
Learning to Understand Web Site Update Requests

William W. Cohen
Center for Automated
Learning & Discovery

Carnegie Mellon University

wcohen@cs.cmu.edu

Einat Minkov
Language Technology Institute

Carnegie Mellon University

einat@cs.cmu.edu

Anthony Tomasic
Institute for Software Research

Carnegie Mellon University

tomasic@cs.cmu.edu

ABSTRACT
In many organizations, users submit requests to update the
organizational website via email to a human webmaster. In
this paper, we propose an intelligent system that can pro-
cess certain website update requests semi-automatically. In
particular, we describe a system that can analyze requests to
update the factual content of individual tuples in a database-
backed website, using a particular scheme for decomposing
request-understanding into a sequence of entity recognition
and text classification tasks. Each of these tasks can be
solved using existing learning methods. Using a corpus gen-
erated by human-subject experiments, we experimentally
evaluate the components of this system, as well as various
combinations of these components. We also present exper-
imental results on the robustness of the system. In par-
ticular, we present results predicting how the system will
perform on request types not seen in training; how it will
perform on user-specific language usage not seen in training;
and how it will perform in the absence of features specific
to the database schema of the website.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.2.6 [Artificial Intelligence]: Learn-
ing

Keywords
Learning, information extraction, named entity recognition,
sequential learning

1. INTRODUCTION
In this paper, we present a natural language system that

helps a webmaster maintain the web site for an organization.
Specifically, we describe a system for understanding certain
natural-language requests to change the factual content on
a website. We will assume that the website is based on a
database, and focus on requests to update specific facts in
this database.

To motivate this, note that many organizations want some
sort of central control of public web sites, so as to maintain
a uniform look and feel. However, the factual content that
such a web site presents often concerns many smaller orga-
nizational units, and a wide range of people might want to
post news items, update directory information, and so on.

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

Add the following contact to the Staff list.
Arthur Scott ascott@ardra.com Rm 7992 281 1914
On the events page, delete row ”December 23 Assembly
for Automotive Engineers Conference Room A21”
On the people page under Tommy Lee delete 281 2000
Please delete Kevin Smith’s phone number - thanx, Martha
Change Mike Roberts to Michael Roberts.
Please add Greg Johnson’s phone number- 281 2105

Figure 1: Representative update requests (edited
slightly for space and readability)

One possible solution to this problem is a database-backed
website, with a database of information that can be updated
by any user. However, this approach may not be accepted
in all contexts—for instance, individual users, each of whom
may only contribute a few database changes a year, may be
reluctant to learn how to manipulate the database to make
their occasional updates.

Many organizations thus adopt a model in which users
submit update requests via email in natural language to a
human webmaster. Some examples of such update requests
are shown in Figure 1. In this setting, one component of
the webmaster’s work is processing a stream of email re-
quests, each of which suggests a specific factual change to
the database on which the web site is based.

In this paper, we will explore this “webmaster support
task” in detail. Our proposed solution is an intelligent
system that can process website update requests semi-
automatically. First, natural language processing is used
to analyze an incoming request. Based on the analysis, the
system then constructs an executable version of the pro-
posed change, which is represented as a pre-filled instance
of a form. By examining the form, the end user can effi-
ciently determine whether the analysis step was correctly
accomplished, and, if necessary, override the results of the
agent’s analysis by changing values in the form. Prior ex-
periments with human subjects have shown that this process
is an effective means of reducing human effort, even if the
initial analysis step is imperfect [15].

This paper focuses on the natural-language processing
part of this system. We will first describe a scheme for de-
composing request-understanding into a sequence of entity
recognition and text classification tasks. We next describe
the corpus of requests that is used to evaluate performance
on these subtasks. We then present experimental results
on performance for all of the subtasks. As will be shown,
performance on these subtasks is surprisingly good, despite



the fact that the update requests we experiment with use
unusual and sometimes ungrammatical language (as illus-
trated in Figure 1). We also present experimental results
on the robustness of the system. In particular, we present
results predicting how the system will perform on request
types not seen in training; and how it will perform on user-
specific language usage not seen in training; and how it will
perform in the absence of features specific to the database
schema of the website. Finally, we evaluate combinations of
these components, to determine what fraction of messages
can be processed completely without errors. We conclude
with a review of related work and our conclusions.

2. UNDERSTANDING UPDATE REQUESTS

2.1 Analysis procedure
Figure 1 gives some example web site update requests.

Although many other kinds of requests are possible (e.g.,
“The animated gif in the logo doesn’t flash properly when I
view it from my home PC”), we will focus here on messages
that request a factual update to the underlying database.
Requests that are not of this form will simply be flagged
and forwarded to the real human webmaster. The analysis
procedure contains the following steps.

• Request type classification. An informal preliminary
analysis of real webmaster request logs suggested that
factual-update requests are in one of the following
forms: to add a new tuple to the database; to delete
an existing tuple; to delete a value from an existing
tuple; or to alter (add or replace) a value of an ex-
isting tuple. One step of analysis is thus determining
the type of request. This is a text classification task:
each request will be mapped to one of the categories
addTuple, deleteTuple, deleteValue, alterValue. If it is
not in one of these categories, it will be mapped to
otherRequest.

