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CHAPTER 1

A Flexible Learning System for Wrapping Tables and Lists in
HTML Documents

William W. Cohen
Matthew Hurst
Lee S. Jensen

no fixed abode

A program that makes an existing website look like a database is called a
wrapper . Wrapper learning is the problem of learning website wrappers
from examples. We present a wrapper-learning system called WL2 that
can exploit several different representations of a document. Examples of
such different representations include DOM-level and token-level repre-
sentations, as well as two-dimensional geometric views of the rendered
page (for tabular data) and representations of the visual appearance of
text as it will be rendered. Additionally, the learning system is modular,
and can be easily adapted to new domains and tasks. The learning sys-
tem described is part of an “industrial-strength” wrapper management
system that is in active use at WhizBang Labs. Controlled experiments
show that the learner has broader coverage and a faster learning rate
than earlier wrapper-learning systems.

1. Introduction

Many websites contain large quantities of highly structured, database-like
information. It is often useful to be able to access these websites program-
matically, as if they were true databases. A program that accesses an exist-
ing website and makes that website act like a database is called a wrapper .
Wrapper learning is the problem of learning website wrappers from exam-
ples 16,22.

In this paper we will discuss some of the more important represen-
tational issues for wrapper learners, focusing on the specific problem of
extracting text from web pages. We argue that pure DOM- or token-based
representations of web pages are inadequate for the purpose of learning
wrappers.

1
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We then propose a learning system that can exploit multiple document
representations. Additionally, this learning system is extensible: it can be
easily “tuned” to a new domain by adding new learning components. In
more detail, the system includes a single general-purpose “master learning
algorithm” and a varying number of smaller, special-purpose “builders”,
each of which can exploit a different view of a document. Implemented
builders make use of DOM-level and token-level views of a document; views
that take more direct advantage of visual characteristics of rendered text,
like font size and font type; and views that exploit a high-level geometric
analysis of tabular information. Experiments show that the learning sys-
tem achieves excellent results on real-world wrapping tasks, as well as on
artificial wrapping tasks previously considered by the research community.

Check out this K00L Stuff!!!
“Actresses”
Lucy Lawless images links
Angelina Jolie images links
. . . . . . . . . . . .
“Singers”
Madonna images links
Brittany Spears images links
. . . . . . . . . . . .

Last modified: 11/1/01.

Fig. 1. A difficult page to wrap.

2. Issues in Wrapper Learning

One important challenge faced in wrapper learning is picking the repre-
sentation for documents that is most suitable for learning. Most previous
wrapper learning systems represent a document as a linear sequence of to-
kens or characters 22,3. Another possible scheme is to represent documents
as trees, for instance using the document-object model (DOM). This rep-
resentation is used by a handful of wrapper learning systems 7,6 and many
wrapper programming languages (e.g, 27).

Unfortunately, both of these representations are imperfect. In a web-
site, regularities are most reliably observed in the view of the information
seen by human readers–that is, in the rendered document. Since the ren-
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dering is a two-dimensional image, neither a linear representation or a tree
representation can encode it adequately.

One case in which this representational mismatch is important is the
case of complex HTML tables. Consider the sample table of Figure 1. Sup-
pose we wish to extract the third column of Figure 1. This set of items
cannot easily be described at the DOM or token level: for instance, the
best DOM-level description is probably “td nodes such that the sum of
the column width of all left-sibling td nodes is 2, where column width is
defined by the colspan attribute if it is present, and is defined to be one
otherwise.” Extracting the data items in the first column is also complex,
since one must eliminate the “cut-in” table cells (those labeled “Actresses”
and “Singers”) from that column. Again, cut-in table cells have a complex,
difficult-to-learn description at the DOM level (“td nodes such that no
right-sibling td node contains visible text”).

Rendered page: HTML implementation 1:

My Favorite Musical Artists

• Muddy Waters
• John Hammond
• Ry Cooder
• . . .

Last modified: 11/1/01.

〈h3〉My Favorite Musical Artists〈/h3〉
〈ul〉
〈li〉〈i〉〈b〉Muddy Waters〈/b〉〈/i〉
〈li〉〈i〉〈b〉John Hammond〈/b〉〈/i〉
〈li〉〈i〉〈b〉Ry Cooder〈/b〉〈/i〉
〈li〉. . .
〈/ul〉
〈p〉
Last modified: 11/1/01

HTML implementation 2:
〈h3〉My Favorite Musical Artists〈/h3〉
〈ul〉
〈li〉〈i〉〈b〉Muddy Waters〈/b〉〈/i〉
〈li〉〈b〉〈i〉John Hammond〈/i〉〈/b〉
〈li〉〈i〉〈b〉Ry Cooder〈/b〉〈/i〉
〈li〉. . .
〈/ul〉
〈p〉
Last modified: 11/1/01

Fig. 2. A rendered page, with two HTML implementations. The second implementa-
tion exhibits irregularity at the DOM level, even though the rendering has a regular
appearance.

Another problemmatic case is illustrated by Figure 2. Here a rendering
of a web page is shown, along with two possible HTML representations. In



September 19, 2003 9:19 WSPC/Trim Size: 9in x 6in for Review Volume ws-chj

4 Cohen et al

the first case, the HTML is very regular, and hence the artist names to be
extracted can be described quite easily and concisely. In the second case,
the underlying HTML is irregular, even though it has the same appear-
ance when rendered. (Specifically, the author alternated between using the
markup sequences 〈i〉〈b〉foo〈/b〉〈/i〉 and 〈b〉〈i〉bar〈/i〉〈/b〉 in constructing
italicized boldfaced text.) This sort of irregularity is unusual in pages that
are created by database scripts; however, it is quite common in pages that
are created or edited manually.

In summary, one would like to be able to to concisely express concepts
like “all items in the second column of a table” or “all italicized boldfaced
strings”. However, while these concepts can be easily described in terms of
the rendered page, they may be hard to express in terms of a DOM- or
token-level representation.

