lexicon Size
Chemical Drug Disease Chemical Drug Disease
Compound Compound
BioNELL 66 52 43 96 972 624
NELL 15 40 37 449 1300 782

Table 4: Precision and lexicon size of lexicons of three open categories, Chemical Compound, Drug, and

Disease, learned with BioNELL and NELL.

proved the precision of the learned lexicons, whether starting
with ranked initial seeds (an increase from 38% to 83%), or
random seeds (an increase from 29% to 73%). PMI ranking
also had a positive effect when considering the initial set of
seed: when Rank-and-Learn bootstrapping was used, rank-
ing the initial seeds lead to an increase of 10% in precision
(from 73% to 83%), and when NELL’s bootstrapping was
used, there was an increase of 9% (from 29% to 38%). Using
PMI for ranking proves more successful then using the al-
ternative ranking models, BLRT (with 40% precision versus
83% for PMI), and modified-BLRT (with 45% precision).

Despite running for 50 iterations, all the lexicons that have
been learned cover a very small portion of the full set of
genes (under 6% recall), suggesting either that, (1) more
learning iterations are required, (2) the biomedical corpus
we use is too small and does not contain documents with
mentions of all the genes in the dictionary, or (3) some other
limitations exist that prevent the learning algorithm from
finding additional class examples.

Lexicons learned using BioNELL’s methodology show per-
sistently high precision throughout learning iterations, even
when the process was initiated using random initial seeds
(Figure 2). Since BioNELL’s bootstrapping methodology
is highly restrictive, it affects the size of the learned lex-
icon as well (Figure 3). Notice, however, that while the
BioNELL+mBLRT learning system has learned a lexicon
similar in size to the BioNELL+Random configuration (the
final lexicons include 348 and 338 terms, respectively), the
precision of BioNELL+Random (73%), which uses PMI for
ranking, is significantly higher than that of the mBLRT al-
ternative (45%).

4.3.2 Extending Lexicons of Open Categories

We evaluated learned lexicons for three open categories,
Chemical Compound, Drug, and Disease, using dictionar-
ies from Freebase. Since these categories are open — new
drugs are being developed every year, new diseases are dis-
covered and named, and varied chemical compounds can be
created — the Freebase dictionaries are not likely to cover
the “complete” current knowledge of these categories. For
our evaluation, however, we considered them to be complete.

Two types of system configurations were used to extend lex-
icons for these categories, both starting with PMI-ranked
initial seeds. While recall is similar when using both sys-
tems (1% for Chemical Compound, 13% for Drug, and 3%
for Disease, for both systems), precision is higher for all
three categories when ranking is added to the bootstrap-
ping process (BioNELL configuration, Table 4). Similar to
the case of learning a closed lexicon, the additional restric-

Lexicon Precision Recall
Complete Dictionary 9 68
Filtered Dictionary 15 63
BioNELL 920 8
BioNELL+Random 3 2
NELL 19 13
NELL+Random 2 4
BioNELL+BLRT 6 10
BioNELL+mBLRT 7 12

Table 5: Named-entity recognition using a complete
lexicon, a manually-filtered version of the complete
lexicon, and lexicons learned using BioNELL.

tions of the Rank-and-Learn methodology result in smaller
sized learned lexicons for open categories as well.

4.4 Named-Entity Recognition using a

Learned Lexicon

We evaluated the use of lexicons learned with BioNELL for
the task of recognizing concepts in free text, using a simple
strategy of matching words in the text with terms from the
lexicon. We show that when recognizing gene names, us-
ing a “filtered” dictionary, like the one that is learned with
BioNELL, is better than using the complete dictionary of
genes. The evaluation is based on text abstracts annotated
with gene identifiers of genes of the fruit-fly that are men-
tioned in the text (see Section 4.2.3 for more details on the
BioCreative data).

Given a lexicon, we implemented an annotator for predict-
ing what genes are discussed in text. A gene is predicted
to be mentioned in the text if a term from the lexicon ap-
pears in the text, and the term is the gene name, or one
of the alternative name forms for that gene. For each ab-
stract, we aggregate the set of gene identifiers of all genes
predicted to be mentioned in it. We evaluate annotators,
by measuring the precision and recall of the predicted set of
gene identifiers, compared with the labeled annotations for
each text. We report the average precision and recall over
all text abstracts on which we predicted an annotator.