• Named entity recognition (NER). The next part of
the analysis is to identify all entity names in a re-
quest. Figure 2 shows the result of correctly recog-
nizing person names, email addresses, phone numbers,
room numbers, and event titles in some sample re-
quests. The subscript after an entity indicates its type
(for instance, “person” or “room number”).

• Role-based entity classification. We distinguish be-
tween four different roles for an entity in an update
request. (a) An entity is a keyEntity if it serves to iden-
tify the database tuple which is to be modified. In the
figure, key entities are marked with a superscript K.
An example is the entity “Freddy Smith” in the sen-
tence “please delete Freddy Smith’s phone number”.
(b) An entity is a newEntity (in the figure, marked
with a superscript N) if it is a value not currently in
the database, which the user wants to be stored in the
database. (c) An entity is an oldEntity (marked with
superscript O) if it is a value currently in the database
which the user expects to be replaced with a newEn-
tity . As an example, in the request “please change
Freddy Smith’s phone number from 555-1111 to 555-
1234”, “555-1111” is an oldEntity and “555-1234” is a
newEntity. (d) Entities unrelated to the execution of
the request are considered to be noiseEntities. In the

figure, they have no superscript marking. An exam-
ple is the name “Martha” in the request “please delete
Freddy Smith’s phone number - thanx Martha”.

Role-based entity classification is an entity classifica-
tion task, in which entities produced by the earlier
NER step are given an additional classification.

• Target relation classification. Since each request con-
cerns a single tuple, it necessarily also concerns a sin-
gle relation. The second column of Figure 2 shows the
relation associated with each request. For any fixed
database schema, there is a fixed set of possible rela-
tions, so this is a text classification operation.

• Target attribute classification. Given entities, the roles
of entities, the target relation, and the request type,
the semantics of the many tuple-based commands will
often completely determined (as we show below, in
Section 2.2). One type of request that may still be un-
derspecified is the deleteValue request. As an example
consider request 4 in the figure: the previous analy-
sis tells us we should delete some attribute value from
the tuple of the “person” relation with the key value
of “Tommy Lee”, but does not specify the value to be
deleted. Hence, to complete the analysis for these re-
quests, it is necessary to determine the attribute that
needs to be deleted. This is again a text classification
task: given a database schema, only a fixed number
of attributes need to be considered as possible targets.
Note that the classification is only neccesary for a sub-
set of requests.

In this paper, we will not consider another case in
which requests can be underspecified: when a re-
lation contains two or more attributes of the same
type, where “type” is defined by the output of the
entity recognizer. For instance, if the entity rec-
ognizer identifies phone numbers, and the “person”
relation contains both office phone number and cell
phone number as attributes, then the analysis of
“change William’s mobile nmber to 412-555-1234” will
be “change [William]Kperson’s mobile nmber to [412-

555-1234]Nphone”. This is ambiguous, since the new
phone number entity could be stored as either a office
phone number or a cell phone number. We ignore this
case simply because our experimental corpus contains
no examples of such ambiguity—it could be handled
straightforwardly by using an additional entity classi-
fier.

For pedagogical reasons, we have described these steps as
if they are taken in the fixed order given above. However,
the steps are not independent—i.e., information from each
step of analysis affects all other steps—and it may be com-
putationally preferable to re-order or interleave the decisions
associated with each step.

2.2 Using the analysis
To summarize, we have assumed thus far that requests

affect a single database, and that no database relation con-
tains more than one attribute of any type. Given these
constraints, the steps described above are sufficient to map
a request to a database update. Figure 3 summarizes the
algorithm for doing this.



Request Request Target Target
Type Relation Attribute

1
Add the following contact to the Staff list. [Arthur Scott]Nperson

[ascott@ardra.com]Nemail Rm [7992]Nroom [412 281 1914]Nphone

addTuple people −

2

On the events page, delete row ”[December 23]Kdate [Assembly

for Automotive Engineers Conference]KeventTitle Room

[A21]Kroom”

deleteTuple events −

3
On the people page under [Tommy Lee]Kperson delete [412 281

2000]Ophone

deleteValue people phoneNum

4
Please delete [Freddy Smith’s]Kperson’s phone number - thanx,

[Martha]person
deleteValue people phoneNum

5 Change [Mike Roberts]Kperson to [Michael Roberts]Nperson on
the People page.

alterValue people personName

6
Please add [Greg Johnson]Kperson’s phone number- [412 281

2000]Nphone

alterValue people phoneNum

Figure 2: Analyzed update requests.

Let R be the target relation. Let T be the request type. If T 6=
addTuple then let τ be the tuple in R that best matches the
keyEntities in the request. If T = alterValue or T = deleteValue,
let a be the target attribute.

If T = addTuple then build a tuple τ ′ containing all the newEn-
tities in the request, and propose the update: “add τ ′ to R”.

Otherwise, if T = deleteTuple then propose the update: “delete
τ from R”.

Otherwise, if T = deleteValue then propose the update: “delete
the value τ.a in R”.

Otherwise, if T = alterValue and there are newEntity in the
request, then let EN be the newEntities in the request, and let
EO be the oldEntities. If the database schema specifies that
R.a is filled by a set of values, propose the update: “set τ.a =
τ.a∪EN −EO”. Otherwise, if the database schema specifies that
R.a is filled by a single value propose the update: “set τ.a = e”,
where e is the highest-confidence element of EN .