3. An Extensible Wrapper Learning System

3.1. Architecture of the Learning System

The remarks above are not intended to suggest that DOM and token repre-
sentations are bad—in fact they are often quite good. We claim simply that
neither is sufficient to successfully model all wrappers concisely. In view of
this, we argue that an ideal wrapper-learning system will be able to exploit
several different representations of a document—or more precisely, several
different views of a single highly expressive baseline representation.

In this paper we will describe such a learning system, called the
WhizBang Labs Wrapper Learner (WL2). The basic idea in WL2 is to ex-
press the bias of the learning system as an ordered set of “builders”. Each
“builder” is associated with a certain restricted language L. However, the
builder for L is not a learning algorithm for L. Instead, to facilitate imple-
mentation of new “builders”, a separate master learning algorithm handles
most of the real work of learning, and builders need support only a small
number of operations on L. Builders can also be constructed by composing
other builders in certain ways. For instance, two builders for languages L1

and L2 can be combined to obtain builders for the language (L1 ◦ L2), or
the language (L1 ∧ L2).

We will describe builders for several token-based, DOM-based, and hy-
brid representations, as well as for representations based on properties of the
expected rendering of a document. Specifically, we will describe builders for
representations based on the expected formatting properties of text nodes
(font, color, and so on), as well as representations based on the expected
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geometric layout of tables in HTML.
We finally note that an extendible learner has other advantages. One

especially difficult type of learning problem is illustrated by the example
page of Figure 3, where the task is to extract “office locations”. Only two
examples are available, and there are clearly many generalizations of these,
such as: “extract all list items”, “extract all list items starting with the letter
P”, etc. However, not all generalizations are equally useful. For instance, if
a new office in “Mountain View, CA” were added to the web page, some
generalizations would extract it, and some would not.

In order to obtain the most desirable of the many possible generaliza-
tions of the limited training data, most previous wrapper-learning systems
have been carefully crafted for the task. Another advantage of an extensi-
ble learning architecture is that it allows a wrapper-learning system to be
tuned in a principled way.

3.2. A Generic Representation for Structured Documents

We will begin with a general scheme for describing subsections of a docu-
ment, and then define languages based on restricted views of this general
scheme.

We assume that structured documents are represented with the docu-
ment object model (DOM). (For pedagogical reasons we simplify this model
slightly in our presentation.) A DOM tree is an ordered tree, where each
node is either an element node or a text node. An element node has an
ordered list of zero or more child nodes, and contains a string-valued tag
(such as table, h1, or li) and also zero more string-valued attributes (such
as href or src). A text node is normally defined to contain a single text
string , and to have no children. To simplify the presentation, however, we
will assume that a text node containing a string s of length k will have k

WheezeBong.com: Contact
info

Currently we have offices in two
locations:

• Pittsburgh, PA
• Provo, UT

Fig. 3. A sample web page. Notice that only two examples of “location” exist.
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body

ul

li li

a

p

"Provo, UT""Pittsburgh,PA"

"Currently we..."

h2

a

"WheezeBong.com: ..."

Fig. 4. A sample DOM tree

“character node” children, one for each character in s.
Items to be extracted from a DOM tree are represented as spans. A

span consists of two span boundaries, a right boundary and a left bound-
ary . Conceptually, a boundary corresponds to a position in the structured
document. We define a span boundary to be a pair (n,k), where n is a node
and k is an integer. A span boundary points to a spot between the k-th
and the (k+ 1)-th child of n. For example, if n1 is the rightmost text node
in Figure 4, then (n1, 0) is before the first character of the word “Provo”,
and (n1, 5) is after the last character of the word “Provo”. The span with
left boundary (n1, 0) and right boundary (n1, 5) corresponds to the text
“Provo”.

As another example, if n2 is the leftmost li node in Figure 4, then
the span from (n2, 0) to (n2, 1) contains the text “Pittsburgh, PA”. It also
corresponds to a single DOM node, namely, the leftmost anchor (a) node
in the DOM tree. A span that corresponds to a single DOM node is called
a node span.

3.3. A Generic Representation for Extractors

A predicate pi(s1, s2) is a binary relation on spans. To execute a predicate pi
on span s1 means to compute the set EXECUTE (pi, s1) = {s2 : pi(s1, s2)}.
For example, consider a predicate p(s1, s2) which is defined to be true iff
(a) s1 contains s2, and (b) s2 is a node span corresponding to an element
node with tag li. Let s1 be a span encompassing the entire document of
Figure 4. Then EXECUTE (p, s1) contains two spans, each corresponding
to an li node in the DOM tree, one containing the text “Pittsburgh, PA”,
and one containing the text “Provo, UT”.

We will assume here that every predicate is one-to-many and that mem-
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bership in a predicate can be efficiently decided (i.e., given two spans s1 and
s2, one can easily test if p(s1, s2) is true.) We also assume that predicates
are executable—i.e., that EXECUTE (p, s) can be efficiently computed for
any initial span s. The extraction routines learned by our wrapper induc-
tion system are represented as executable predicates. Since predicates are
simply sets, it is possible to combine predicates by Boolean operations like
conjunction or disjunction; similarly, one can naturally say that predicate
pi is “more general than” predicate pj .

We note that these semantics can be used for many commonly used
extraction languages, such as regular expressions and XPath queries.a Many
of the predicates learned by the system are stored as equivalent regular
expressions or XPath queries.

3.4. Representing Training Data

A wrapper induction system is typically trained by having a user identify
items that should be extracted from a page. Since it is inconvenient to label
all of a large page, a user should have the option of labeling some initial
section of a page. To generate negative data, it is assumed that the user
completely labeled the page or an initial section of it.

A training set T for our system thus consists of a set of triples
(Outer1,Scope1, InnerSet1), (Outer2,Scope2, InnerSet2), . . . , where in each
pair Outer i is usually a span corresponding to a web page, Scopei is the
part of Outer i that the user has completely labeled, and InnerSet i is the
set of all spans that should be extracted from Outer i.