Many gene names are shared among multiple genes. For
example, the various mutants of the Antennapedia gene are
all referred to by the gene common name, or by an alterna-
tive name that describes the specific mutation. A mention
of Antennapedia in the text may refer to any of the mutant
forms or the wild-type gene. In our precision measurement
for all annotators, we consider a prediction of a gene identi-



fier as “true” if it is labeled as such by BioCreative, or if it
shares a synonym name form with another true labeled gene
identifier.

First, we evaluated an annotator over the complete fly-genes
dictionary, and a manually-filtered version of that dictio-
nary (filtering procedure is described below). Next, we eval-
uated annotators on lexicons learned using BioNELL (see
Section 4.2 and Table 2 for description of learning system
configurations). Table 5 summarizes the performance of all
the evaluated annotators, and the results are discussed in
detail in the following text.

4.4.1 Using a Complete Dictionary

One approach to this task is to use the full dictionary of gene
names as a lexicon. Names that appear in the text in the
same format that is included in the dictionary would all be
recovered (resulting in high recall for the annotator). How-
ever, the full dictionary of fruit-fly genes contains ambigu-
ous alternative name forms, including single letter abbrevi-
ations, isolated numbers and polysemous gene names such
as: Clueless, Homeless and Balloon. These are occasionally
used to refer to genes, but mostly they are used in different
semantic context. As a result, using the full dictionary for
this task we get an annotator with very low precision, 9%
(Table 5).

Note that using the full dictionary results in recall of only
68%. This is due mainly to some inaccuracies in the anno-
tation data. The text paragraphs in our data are abstracts
of articles concerning the fruit fly. In some cases the labeled
annotations of an abstract include gene identifiers of genes
that are not directly mentioned in the abstract, but rather
in the full text of the article, which is not available to us.

4.4.2 Using a Manually-Filtered Dictionary

Another possible approach is to remove likely-to-be-ambi-
guous terms from the full dictionary of gene names using
simple filtering rules. This can eliminate some of the noisy
predictions, while not handling polysemous terms that are
not easy to recognize without specific domain knowledge.
We filtered the full dictionary by removing terms, includ-
ing terms that are composed only of numbers and other
non-alphabetical characters, and one- and two-letter name
abbreviations. The final filtered dictionary contains 6301
terms. Using an annotator over the filtered dictionary, pre-
cision has nearly doubled (15%) without much compromise
to recall (63%, Table 5). However, the overall precision is
still low, leading to the conclusion that many false predic-
tions are still due to polysemy in gene names.

4.4.3 Learning a Lexicon Using BioNELL

We used BioNELL to automatically learn lexicons of fly
genes, and evaluated annotators on the learned lexicons.
The lexicon learned using the full BioNELL approach, in-
cluding PMI ranking at every iteration, generates highly
accurate predictions, with 90% precision, which is signifi-
cantly higher than the precision of all other lexicons, includ-
ing those based on the complete and filtered dictionaries
(Table 5). The number of true predictions is low for all
learned lexicons (under 13% recall). This could potentially
improve with more learning iterations.

S. CONCLUSIONS

We have proposed a methodology for an open information
extraction system for biomedical scientific text, using an au-
tomatically derived ontology of categories and seeds. Our
implementation of this system is based on a constrained
bootstrapping approach where seeds are ranked at every it-
eration.

The benefits of using continuous seed ranking have been
demonstrated, showing a significant decrease in ambiguity
in learned lexicons for the evaluated biomedical concepts.
Using BioNELL we see an increase of 51% over NELL, in the
precision of a learned lexicon of chemical compounds, and
an increase of 45% on a category of gene names. BioNELL’s
gene lexicon substantially outperforms all alternative lexi-
cons, when used for an entity recognition task (with 90%
precision). The results are promising, though it is currently
difficult to provide a similar quantitative evaluation for a
wider range of concepts.

Many interesting improvements could be made in the current
settings, including, a ranking methodology that leverages
the current state of the KB, a model for distinguishing well-
known from novel facts, and discovery of relations between
ontology categories.
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