Figure 3: The procedure for building a database
update from an analyzed request.

The analysis produces an proposed conceptual update to
the user’s view of the database. (In general, this single
conceptual update must be converted to a transaction for
the underlying database, this conversion may be non-trivial;
these issues are discussed elsewhere [15].) Given this update,
the system selects an appropriate form, fills in all known val-
ues. and then presents the form to the user for correction
or verification.

Even if the user (or webmaster) needs to correct some er-
rors in the analysis, the update process is faster, on average,
than manually changing a database (as has been experi-
mentally verified in other human-subject experiments [15]).
However, it is clearly preferable for the analysis to be as
accurate as possible. Below we will experimentally evaluate
the different steps of the analysis process. First, however,
we will describe the corpus used in the analysis.

3. THE EXPERIMENTAL CORPUS

Figure 4: A pictorial description of an update task

To evaluate performance of the individual steps of the
analysis, it is necessary to use a corpus of user requests. To
collect an appropriate corpus, a series of controlled human-
subject experiments were performed, in which participants
were given a series of tasks in pictorial form and asked that
they compose and send an appropriate e-mail messages to
a webmaster agent. Figure 4 shows an example of the pic-
torial description shown to users—a possible request that
might be associated with this might be “add 412-281-2000
as Greg Johnson’s phone #, please.” In response to the
user’s request, the agent returned a preview of the updated
page, and also pre-filled form that contained a structured
representation of the user’s request. The user could correct
errors by editing text in various slots of the form, or by
choosing from pull-down menus.

The advantage of this procedure is that it provides a cor-
pus of real user-generated update requests, suitable for ex-
perimental study of NLP-related issues. However, the pro-
cedure is relatively expensive, and hence our corpus is rela-



tively small, containing a total of only 617 example requests.
To simplify the procedure for experimenting with human

subjects, the same pictorial task descriptions were presented
to several different users. This sort of duplication can lead
to undesirable behavior for a learning system: for instance,
if the task of Figure 4 were repeated many times in the data,
then the system might learn a correlation between the phrase
“Greg Johnson” and the task of adding a phone number.
To address this problem, we manually replaced duplicate
entity names with alternative values throughout the corpus,
preserving surface features such as capitalization patterns
and misspellings.

By design, the requests in the corpus are restricted: in
each case, the intended request is a factual update concern-
ing a single tuple in the database. The corpus thus contains
no instances of requests that affect multiple database tu-
ples, like “add these phone extensions to the site: 2213 - for
William C., 2275 - Einat M., and 2248 - Anthony T.”, or
“change the office number of all LTI master’s students di-
rectly funded by the RADAR project to A201”. These sort
of requests may be addressed by future research. The cor-
pus does contain some requests that are not factual updates
(such as, changing font format).

The text itself is quite noisy. Typos are frequent. Also,
as is typical of informal text like email, the messages in our
corpus are often ungrammatical, and often use capitaliza-
tion patterns inconsistently. As a consequence, standard
shallow-NLP tools such as POS tagging and NP chunking
(being constructed for formal text such as newswire) are
somewhat unreliable. We annotated the text with a ver-
sion of Brill’s POS tagger [1] and a hand-coded NP-chunker
which was tuned for email (using a different corpus). In the
experiments, however, we rely mainly on alternative features
that exploit syntactic properties of a message.

4. EXPERIMENTS
We use the 617 request messages in our corpus to evaluate

how well can every component of the analysis procedure
be learned. Below we describe in detail the experimental
setting and results for each system component.

4.1 Entity Recognition
Named entity recognition (NER), or the identification of

the substrings of a request that correspond to entity names,
is a well-studied natural-language processing task. We eval-
uated NER performance for seven linguistic types: time,
date, amount, email addresses, phone numbers, room num-
bers, and person names. Other entity types are present in
the data (e.g., job titles and organization names) but not in
sufficient quantity to support systematic evaluation of ex-
traction methods.

We experimented with three approaches to entity extrac-
tion: a rule-based approach, in which hand-coded rules are
used to recognize entities; and two learning-based approaches.
The rule language we used is based on cascaded finite state
machines. The two learning algorithms are VPHMMs (a
method for discriminatively training hidden Markov models
using a voted-perceptron algorithm [2]) and CRFs, or condi-
tional random fields [7, 14]. VPHMMs are an example of a
margin-based learning approach to entity recognition; CRFs
are an example of a probabilistic approach. The implemen-
tations used here are the ones provided in the Minorthird

package[12]. Performance is evaluated by F1-measure1, and
entities are only counted as correct if both start and end
boundaries are correct (i.e., partially correct entity bound-
aries are given no partial credit.) Table 1 shows results for
entity recognition on the corpus.