Constructing positive data from a training set is trivial. The positive
examples are simply all pairs {(Outer i, Inner ij) : Inner ij ∈ InnerSet i}.
When it is convenient we will think of T as this set of pairs.

While it is not immediately evident how negative data can be con-
structed, notice that any hypothesized predicate p can be tested for con-
sistency with a training set T by simply executing it on each outer span
in the training set. The spans in the set InnerSet i−EXECUTE (p,Outer i)
are false negative predictions for p, and the false positive predictions for p
are spans s in the set

{s ∈ EXECUTE (p,Outer i)− InnerSet i : contains(Scope, s)} (1)

aXPath is a widely-used declarative language for addressing nodes in an XML (or
XHTML) document4.



September 19, 2003 9:19 WSPC/Trim Size: 9in x 6in for Review Volume ws-chj

8 Cohen et al

3.5. Designing a Bias

The bias of the learning system is represented by an ordered list of builders.
Each builder BL corresponds to a certain restricted extraction languageb

L. To give two simple examples, consider these restricted languages:

• Lbracket is defined as follows. Each concept c ∈ Lbracket is defined
by a pair (`, r), where ` and r are strings. Each pair corresponds
to a predicate p`,r(s1, s2), which is true iff s2 is contained in s1;
the string corresponding to s2 is preceded by the string `; and the
string corresponding to s2 is followed by the string r.
For example, executing the predicate pin,locations on the span for
the document of Figure 3 would produce a single span containing
the text “two”. Lbracket is one example of a language based on
viewing the document as a sequence of tokens.
• Ltagpath is defined as follows. Each concept c ∈ Ltagpath is defined

by a sequence of strings, t1, . . . , tk, and corresponds to a predicate
pt1,...,tk . The predicate pt1,...,tk(s1, s2) is true iff s2 is a node span
contained in s1; the tag of the node n2 corresponding to s2 is tk;
and for 1 ≤ j ≤ k − 1, the tag of the j-th ancestor of n2 is tk−j .
For example, executing the predicate pul,li,a on the span for the
document of Figure 3 would produce the two spans “Pittsburgh,
PA” and “Provo, UT”. Ltagpath is an example of a language based
viewing the document as a DOM.

Each builder BL must implement two operations. A builder must be
able to compute the least general generalization (LGG) of a training set
T with respect to L—i.e., the most specific concept c ∈ L that covers all
positive training examples in T . Given an LGG concept c and a training
set T , a builder must also be able to refine c with respect to T—i.e., to
compute a set of concepts c′1, . . . , c

′
m such that each c′k covers some but not

all of the positive examples (Outer i, Inner ij) ∈ T .
Below we will write these operations as LGGB(T ) and REFINEB(c, T ).

We will also assume that there is a special “top predicate”, written “true”,
which is always true (and hence is not executable.)

Other builders will be described below, in Sections 4.1, 4.2, and 4.3.

bMore precisely, we will use L to denote both a set of predicates, and a notation for
describing this set of predicates.
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3.6. The Master Learning Algorithm

The master learning algorithm used in WL2 is shown in Figure 5. It takes
two inputs: a training set T , and an ordered list of builders. The algo-
rithm is based on FOIL 24,26 and learns a DNF expression, the primitive
elements of which are predicates. As in FOIL, the outer loop of the learn-
ing algorithm (the learnPredicate function) is a set-covering algorithm,
which repeatedly learns a single “rule” p (actually a conjunction of builder-
produced predicates) that covers some positive data from the training set,
and then removes the data covered by p. The result of learnPredicate is
the disjunction of these “rules”.

The inner loop (the learnConjunction function) first evaluates all LGG
predicates constructed by the builders. If any LGG is consistent with the
data, then that LGG is returned. If more than one LGG is consistent, then
the LGG produced by the earliest builder is returned. If no LGG is consis-
tent, the “best” one is chosen as a the first condition in a “rule”. Executing
this “best” predicate yields a set of spans, some of which marked as pos-
itive in T , and some of which are negative. From this point the learning
process is quite conventional: the rule is specialized by greedily conjoining
builder-produced predicates together. The predicate choices made in the
inner loop are guided by the same information-gain metric used in FOIL.

There are several differences between this learning algorithm and FOIL.
One important difference is the initial computation of LGG ’s using each of
the builders. In many cases some builder’s LGG is consistent, so often the
learning process is quite fast. Builders are also used to generate primitive
predicates in the learnConjunction function, instead of instead of testing
all possible primitive predicates as FOIL does. This is useful since there are
some languages that are difficult to learn using FOIL’s top-down approach.
Extensive use of the LGG operation also tends to make learned rules fairly
specific. This is advantageous in wrapper-learning since when a site changes
format, it is usually the case that old rules will simply fail to extract any
data; this simplifies the process of “regression testing” for wrappers 15.

Another difference is that WL2 uses the ordering of the builders to
prioritize the primitive predicates. Predicates generated by earlier builders
are preferred to later ones, if their information gains are equal. Notice that
because there are very few positive examples, there are many ties in the
information-gain metric.

A final difference is the way in which negative data is generated. In our
algorithm, negative data is generated after the first predicate of a “rule” is
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chosen, by executing the chosen predicate and comparing the results to the
training set. After this generation phase, subsequent hypothesis predicates
can be tested by simply matching them against positive and negative exam-
ple pairs—a process which is usually much more efficient than execution.

3.7. Discussion and Related Work

A number of recent extraction systems work by generating and classifying
candidate spans (e.g., 9,10). Using LGG predicates to generate negative data
is an variant of this approach: essentially, one LGG predicate is selected
as a candidate span generator, and subsequent predicates are used to filter
these candidates.