Test Set
Type Full Corpus Validation
Time 95.7 n/a
Date 96.1 97.7
Email 100.0 100.0

(a) Rules

Base features Tuned features
Type V PHMM CRF V PHMM CRF
Time 87.7 87.9 91.2 95.1
Date 88.5 76.5 94.4 95.3
Amount 89.7 94.1 93.1 95.1
Phone 87.3 86.1 94.2 92.8
Room# 81.9 76.0 90.4 92.2
Person 80.9 74.2 90.3 89.7

(b) Learning

Table 1: Entity recognition results: F1 measures
using 5CV

We found that manually constructed rules are best suited
for entities such as e-mail addresses and temporal expres-
sions. These types are based on limited vocabularies and
fairly regular patterns, and are therefore relatively easy to
model manually. Email addresses are an extreme example
of this: a simple regular expression matches most email ad-
dresses.

Table 1 (a) shows the results of extraction using hand-
coded rules for some of the entities. We evaluated the rules
on the main corpus, which was used also for generating the
rules, and also on a 96-message “validation set” contain-
ing messages which were collected in a second, later series
of human-subject experiments. The column labeled “Vali-
dation” shows performance on the 96-element “validation”
set. (Unfortunately the linguistic entity types were some-
what different in the later round of experiments, and no
time expressions were present in this additional set.) As
shown in the table, the entity F1 performance is above 95%
for all cases that could be evaluated.

In Table 1(b) we show results for learning on the more
complex entity types. The table shows F1-measure perfor-
mance on unseen examples, as estimated using 5-fold cross
validation (5CV). Here NER was reduced to the problem of
sequentially classifying each token as either “inside” or “out-
side” the entity type to be extracted; the VPHMM was exe-
cuted for 10 epochs, and the CRF optimization method was
likewise limited to making 10 passes over the data. (Pre-
liminary experiments suggested that more iterations or more
complex tagging schemes do not substantially improve per-
formance for this task.)

Performance is shown for two sets of features. The base
feature set corresponds to words and capitalization tem-
plates over a window including the word to be classified,
and the three adjacent words to each side. The second set

1F1 is the geometric mean of recall and precision.



of feature, labeled tuned features in the table, is comprised of
the base features plus some additional, entity-type specific
features, which are constructed using the same rule language
used to build the hand-coded extractors. For example, in ex-
tracting dates we added an indicator as to whether a word
is a number in the range 1-31; for personal names, we added
an indicator for words that are in certain dictionaries of
names. The most complex feature-tuning was done for per-
sonal names, and these features were tuned on a separate
corpus [11].

Overall, the level of performance for extraction is very en-
couraging, especially considering the informal nature of the
text and the relatively small amount of training data avail-
able. For every entity type, better than 90% F1 measure
is obtained by the best extractor (shown in boldface in the
table), and five of the seven types can be extracted with an
F1 of more than 94%.

4.2 Role-based entity classification
Once an entity span has been identified, we must deter-

mine its functional role—i.e., whether it acts as a keyEn-
tity , newEntity , oldEntity , or noiseEntity (as outlined in
Section 2.1). We approach this problem as a classification
task, where the extracted entities are transformed into in-
stances to be further classified by a learner.

The features used for the learner are as follows. (a) The
closest preceding “action verb”. An action verb is one of a
few dozen words generally used to denote an update, such as
“add”, “delete”, ”be” etc. (b) The closest preceding prepo-
sition. (c) The presence or absence of a possessive marker
after the entity. (d) The closest preceding word w which is
either a preposition, an action verb, or a determiner. Fea-
ture (d) is intended to detect whether the entity is part of
a determined NP.

The experimental results for the important classes are
shown in Table 2. We use here a maximum entropy learner,
as well as an SVM learner with a linear kernel [6]. The
SVM learner is representative of the margin-based approach
to learning, and the maximum entropy learner is represen-
tative of the probabilistic approach. We show results for
each class separately, and in addition to F1 performance for
each category, we also show error rate. The “Default Error”
is the error obtained by always guessing the most frequent
class.

Entity F1/Error Default
Role SVM MaxEnt Error
keyEntity 87.0 / 11.5 85.5 / 13.2 44.2
newEntity 88.8 / 7.5 88.2 / 8.5 34.4
oldEntity 81.0 / 2.5 79.5 / 3.1 6.7

Table 2: Role-based entity classification results: F1
measures and percent error

The results for the role determination are overall quite
promising, indicating that the features used are quite infor-
mative. We note that as yet, we are not using one possibly
important feature—similarity to an entity in the existing
database. One would expect that this would be a good in-
dicator of the oldEntity role.

4.3 Target relation classification

To determine the target relation, we used the same learn-
ers, and a bag-of-words representation of a request for this
task. The results are shown in Table 3. Even this simple
representation for requests performs quite well, especially
for the more frequently updated relations.

We also explored using the types of previously-identified
entities as features for this task; for example, presence of
a “phone number” entity in a request indicates a “people”
relation, in our database schema. This expanded feature set
shows a further improvement in performance. Note, how-
ever, that these results are based on using the true values
for the entity extractors, rather than predicted values from a
necessarily imperfect entity recognizer. The results for this
augmented settings appear in the column marked with an
asterisk.