Certain other extraction systems cast extraction as an automata induc-
tion problem 11,3. As noted above, this sort of approach requires a com-
mitment to one particular sequential view of the document—as a sequence
of tokens. The approach taken here is somewhat more flexible, in that the
document can be viewed (by different builders) as a DOM tree or as a token
sequence.

Many of the ideas used in this learning system are adapted from work
in inductive logic programming (ILP) 20,8. In particular, the approach of
defining bias via a set of builders is reminiscent of earlier ILP work in declar-
ative bias 5,1. The hybrid top-down/bottom-up learning algorithm is also
broadly similar to some earlier ILP systems like CHILL 30. The approach
taken here avoids the computational complexities involved in ILP, while
keeping much of the expressive power. We also believe that this approach
to defining a learning system’s bias is easier to integrate into a production
environment than an approach based on a purely declarative bias language.

4. Additional Builders

4.1. Composite Builders

The builders described above are examples of primitive builders. It is also
possible to construct new builders by combining other builders. In fact, one
reason for using the only the REFINE and LGG operations in builders is
that LGG and REFINE can often be defined compositionally.

One useful composite builder is a chain builder . Given two builders BL1

and BL2 , a chain builder learns (roughly) the composition of L1 and L2.
For efficiency reasons we implemented a slightly restricted form of

builder composition. A chain builder is a composite builder based on two
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builders and a user-provided decomposition function fd. Intuitively, the de-
composition function takes as an argument the span s2 to be extracted and
returns an intermediate span s′: i.e., fd(s2) = s′. The chain builder will
learn concepts p of the form

p ≡ {(s1, s2) : p1(s1, fd(s2)) ∧ p2(fd(s2), s2)} (2)

where p1 is in the language associated with B1 and p2 is in the language
associated with B2.

Given the decomposition function fd, it is straightforward to define the
necessary operations for a chain builder B1◦2,fd for two builders B1 and B2.

• LGGB1◦2,fd
(T ) is computed as follows. The first step is to use fd

to decompose the training set into two training sets, one for p1 and
one for p2. Each pair Outer i, Inner ij ∈ T will be replaced by a pair
(Outer i, fd(Inner ij)) in T1 and a pair (fd(Inner ij), Inner ij) in T2.
Given these training sets, one can next use B1 and B2 to compute
the LGG for the composition. Let p1 = LGGB1(T1) and p2 =
LGGB2(T2). Then LGGB1◦2,f2 (T1) is p(s1, s2), where the set p is
simply the set defined in Eq. 2.
• Let p = (p1 ◦ p2)fd denote the “composition” of p1 and
p2 as defined in Eq 2, and let T1, T2 be as above. Then
REFINEB1◦2,fd

((p1 ◦ p2)fd , T ) = R1 ∪ R2 where R1 = {(p1 ◦
p′2)fd : p′2 ∈ REFINEB2(p2, T2)} and R2 = {(p′1 ◦ p2)fd : p′1 ∈
REFINEB1(p1, T1)}

Less formally, refinements of the composition (p1 ◦ p2)fd are formed by
refining either step of the chain (e.g., p1 or p2).

Another combination is conjunction. Given builders BL1 and BL2 , it is
straightforward to define a builder BL1∧L2 for the language of predicates
of the form p1 ∧ p2 such that p1 ∈ L1 and p2 ∈ L2.

Another useful composite builder is a filtered builder . A filtered builder
Bq,L extends a builder BL with an arbitrary training set query q, and is
defined as follows, where c∅ is a special null concept.

LGGBq,L(T ) =
{

LGGBL(T ) if q(T )
c∅ otherwise

REFINEBq,L(c, T ) =
{

REFINEBL(c, T ) if q(T )
∅ otherwise

Informally, a filtered builder is “switched off” whenever the predicate q is
not satisfied. Filtered builders can be used to introduce additional control
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information, for example, by restricting some builders to be run only on
certain types of extraction tasks, or only on certain very large (or very
small) training sets.

The following examples help illustrate how composite builders might be
used.

Example 1. Let fcontainer
d (s2) return the span corresponding to the

smallest DOM node that contains s2. Chaining together BLtagpath and
BLbracket using the decomposition function fcontainer

d is a new and more
expressive extraction language. For instance, let the strings ` and r repre-
sent left and right parentheses, respectively. For the page of Figure 6, the
composite predicate pul,li ◦ p`,r would extract the locations from the job
descriptions. Notice that p`,r alone would also pick out the area code “888”.

Example 2. Let fpredecessor
d (s2) return the first “small” text node pre-

ceding s2 (for some appropriate definition of “small”), and let Lbow be
a language of bag-of-words classifiers for DOM nodes. For example, Lbow

might include concepts like pjob,title(s1, s2) ≡ “s1 contains s2 and s2 con-
tains the words ‘job’ and ‘title’.” Let Ldist contain classifiers that test the
distance in the DOM tree between the nodes corresponding to s1 and s2.
For example, Ldist might include concepts like p1≤d≤3(s1, s2) ≡ “there are
between 1 and 3 nodes between s1 and s2 (in a postfix traversal of the
tree)”.

Chaining together BLbow and BLdist∧Ltagpath using the decomposition
function fpredecessor

d would lead to a builder that learns concepts such as
the following p(s1, s2):

p(s1, s2) ≡ s′ is the first text node preceding s2 that contains three
or fewer words; s′ contains the words “To” and “apply”; s2 is be-
tween 1 and 4 nodes after s′, and s2 is reached from a1 by a tagpath
ending in table, tr, td.

For the sample page in Figure 6,. this predicate might pick out the table
cell containing the text: “Send c.v. via e-mail. . . ”.

4.2. Format-based Extraction

Figure 2 illustrates an important problem with DOM-based representations:
while regularity in the DOM implies a regular appearance in the rendered
document, regular documents may have very irregular DOM structures.
In the figure, the markup sequences 〈i〉〈b〉foo〈/b〉〈/i〉 and 〈b〉〈i〉foo〈/i〉〈/b〉
both produce italicized boldfaced text, but have different token- and DOM-
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level representations. Alternating between them will lead to a document
that is regular in appearance but irregular in structure. Our experience is
that this sort of problem is quite common in small-to-medium sized web
sites, where much of the content is hand-built or hand-edited.

Our solution to this problem is to construct builders that rely more
directly on the appearance of rendered text. We achieve this with a mixture
of document preprocessing and reasoning at learning time.

In a preprocessing stage, HTML is “normalized” by applying a number
of transformations. For instance, the strong tag is replaced by the b tag,
em is replaced by i tag, and constructs like font=+1 are replaced by font=k

(where k is the appropriate font-size based on the context of the node.) This
preprocessing makes it possible to compute a number of “format features”
quickly at each node that contains text. Currently these features include
properties like font size, font color, font type, and so on.

A special builder then extracts nodes using these features. These prop-
erties are treated as binary features (e.g., the property “font-size=3” is
treated as a Boolean condition “fontSizeEqualsThree=true”). The format
builder then produces as its LGG the largest common set of Boolean for-
mat conditions found for the inner spans in its training set. Refinement is
implemented by adding a single feature to the LGG set.

4.3. Table-based Extraction

4.3.1. Representing Tables on the World Wide Web

The majority of tables expressed by orthogonal rows and columns may
be encoded by the TABLE element and its associated legal sub-elements
(TBODY, THEAD, TFOOT, TR, TH and TD). There are many other
features of HTML that may be brought to bear on the rendering of these
encodings (such as exact control of the position and size of a document
element) which together with the TABLE tag set represent a powerful lan-
guage for almost arbitrary control of the layout of elements on the page.
Consequently, tabular data on the web is lost in the noise of the extended
uses of the TABLE element Our intuition is that the proportion of TABLE
elements that encode true tables is quite small (experiments suggest less
than 10

4.3.2. Classes of table presentation in HTML

We can distinguish two classes of tables in HTML documents - those which
have some clear relationship with an instance of the TABLE tag in the
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HTML document (class 1); and those which are only considered to be tables
by virtue of their appearance once rendered by a suitable browser (class 2).

In general, class 1 contains those table instances which are encoded
by the ‘correct’ use of the TABLE tag and its legal structure (TABLE,
TBODY, TR, etc.) - for example the table in Figure 3;

as well as those cases where the table is embedded in a TABLE structure
but which does not represent the entire content of the table structure - for
example the table in Figure 4.

An extension of class 1 is a mixed class in which a table contains other
elements (that describe the geometric structure of the table) such as images
that depict a number of cells, plain text wrapped in a PRE tag which
represents a number of rows in the tables, the use of UL tags, BR tags, and
so on.

Class 2 contains such things as images, plain text tables, the use of
HTML elements that are not explicitly related, other than via a sibling
relationship of some sort, etc. See Figure 5 for an example.

In this paper we concentrate on the first class of tables (and its ex-
tension). We cast the table location problem as a classification problem -
classifying instance of the TABLE tag. The problem is to determine for
each TABLE node in the DOM the correct label : positive or negative. A
positive label indicates that we believe that this TABLE node is a true data
table, or that it contains a true data table which is essentially a sub area
of the table. (Note that a sub area of the table is not a strict sub tree of
the DOM structure).

A negative label represents the converse - that we reject this TABLE
node as an instance of a data table.

Prior work in this area (e.g. CHEN00) has suggested that the number
of true data tables on the web is low (e.g. 28.53the distribution of features
on the web are hard to interpret due to the potential burstiness of charac-
teristics: a feature may be rare in general, but common on one particular
site. However, what the above results suggest supports our intuitions about
the proliferation of alternative uses for the TABLE tag.



September 19, 2003 9:19 WSPC/Trim Size: 9in x 6in for Review Volume ws-chj

A Flexible Learning System for Wrapping Tables and Lists in HTML Documents 15

4.3.3. Application of Machine Learning

Our approach adopts a standard machine learning classification paradigm.
We take a set of documents which we mark up to indicate the positive TA-
BLE elements. All other table elements are, implicitly, negative instances.

We then extract a set of features representing the TABLE. There are
two classes of features. The first are extracted from the HTML representa-
tion of the document. In fact, they are extracted from the DOM structure.
The second class of features are model based features. Because HTML is a
structural representation of the document (which is different from a repre-
sentation of the document structure) it does not reflect the two dimensional
geometric aspect of the table. The model based features are derived from
an abstract rendering of the table. The construction of this geometric table
model is similar to the rendering of the table as it appears in a browser,
however it allows for more sophistication. We can use a number of complex
processes to consider how the HTML may be presented in the browser and
then infer the geometric table model. For example, nested tables, in certain
situations, might be collapsed into the parent table to provide a geometric
description of the overall document object. Details of this table analysis are
presented below.

¡p¿ The extracted set of features (the feature vector) is associated with
a label. This training data - a list of <feature vector, label>; tuples - is
then used to train a classifier. We trained and tested a number of classifier
systems using technology developed at WhizBang!Labs. These included a
Naive Bayes Classifier(refer to MITCHELL97 for details), Maximum En-
tropy Classifier (NIGAM99), Decision Tree Classifier (MITCHELL97) and
a Winnow Classifier (LITTLESTONE94).

4.3.4. Collecting and Annotating Training Data

Our objective is to develop a system that will be capable of correctly classi-
fying TABLE nodes in HTML documents. As we are using a supervised
machine learning approach, we must prepare training data. Ideally the
training data should be as true a sample of the distribution of TABLE
nodes as possible. However, the notion of a true sample of data from the
web is not realistic and consequently we can only attempt to annotate as
much data as possible from a reasonable variety of sources.
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4.3.5. Table Model and Geometric Table Rendering

¡p¿
Linguistic models typically describe natural language in terms of syn-

tax and semantics. Models exist which describe tables in similar terms (see
HURST00). However, deriving such descriptions of tables from layout in-
formation such as HTML is non-trivial. A more immediate and attainable
abstract representation of tables can be found in the abstract geometric
model. An abstract geometric model of the table describes the location
and content of the cells. This form of representation has parallels with a
tokenization of text, though is somewhat more complex.