Target F1/Error Def.
Relation SVM MaxEnt SVM∗ Error
people 98.7 / 1.6 98.3 / 2.1 99.7 / 0.3 38.7
budget 95.8 / 0.8 98.4 / 0.3 100.0 / 0.0 10.0
events 98.2 / 8.1 97.2 / 1.3 99.6 / 0.2 22.7
sponsors 86.6 / 1.5 88.9 / 1.3 100.0 / 0.0 6.0

Table 3: Target relation classification results: F1
measures and percent error

4.4 Request type classification
In many cases the type of a request can be determined

from the roles of the entities in the request. For instance,
an addTuple request has no keyEntities but may have multi-
ple newEntities; conversely a deleteTuple request has keyEn-
tities, but no newEntities; and only an alterValue request
can have both keyEntities and newEntities. This means that
most request types can be determined algorithmically from
the set of entity roles found in a request.

The primary need for a request-type classifier is to distin-
guish between deleteValue and deleteTuple requests. These
types of requests are often syntactically quite similar. Con-
sider for instance the requests “delete the extension for Dan
Smith” and “delete the entry for Dan Smith”. The first
is a deleteValue for a phone number, and the second is a
deleteTuple request. The action verb (“delete”) and the in-
cluded entities, however, are identical. To distinguish the
two request-types, it is necessary to determine the direct
object of the verb “delete”—which is difficult, since shallow
parsing is inaccurate on this very noisy corpus—or else to
construct features that are correlated with the direct object
of the verb.

Thus, to distinguish deleteTuple and deleteValue, we used
the following as features. (a) The counts of keyEntities, old-
Entities, and newEntities in a request. (b) The action verbs
appearing in a request. (c) The nouns that appear in an
NP immediately following an action verb, or that appear in
NPs before an action verb in passive form. (d) Nouns from
the previous step that also appear in a dictionary of 12 com-
mon attribute names (e.g., “phone”, “extension”, “room”,
“office”, etc).

The results are shown in Table 4. With these features, one
can distinguish between these request types quite accurately.

4.5 Target attribute classification



Request F1/Error Def.
Type SVM MaxEnt Error
deleteTuple 93.1 / 2.4 92.7 / 2.8 18.0
deleteValue 82.9 / 3.1 72.3 / 0.6 9.1

Table 4: Request type classification 5-CV results:
F1 measures and percent error

The classification of requests by target attributes is very
similar to request type classification, except that rather than
determining if a delete request concerns an attribute, one
must determine which attribute the request concerns. Given
our assumptions, this step need only be performed for delete-
Value requests that contain no oldEntity.

A simple bag-of-words feature works quite well for this
task, as is shown by the results in Table 5. This is some-
what surprising, since there are relatively few positive exam-
ples of each of these concepts. In the corpus, however, the
vocabulary used to describe each attribute is fairly small:
e.g., phone is usually described as ”phone”, ”line” or ”ex-
tension”. Perhaps this is because user requests refer to an
existing website, and users tend to use the terminology of
the website.

Request F1/Error Def.
Type SVM MaxEnt Error
personal name 77.3 / 2.8 76.7 / 3.2 7.0
phone# 92.7 / 1.0 91.8 / 1.1 9.1
room# 87.0 / 2.9 87.3 / 3.2 18.0
publication 79.6 / 3.7 82.8 / 2.4 9.1
photo 93.1 / 2.4 84.1 / 3.2 18.0
CV 82.9 / 3.1 84.2 / 1.0 9.1
amount 93.1 / 2.4 96.4 / 0.5 18.0

Table 5: Attribute classification 5-CV results: F1
measures and percent error

5. ROBUSTNESS ISSUES

5.1 Performance for new users and novel re-
quests

Above, we presented a particular decomposition of the
natural-language processing problem associated with a web-
master support task. We showed that this NLP problem can
be broken down into a a cascade of classification and extrac-
tion tasks, and also showed that each subtask can be solved
reliably using existing learning methods. All our evalua-
tions were conducted on a corpus constructed by perform-
ing human-subject experiments. These human-subject ex-
periments involved approximately 20 users, who were asked
to generate natural-language requests corresponding to ap-
proximately 30 different database updates.

One practically important question is how robust such
a system is to changes in the distribution of users and/or
requests. To investigate such questions, one can use a dif-
ferent sampling strategy in performing cross-validation. For
instance, to determine how robust the system is to queries
from new users, we grouped all the examples generated by
each subject into a single set, and then performed a cross-

validation that was constrained so that no set was split be-
tween training and test. In other words, in every test fold,
all of the example requests were from subjects that had not
contributed to the training set. This train/test split thus
estimates performance of a system that is used for a very
large pool of users—a pool so large that it is unlikely to see
multiple requests from the same user.

In the corpus, users usually have some personal stylistic
quirks—for instance, a user might consistently give dates in
a particular format. Thus one would expect that perfor-
mance with this sort of split will be worse than performance
with the default splits. The degree to which performance
is actually changed on various representative subproblems
shown in Table 6. The results presented are for VPHMMs
(for NER tasks) and linear-kernel SVMs (for classification
tasks).