¡/p¿
¡p¿
Deriving a geometric model of a table from an HTML source is similar

to the process of rendering the table in a browser. However, we are aiming
for a geometric model of the table that captures the geometry that the user
¡I¿perceives and makes use of when determining the relationships between
the (content of) cells¡/I¿. Generally, this relationship is expressed by the
horizontal or vertical alignment (total or partial) of cells. Horizontal and
vertical alignment between the content of cells (and here cells are abstract
cells, not the literal TH/TD elements) is achieved by the application of the
rendering algorithm to the HTML source and is not encoded in the HTML
source explicitly.

4.3.6. DOM Features

Features created by inspecting the DOM tree:

• single HTML row : computed from observing the number of TR
tags in the table.
• single HTML column : computed from observing the maximum

number of cell tags (TH or TD tags) in the table.
• border attribute set on TABLE tag : computed by observing the

BORDER attribute.
• bag-of-tags : generate a feature for each HTML tag found beneath

the TABLE tag in the document.
• bag-of-attributes : generate a feature for each attribute found in

tags below the TABLE tag.
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4.3.7. Model Features

Features created by inspecting the geometric model:

• row and column bin features representing the existence of 1, 2, 3,
4, 5, 6-10 and 11+ rows or columns in the table.

• string content ratio : the ratio of cells with string content (textual
content) to the total number of cells in the table

• singular cell ratio : the ratio of cells spanning exactly 1 row and 1
column to the total number of cells in the table.

4.3.8. Recognizing Tables

Consider again the sample tables in Figure 1. We would like to provide the
learner with the ability to form generalizations based on the geometry of
the tables, rather than their HTML representation. This is important since
text strings that are nearby in the rendered image (and thus likely to be
closely related) need not be nearby in the HTML encoding.

The first step in doing this is to recognize “interesting” tables in a docu-
ment. Specifically, we are interested in collections of data elements in which
semantic relationships between these elements are indicated by geometric
relationships—either horizontal or vertical alignment. These “interesting”
tables must be distinguished from other uses of the HTML table element.
(In HTML, tables are also used for arbitrary formatting purposes, for in-
stance, to format an array of images.) For more detailed discussion refer to
Hurst 13 or Wang 29.

To recognize this class of tables, we used machine learning techniques.
Specifically, we learned to classify HTML table nodes as data tables (“in-
teresting” tables) and non-data tables.c

We explored two types of features: those derived directly from the DOM
view of the table, and those derived from an abstract table model built from
the table. (The abstract table model is described below). The best classifier
contains only the abstract table model features, which are: the number of
rows and columns (discretized into the ranges 1, 2, 3, 4, 5, 6—10, and 11+);
the proportion of cells with string content; and the proportion of singular
cells. A singular cell is a cell which has unit size in terms of the logical grid
on which the table is defined.

cDocuments can contain subsections that appear to the reader as a single table, but in
fact are not contained by a single table node. We will not consider this issue here.
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We collected a sample of 339 labeled examples. To evaluate performance,
we averaged five trials in which 75% of the data was used for training and
the remainder for testing. We explored several learning algorithms including
multinomial Naive Bayes 17,19, Maximum Entropy 23, Winnow 18,2, and a
decision tree learner modeled after C4.5 25. Of these, the Winnow classifier
performs the best with a precision of 1.00, a recall 0.922, and an F-measure
of 0.959.d

Problem# Problem Name Examples WIEN(=) STALKER(≈) WL2(=)
Available

S1 Okra 3335 46 1 1
S2 BigBook 4299 274 8 6
S3 AddressFinder 57 – – 1
S4 QuoteServer 22 – – 4

4.3.9. Exploiting Table Context

Table classification is not only the first step in table processing: it is also
useful in itself. There are several builders that are more appropriate to ap-
ply outside a table than inside one, or vice versa. One example is builders
like that of Example 2 in Section 4.1, which in Figure 6 learns to extract
text shortly after the phrase “To apply:”. This builder generally inappro-
priate inside a table—for instance, in Figure 1, it is probably not correct
to generalize the example “Lawless” to “all tables cells appearing shortly
after the string ‘Lucy’”.

A number of builders in WL2 work like the builder of Example 2, in
that the extraction is driven primarily by some nearby piece of text. These
builders are generally restricted to apply only when they are outside a data
table. This can be accomplished readily with filtered builders.

4.3.10. Modeling Tables

More complex use of tables in wrapper-learning requires knowledge of the
geometry of the rendered table. To accomplish this, we construct an abstract

dF-measure is the harmonic mean of recall and precision, i.e., F = (2 · recall ·
precision)/(recall + precision).
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geometric model of each data table. In an abstract geometric model, a table
is assumed to lie on a grid, and every table cell is assumed to be a contiguous
rectangle on the grid. An abstract table model is thus a set of cells, each
of which is defined by the co-ordinates of the upper-left and lower-right
corners, and a representation of the cell’s contents. In the case of HTML
tables, the contents are generally a single DOM node.

Since we aim to model the table as perceived by the reader, a table model
cannot be generated simply by rendering the table node following the al-
gorithm recommended by W3C 12. Further analysis is required in order
to capture additional table-like sub-structure visible in the rendered doc-
ument. Examples of this type of structure include nested table elements,
rows of td elements containing aligned list elements, and so on. Our table
modeling system thus consists of several steps.

First, we generate a table model from a table node using a variation
of the algorithm recommended by W3C. We then refine the resulting table
model in the following ways.

Rationalization. HTML is often very noisy. In order to build a DOM
structure it must first be cleaned up to produce syntactically cor-
rect HTML. This is done by the Tidy utility 28. Due to the con-
straints of that task and the lack of adhesion to the correct use
of table encoding in HTML, the Tidy step often generates extra
table cells. These are detected and removed.

Complex cell analysis. Cells that contain structure which is common
across a row (e.g., nested tables, forced line breaks, pre encoded
text, etc) are subdivided into appropriate sub-cells which are then
inserted back into the table model.

Normalization. Any rows that have height greater than one are checked
to ensure that they contain some unit height cells. If they do not,
then the row height is reduced appropriately. An analogous process
is used to normalize column width. This normalization is necessary
when an explicit rowspan or colspan attribute is used to indicate
multiple row or column spanning cells and the value of the attribute
is higher than the total number of rows or columns actually spanned
in the rendered table.

4.3.11. Exploiting the Table Models

To exploit the geometric view of a table that is encapsulated in an ab-
stract table model, we choose certain properties to export to the learning
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system. Our goal was to choose a small but powerful set of features that
could be unambiguously derived from tables. More powerful features from
different aspects of the abstract table model were also considered, such as
the classification of cells as data cells or header cells—however, determining
these features would require a layer of classification and uncertainty, which
complicates their use in wrapper-learning.

To export the table features to WL2, we used the following procedure.
When a page is loaded into the system, each table node is annotated with
an attribute indicating the table’s classification as a data table or non-
table table. Each node in the DOM that acts as a cell in an abstract table
is annotated with its logical position in the table model; this is expressed as
two ranges, one for column position and one for row position. Finally, each
tr node is annotated with an attribute indicating whether or not it contains
a “cut-in” cell (like the “Actresses” and “Singers” cells in Figure 1.)

Currently this annotation is done by adding attributes directly to the
DOM nodes. This means that builders can easily model table regularities
by accessing attributes in the enriched, annotated DOM tree. Currently
four types of “table builders” are implemented. The cut-in header builder
represents sets of nodes by their DOM tag, and the bag of words in the
preceding cut-in cell. For example, in the table of Figure 1, the bag of
words “Actresses” and the tag td would extract the strings “Lucy”, “Law-
less”, “images”, “links”, “Angelina”, “Jolie”, and so on. The column header
builder and the row header builder are analogous. The fourth type of table
builder is an extended version of the builder for the Ltagpath language, in
which tagpaths are defined by a sequence of tags augmented with the values
of the attributes indicating geometric table position and if a row is a cut-in.
As an example, the “extended tagpath”

table,tr(cutIn=‘no’),td(colRange=‘2-2’)

would extract the strings “Lawless”, “Jolie”, “Spears” (but not “Madonna”,
because her geometric column co-ordinates are “1-2”, not “2-2”.) Finally,
the conjunction of this extended tagpath and the example cut-in expression
above would extract only “Lawless” and “Jolie”.

5. Experiments

5.1. Comparison with Previous Work

To evaluate the learning system, we conducted a series of experiments.
The first set of experiments compare WL2 with previous wrapper-learning
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algorithms.
The discussion in this paper has been restricted to “binary extraction

tasks”, by which we mean tasks in which a yes/no decision is made for each
substring in the document, indicating whether or not that substring should
be extracted. There are several existing schemes for decomposing the larger
problem of wrapping websites into a series of binary extraction problems
22,14. WL2 is embedded in one such system. Thus, the basic evaluation unit
is a “wrapper-learning problem”, which can be broken into a set of “binary
extraction problems”.

Muslea et al 21 provide a detailed comparison of STALKER and WIEN
on a set of four sample wrapper-learning problems. STALKER 21 is a
wrapper-learning system which learns wrappers expressed as “landmark
automata”. WEIN 16 is an earlier wrapper-learning system. The sample
problems were chosen as representative of the harder extraction problems
to which WIEN was applied.

In the experiments of Muslea et al, STALKER is repeatedly run on
a sample of k labeled records, for k = 1, 2, .., 10, and then tested on all
remaining labeled records. The process of gradually incrementing k was
halted when the wrapper’s average accuracy is 97% or better (averaging
over the different samples of k training examples). The value of k shown
in the column labeled “STALKER(≈)” of Table 1 shows the number of
examples required for STALKER to achieve 97% accuracy. (This value is
taken from Muslea et al.) The value of k shown in the column labeled
WIEN(=) is Muslea et al’s estimate of the number of examples needed by
WIEN to learn an exact (100% accurate) wrapper. Note that neither WIEN
nor STALKER successfully learns wrappers for problems S3 and S4.

To perform the same flavor of evaluation, we ran WL2 on the same
four problems. We wish to emphasize that WL2 was developed using com-
pletely different problems as benchmarks, and hence these problems are a
fair prospective test of the system. In the column labeled “WL2(=)”, we
show the number of examples k required to obtain perfect accuracy on every
binary extraction problems associated with a wrapper-learning task. Un-
like Muslea et al we did not average over multiple runs: however, informal
experiments suggest that performance of WL2 is quite stable if different
subsets of the training data are used.e

eA second reason for picking a single sample is that the user interface imposes a default
ordering on the pages of each type, and most users label pages following this ordering.
Hence, by using the default ordering to select the training data, the experiments more



September 19, 2003 9:19 WSPC/Trim Size: 9in x 6in for Review Volume ws-chj

22 Cohen et al

Problem WL2 Problem WL2

JOB1 3 CLASS1 1
JOB2 1 CLASS2 3
JOB3 1 CLASS3 3
JOB4 2 CLASS4 3
JOB5 2 CLASS5 6
JOB6 9 CLASS6 3
JOB7 4
median 2 median 3

Although no result is not shown in the table, WL2 can also be used to
learn approximate wrappers. On these problems, WL2 learns 95%-accurate
wrappers from only two examples for all of the problems from Muslea et al
but one. The most “difficult” problem is S2, which requires six examples
to find even an approximate wrapper. This is due the fact that many fields
on this web page are optional, and it requires several records before every
field has been seen at least once.