Linguistic Base features Tuned features
Type 5CV 5CVusr 5CV 5CVusr
Time 87.7 78.0 91.2 88.2
Date 88.5 89.4 94.4 95.8
Amount 89.7 90.2 93.1 93.1
Phone 87.3 87.3 94.2 92.4
Room# 81.9 76.8 90.4 87.1
Person 80.9 72.1 90.3 83.6

(a) Entity recognition: F1 measure

Entity F1/Error Def.
Role 5CV 5CVreq Error
keyEntity 87.0 / 11.5 83.5 / 14.4 44.2
newEntity 88.8 / 7.5 85.0 / 10.6 34.4
oldEntity 81.0 / 2.5 81.3 / 2.5 6.7

(b) Entity-role classification: F1 measure and error rate

Target F1/Error Def.
Attribute 5CV 5CVusr Error
personal name 77.3 / 2.8 66.7 / 4.2 7.0
phone# 92.7 / 1.0 92.9 / 1.0 9.1
room# 87.0 / 2.9 91.5 / 1.9 18.0
publication 79.6 / 3.7 81.2 / 2.1 9.1
photo 93.1 / 2.4 78.6 / 3.9 18.0
CV 82.9 / 3.1 86.5 / 0.8 9.1
amount 93.1 / 2.4 92.5 / 1.0 18.0

(c) Attribute classification: F1 measure and error rate

Table 6: Estimated performance with a large pool
of users

Although the performance on extracting personal names
drops from an F1 of 90.3 to an F1 of 83.3, the F1 every other
NER task drops only slightly, and most F1-measures remain
in the upper 80’s to mid 90’s. Slight drops in performance
are also seen on two of the three entity-role tasks, and notici-
ble drops are seen on two of the seven attribute-classification
tasks (person name and photo). Overall, performance seems
to be affected only slightly in this setting.

Similarly, the experimental corpus was limited in that it
contained only about 30 different request species. Here we
define a request species to include all requests generated from
a particular task image, such as that shown in Figure 4. Re-
call that specific entity names in the requests were manu-
ally replaced with alternatives in the corpora we use; thus
requests of the same “species” are isomorphic except for the



specific entities that appear in them. An example of two re-
quests of the same species might be “add the phone number
412-281-2000 for greg johnson, please” or “Please note, g.
jonson’s phone number is missing. It should be 281-2000”.

To determine how robust the system is to requests that are
quite different from requests encountered during training,
we grouped together examples for the same request species,
and then again performed a cross-validation constrained so
that no set was split between training and test. In this
scenario, all of the example requests in every test fold are for
tasks that were not encountered in the training set. Again,
one would expect that performance would be lower in this
more difficult condition, which simulates a scenario in which
many different varieties of requests are encountered, and
hence every request has a completely novel structure. This
scenario probably overestimates the difficulty encountered
by a real system.

Tuned features
Type 5CV 5CVreq 5CVusr
Time 91.2 93.9 88.2
Date 94.4 88.9 95.8
Amount 93.1 85.4 93.1
Phone 94.2 82.3 92.4
Room# 90.4 83.0 87.1
Person 90.3 88.3 83.6

(a) Named entity recognition

Entity F1/Error
Role 5CV 5CVreq
keyEntity 87.0 / 11.5 84.0 / 14.3
newEntity 88.8 / 7.5 83.4 / 10.7
oldEntity 81.0 / 2.5 76.4 / 3.0

(b) Entity-role classification

Target F1/Error Def.
Relation 5CV 5CVreq 5CV ∗req Error
people 98.7 / 1.6 95.0 / 6.3 97.3 / 3.4 38.7
budget 95.8 / 0.8 70.1 / 4.7 78.8 / 3.6 10.0
events 98.2 / 8.1 85.8 / 5.7 97.8 / 1.0 22.7
sponsors 86.6 / 1.5 77.4 / 2.3 98.6 / 0.2 6.0

(c) Target-relation classification

Request F1/Error Def.
Type 5CV 5CVreq Error

deleteTuple 93.1 / 2.4 74.7 / 9.2 18.0
deleteValue 82.9 / 3.1 57.5 / 6.0 9.1

(d) Request-type classification

Table 7: Performance with a very diverse pool of
requests.

Table 7 shows the result of performing this type of cross-
validation for four representative tasks: NER, entity role
classification, target relation classification, and request type
classification. For target relation classification, the column
marked 5CV ∗req uses entity-roles as well as words as features.

To summarize the results, the loss in performance for NER
problems is moderate, but larger than that seen when the
pool of users is large. Entity-role classification drops off
only slightly, and performance for target-relation classifica-
tion also remains excellent for three of the four relations
considered. However, performance for request-type classi-

fication does drop off noticibly. This drop in performance
is almost certainly due to lack of appropriate training data:
there are only a handful of tasks updating the “budget”
relation, and also only a relatively small number of tasks
requiring request-type classification.

5.2 Changes to the database schema
A final issue to discuss is the robustness of the system to

changes is the database schema. Typically a website will
change over time, perhaps by the addition of new database
relations (e.g., “presentations”) or new attributes (e.g., “in-
stant messenger id”). When this happens, the distribution
of requests will also change. One advantage of the archi-
tecture presented here is that it is often straightforward to
collect additional training data from user interactions with
the system.

Specifically, training data can be automatically collected
for any classification decision made by the system. Auto-
matically collecting training data suitable for training an
extraction system is somewhat more difficult, and may be
addressed by future research; for now we note that if the
database schema changes, but the set of primitive entity
types remains the same, then data can be automatically
collected for all necessary phases of the analysis. The ques-
tion of whether the system as a whole is robust to changes
in the database schema thus reduces to a question of the
robustness of the features used in learning: to what extent
are these features dependent on the database schema used?