We now turn to some more additional benchmark problems. Table 2
gives the performance of WL2 on several real-world wrapper-learning prob-
lems, taken from two domains for which WL2 has been used internally at
WhizBang Labs. The first seven problems are taken from the domain of job
postings. The last six problems are taken from the domain of continuing
education courses. These problems were selected as representative of the
more difficult wrapping problems encountered in these two domains. Each
of these problems contains several binary extraction problems—a total of
34 problems all told.

5.2. Performance on Real-World Wrapping Tasks

Along with each problem we record the minimum number of labeled records
needed to learn a wrapper with 100% accuracy. The largest number of ex-
amples needed is nine (for one field of an extremely irregular site) and the
median number of examples is between 2 and 3. Figure 11 gives some addi-
tional detail: it plots the number of field-extraction problems that required
a minimum of k labeled records, for value of k. About two-thirds of the
binary extraction problems could be learned with one example, and about

closely model the data that would be seen in actual use.
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four-fifths could be learned with three examples.
In some cases, it is useful to obtain approximate wrappers, as well as

perfect ones. To measure the overall quality of wrappers, we measured the
recall and precision of the wrappers learned for each problem from k exam-
ples, for k =1, 2, 3, 5, 10, 15, and 20. Recall and precision were measured
by averaging across all individual field extraction problems associated with
a wrapper-learning task. The learning system we use is strongly biased to-
ward high-precision rules, so precision is almost always perfect, but recall
varies from problem to problem. We then plotted the average F-measure
across all problems as a function of k.

Figure 10 shows these curves for the baseline WL2 system on the real-
world wrapping tasks of Table 2. The curves marked “no format” and “no
tables” show the performance of two restricted versions of the system: a
version without the format-oriented builders of Section 4.2, and a version
without the table-oriented builders of Section 4.3. These curves indicate a
clear benefit from using these special builders.

6. Conclusions

To summarize, we have argued that pure DOM- or token-based representa-
tions of web pages are inadequate for wrapper learning. We propose instead
a wrapper-learning system called WL2 that can exploit multiple document
representations. WL2 is part of an “industrial-strength” wrapper manage-
ment system that is in active use at WhizBang Labs. Controlled experi-
ments show that the learning component performs well. Lesion studies show
that the more exotic builders do indeed improve performance on complex
wrapper-learning tasks, and experiments on artificial data suggest that the
system has broader coverage and a faster learning rate than two earlier
wrapper-learning systems, WEIN 16 and STALKER 21,22.

The system includes a single general-purpose master learning algorithm
and a varying number of smaller, special-purpose “builders”, which can
exploit different views of a document. Implemented builders make use of
both DOM-level and token-level views of a document. More interestingly,
builders can also exploit other properties of documents. Special format-
level builders exploit visual characteristics of text, like font size and font
type, that are not immediately accessible from conventional views of the
document. Special “table builders” exploit information about the two-
dimensional geometry of tabular data in a rendered web page.

The learning system can exploit any of these views. It can also learn
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extractors that rely on multiple views (e.g., “extract all table ‘cut-in’ cells
that will be rendered in blue with a font size of 2”). Another advantage of
the learning system’s architecture is that since builders can be added and
removed easily, the system is extensible and modular, and hence can be
easily adapted to new wrapping tasks.
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define learnPredicate(T ,(B1, . . . ,Bk)):
p∗ = false
while (there are positive examples in T ) do

let p = learnConjunction(T , (B1, . . . ,Bk))
let p∗ = p∗ ∨ p
// remove training examples covered by p
for each (Outer i, InnerSet i) ∈ T do

InnerSet i ← {s2 ∈ InnerSet i : ¬p(Outer i, s2)}
endfor

endwhile
return p∗

end definition

define learnConjunction(T ,(B1, . . . ,Bk)):
for i = 1, . . . , k do

let pi = LGGBi(T )
if (pi is consistent with T ) then

return pi
endif

endfor
// pick a predicate and generate candidate spans
let piopt be the pi that maximizes information gain on T ,
breaking ties in favor of pi’s generated by earlier builders

let POS and NEG be the true positive and false negative
predictions of piopt on T (see Eq. 1)

let p = piopt

// specialize the predicate p using POS, NEG
while (NEG 6= ∅) do

let P =
⋃
i{p′ : p′ = LGGBi(POS)} ∪⋃

i{p′ ∈ REFINEBi(LGGBi(POS),POS)}
let p′iopt

be the p′ ∈ P that maximizes
information gain on POS,NEG, breaking ties
in favor of p′’s generated by earlier builders

p← p ∧ p′iopt

// remove training examples not covered by p
POS ← {(s1, s2) ∈ POS ∩ p}
NEG ← {(s1, s2) ∈ NEG ∩ p}

endwhile
return p

end definition

Fig. 5. The master learning algorithm
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Jobs at WheezeBong.com:

To apply: Send c.v. via e-mail to
headhunt@wheezebong.com
or call (888)-555-BONG.

• Webmaster (New York).
Perl,servlets a plus.

• Librarian (Pittsburgh). MLS re-
quired.

• Ditch Digger (Palo Alto). No experi-
ence needed.

Fig. 6. An example web page

Fig. 7. A simple and ‘correct’ use of the TABLE tag set.
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Fig. 8. This figure represents the lowest TABLE element surrounding the two tables at
the centre. Although this TABLE element ¡I¿contains¡/I¿ a table, it cannot be simply be
inspected for relational information in, for example, an information extraction system.

Fig. 9. www.mysimon.com uses tables to display results of product searches for com-
parison. However, each row in the table is a TABLE element, and the whole table is not
composed within a TABLE element. Therefore, inference is required to discover what
appears to the reader as a clear example of tabular data.
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Fig. 10. Baseline WL2 system on WhizBang benchmark extraction problems, with and
without table and format builders. The plot shows average F-measure on 13 sample
problems as a function of the number of examples labeled.
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Fig. 11. Histogram showing the minimum number of examples needed for each field-
extraction problem.