Request F1/Error Def.
Type 5CV 5CVreq Error
all features
deleteTuple 93.1 / 2.4 74.7 / 9.2 18.0
deleteValue 82.9 / 3.1 57.5 / 6.0 9.1
without dict
deleteTuple 90.1 / 3.6 62.6 / 13.9 18.0
deleteValue 81.4 / 3.4 44.7 / 7.6 9.1
without nouns or dict
deleteTuple 86.8 / 4.7 58.8 / 15.2 18.0
deleteValue 79.6 / 3.7 42.7 / 8.3 9.1

Table 8: Predicting request type without schema-
dependent features.

In the experiments above, we have generally attempted to
avoid use of features that are database schema-dependent.
The exception to this is the dictionary of attributes used in
predicting request type. Table 8 shows the results obtained
on request-type classification when this schema-dependent
information is not available. Performance is still accept-
able. However, the schema-independent system is consider-
ably less robust to novel requests (as is shown by the column
labeled 5CVreq).

5.3 Discussion
These experiments show that the final system will be

more robust to changes associated with a new user’s stylis-
tic quirks than to changes in languages associated with new
and different types of requests. This suggests that if future
human-subject experiments are used to collect data, it would
be more desirable to have fewer subjects generate more re-
quests each. More specifically, it would be useful to have



more deleteValue and deleteTuple requests in the training
set, since this is the current performance bottleneck when
the pool of requests becomes more diverse.

6. OVERALL EVALUATION
In sections 4 and 5 we examined performance on each sub-

task of the request-analysis process. In this section, we will
complement these component-level evaluations with evalu-
ations of larger sections of the request-analysis process, in-
cluding an evaluation of the entire end-to-end process.

As noted above, the ordering of the subtasks can be varied.
We adopted the following procedure. First, NER is run for
each entity type. Next, the roles of the extracted entities are
assigned. Next, relation and request types are assigned. In
evaluating this process, five-fold cross-validation was used.
In each fold, predicted entities (i.e., entities extracted by a
NER model learned on the same training fold), rather than
true entities, were used as input to the entity-role classifier.
Similarly, NER-predicted entities were used as input to the
relation classifier, and the request-type classifier.

We made two slight simplifications of the process: re-
quests containing less-frequent entity types (like event titles)
were discarded; and we did not evaluate the target-attribute
classification step, which is only necessary for a handful of
requests. We used VPHMMs and hand-coded rules for ex-
traction, and a non-sequential multi-class voted perceptron
[4] for classification.2

NER Relation Request Entity % Messages
(all) Type Role Correct
X 84.5
O X 98.9
O X 80.1
O X 66.8

(a) Evaluating Single Components

O X X 79.2
X X X 53.4
X X X X 39.5

(b) Evaluating Multiple Components

Table 9: Percent of messages correctly processed.
An “X” indicates a subtask being evaluated, and an
“O” indicates the output of a subtask is used as a
feature for another task.

The results are shown in Table 9. The first part of the ta-
ble shows the percentage of messages which are completely
correct with respect to a single component. Here an “X”
indicates a subtask that is being evaluated directly, and an
“O” indicates that a subtask that is used indirectly, to con-
struct features for some task being evaluated. For instance,
the first line indicates that on 84.5% of the messages, all
named entities were extracted correctly. In almost 99% of
the messages, the correct relation was determined; note that
this decision is based partly on the (noisy) extracted enti-
ties. The most difficult step seems to be assigning functional

2The voted perceptron is another margin-based classifier.
For implementation reasons, it was more convenient to use
in these experiments than an SVM, although its performance
was generally quite not as good.

roles to the extracted entities. We note that entity-role clas-
sification is closely related to semantic role analysis, which
is known to be a difficult NLP problem [3, 5].

The bottom part of the table shows the percentage of mes-
sages that are completely correct with respect the composi-
tion of several subtasks. Nearly 80% of the messages have
both their relation and request type classified correctly. In
these cases the user would have received the correct form,
with some entries filled out incorrectly. In more than half
of the cases, the user would have received the correct form,
with all entities correctly extracted, but with some entity
roles mislabeled. Almost 40% of the messages were pro-
cessed perfectly, and would require no further intervention
from the user.

7. RELATED WORK
Lockerd et. al [8] propose an automated Webmaster called

“Mr. Web” which has a similar email-based interface. They
manually analyzed 325 update requests to assess their lin-
guistic regularity, but they do not describe any algorithm
for processing the requests.

Our system addresses a fairly general natural-language
processing task: learning to understand single-tuple database
updates. As such it might be compared to other systems
that use learning in NLP. Previous NLP systems have gen-
erally either performed deep semantic analysis using hand-
coded grammars in a restricted domain, or else a shallower
analysis in a broader domain. While learning has been an
important tool for developing broad-coverage NLP compo-
nents such as POS taggers, parsers, and named entity recog-
nition systems, there have surprisingly few attempts to use
learning to perform a complete semantic analysis. Notable
exceptions are the CHILL system [16], which learns to parse
database queries into a meaning representation language,
and the work by Miller et. al [10] on using a combination
of generative models to extract facts from text. Work in
learning such “semantic parsers” is surveyed and motivated
elsewhere [13].

There are several important differences between the work
described in this paper and prior efforts. One difference is
that we consider understanding update requests, rather than
understanding queries (like Zelle & Mooney) or declaratively
stated facts (like Miller et al). One advantage of the update-
request task is that a partially correct analysis is still useful,
and furthermore, is likely to elicit user feedback which can
be used for training. In contrast, it is unclear how use-
ful it is to answer an imperfectly analyzed database query,
or what could be learned from such an episode. A second
difference is that our learning method uses primarily data
which can plausibly collected from user feedback. In con-
trast, Zelle & Mooney’s system learns from sentence/query
pairs, and Miller et. al. use a variety of sources for training
data including POS-tagged text, parsed sentences, and se-
mantically annotated text. On the other hand, we limit our-
selves to conceptually simple database updates, while Zelle
& Mooney consider complex structured queries. There are
also numerous smaller differences stemming from the nature
of the task and corpus.

Although the purpose and scope of our research is differ-
ent, the entity role classification step we consider above is
broadly similar to recent work on semantic role analysis [3,
5], and earlier work on case-role assignment (e.g., [9]).

From NLP perspective, this work is an example of pro-



cessing of noisy “informal” text. Most such text cannot be
reliably analyzed using off-the-shelf NLP techniques such as
POS tagging and parsing; however, outputs from these sys-
tems can still be useful as inputs to a learner.

8. CONCLUSIONS
We have described and experimentally evaluated a scheme

for decomposing request-understanding into a sequence of
entity recognition and text classification tasks. One inter-
esting aspect of this decomposition is that it enables a large
amount of the request-understanding system to be learned
from data; further, much of this data can be plausibly col-
lected from interactions with end users. Human-subject ex-
periments have also shown that partially correct results are
useful in settings described here [15]. Thus the work in this
paper is a realistic evaluation of components of an efficient,
adaptive, automatic webmaster assistant.

Many open questions remain to be resolved by future re-
search. One issue is relaxing the restriction that each request
concerns the update of a single tuple per email. Another is-
sue is automatically collecting training data and re-training
extractors.

Acknowledgements
We thank Richard Wang for work on the POS tagger and
NP-chunker used in these experiments. We also wish to
thank John Zimmerman, Susan Fussell, Ellen Ayoob, Aaron
Spaulding, Marina Kobayashi and Kyle Cunningham for
providing us with the experimental corpus.

9. REFERENCES
[1] E. Brill. Transformation-based error-driven learning

and natural language processing: A case study in part
of speech tagging. Computational Linguistics,
24(1):543–565, 1995.

[2] M. Collins. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. In Empirical Methods in
Natural Language Processing (EMNLP), 2002.

[3] C. J. Fillmore, F. C. Baker, and H. Sato. The
framenet database and software tools. In Proceedings
of the Third International Conference on Language
Resources and Evaluation (LREC), pages 1157–1160,
2000.

[4] Y. Freund and R. E. Schapire. Large margin
classification using the perceptron algorithm. In
Computational Learning Theory, pages 209–217, 1998.

[5] D. Gildea and D. Jurafsky. Automated labeling of
semantic roles. Computational Linguistics,
28(3):245–288, 2002.

[6] T. Joachims. A statistical learning model of text
classification with support vector machines. In
Proceedings of SIGIR-01, 24th ACM International
Conference on Research and Development in
Information Retrieval, 2001.

[7] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the
International Conference on Machine Learning
(ICML-2001), Williams, MA, 2001.

[8] A. Lockerd, H. Pham, T. Sharon, and T. Selker.
Mr.web: An automated interactive webmaster. In

Extended abstracts on Human factors in Computer
Systems (CHI’03), Ft. Lauderdale, Florida, April
2003.

[9] R. Miikkulainen and M. G. Dyer. Natural language
processing with modular PDP networks and
distributed lexicon. Cognitive Science, 15:343–399,
1991.

[10] S. Miller, D. D. Stallard, R. Bobrow, R., and
Schwartz. A fully statistical approach to natural
language interfaces. In Proceedings of the 34th Annual
Meeting of the Association for Computational
Linguistics (ACL-96), pages 55–61, 1996.

[11] E. Minkov, R. Wang, and W. W. Cohen. Extracting
personal names from emails: Applying named entity
recognition to informal text. In preparation, draft
available from http://wcohen.com., 2004.

[12] Minorthird: Methods for identifying names and
ontological relations in text using heuristics for
inducing regularities from data.
http://minorthird.sourceforge.net, 2004.

[13] R. Mooney. Learning semantic parsers: An important
but under-studied problem. In Working notes of the
AAAI spring symposium on language learning, pages
39–44, Palo Alto, CA, March 2004. AAAI Press.

[14] F. Sha and F. Pereira. Shallow parsing with
conditional random fields. In In Proceedings of
HLT-NAACL, 2003.

[15] A. Tomasic, W. Cohen, S. Fussell, J. Zimmerman,
M. Kobayashi, E. Minkov, N. Halstead, R. Mosur, and
J. Hum. Learning to navigate web forms. In Workshop
on Information Integration on the Web
(IIWEB-2004), 2004. Toronto, Canada.

[16] J. M. Zelle and R. J. Mooney. Learning database
queries using inductive logic programming. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), pages 1050–1055,
1996.


