
WebSets : Unsupervised Information Extraction approach
to Extract Sets of Entities from the Web

[Extended Abstract]
∗

Bhavana Dalvi
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

bbd@cs.cmu.edu

William Cohen
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

wcohen@cs.cmu.edu

Jamie Callan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

callan@cs.cmu.edu

ABSTRACT
We propose an unsupervised information extraction system,
which exploits the structured information in the form of
HTML tables to build meaningful sets of entities belonging
to certain categories. Due to redundancy on the Web, we
believe that entities belonging to important categories will
frequently co-occur in table columns. We present a clus-
tering algorithm to cluster such frequently occurring enti-
ties into meaningful sets. Then we find candidate category
names for each set, using Hearst patterns like “X such as
Y”, “X including Y”.

Experimental results on four different datasets show that
our method can extract meaningful sets of entities (with
avg. cluster precision of 97-99%). It also proposes reason-
able category names for them. We present an application
of this method to enhance an existing knowledge base. Ex-
periments show that our method improves the coverage of
existing categories with 80-90% accuracy. It also suggests
new categories that can be added to the knowledge base.

1. INTRODUCTION
Information extraction from structured as well as unstruc-

tured sources on the Web has been of interest in recent years.
A new generation of information extraction systems like Tex-
tRunner[6] and NELL(Never Ending Language Learning)[4]
is emerging that analyzes large corpora of unstructured text
and creates structured information resources in the form of
knowledge bases. Another variant of supervised learning al-
gorithms like SEAL(Set Expansion for Any Language)[20]
starts from small number of seeds and expands the set us-
ing a bootstrapping process. ASIA (Automatic Set Instance
Acquirer)[19] starts with a concept name and finds out set

∗A full version of this paper is available as ACM
SIG Proceedings Using LATEX2ε and BibTeX at
www.acm.org/eaddress.htm

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘11, August 29- September 3, 2011, Seattle, WA
Copyright 2011 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

of instances belonging to that concept.
Most of the existing systems need some human input to

start the extraction process. Motivation behind our work is
to devise a fully unsupervised information extraction tech-
nique. In this paper, we propose “WebSets”, an unsuper-
vised approach to the problem of extracting sets of entities
from tables found on the Web. This approach builds mean-
ingful sets of entities by exploiting structured information
in the form of HTML tables that millions of web-page au-
thors have created. We hypothesize that entities in same
column of a table possibly belong to the same category. We
verify this hypothesis by building an unsupervised system
to do this IE task. Our system first extracts good quality
tables from a set of web pages. It then finds the frequently
co-occurring sets of entity triplets. Clustering these triplets
we get sets of entities, which may belong to some meaning-
ful category. The system also suggests category names for
these clusters with the help of hyponym data built using
open-domain Hearst patterns [11] like “X such as Y”. We
evaluate our method based on a comparison with existing
extraction methods. We also evaluate the meaningfulness of
generated clusters along with the accuracy of labels auto-
matically assigned to the clusters.

One of the important applications of such set extraction
techniques is to enhance an existing knowledge base. Addi-
tional experiments show that WebSets can contribute new
instances of existing categories in a knowledge base and can
also suggest new categories that can be added to make it
richer.

The rest of this paper is organized as follows. Section 2
presents an overview of related work in the area. Section 3
describes the WebSets system proposed in this paper. Sec-
tion 4 describes the evaluation methodology and experimen-
tal results of WebSets including its application to enhance
an existing knowledge base. In section 5 we present our
conclusions.

2. RELATED WORK
Information extraction from structured information sources

on the Web is an area of active research in recent years.
WebTables [2] was one of the first few systems, which pro-
posed the use of tables on the Web as a source of high-
quality relational data. It used the data from tables, to build
the collection of attribute co-occurrence statistics, which in
turn can be used to create a column thesaurus and column
auto-completion system. Limaye et. al. [14] describes an

algorithm to annotate table cells and columns with corre-
sponding categories and relations from an existing catalog
or type hierarchy. Gupta and Sarawagi [10] address the
problem of jointly training statistical extraction models for
multiple Web sources to maximally exploit any content over-
lap. This technique tries to maximize the probability that
the different sources agree on the labels of the overlapping
content. Gupta et.al [9] focuses on the task of assembling
a table given few example rows. Their technique consol-
idates HTML lists relevant to the example rows to build
a result table. Using large datasets like AOL query logs,
Parameswaran et. al. [15] proposes a concept extraction
algorithm which can identify canonical form of concept and
filters out any of its sub-concept or super-concept.

There has been a significant amount of work done in the
area of web information extraction. Let us first consider the
systems which take predicates as input to decide what kind
of named entities to extract. KnowItAll [6, 7] is an unsuper-
vised named-entity extraction system, which takes as input
a set of domain specific predicates. The system then focuses
on extracting those named entities which satisfy these pred-
icates. Coupled Pattern Learning (CPL) [4] is a technique
that enables the simultaneous semi-supervised training of
category and relation extractors. The input to this system
is an ontology that defines a set of target categories and re-
lations to be learnt, few seed examples for each, and a set of
relationships that couple the various categories and relations
(e.g., Furniture and Mammal are mutually exclusive).

Another set of IE systems do not need predicates or on-
tologies as input. SEAL [20] demonstrated a set expansion
technique, which starts with set of seed examples for each set
and expands them by finding remaining instances of the set.
This system builds “wrappers” for the semi-structured web-
pages using existing instances, uses those wrappers to find
more instances, and continues this iteratively to expand the
set of entities. ASIA [19] further reduces the human input
requirement by just taking the category names as input and
then extracting sets of named entities belonging to those
categories using SEAL as one of its components.

Coupled SEAL (CSEAL) [4] makes use of mutual exclu-
sion, containment and type checking relationships on top of
conventional SEAL. Furthermore, CPL and CSEAL are the
two most important components of the NELL system [18].
The term “NELL knowledge base” used hereafter in this pa-
per, refers to the KB which consists of (1) manually created
set of categories and relations (2) seed examples for each cat-
egory/relation (3) relationships between these categories/-
relations and (4) additional instances of these categories/-
relations that are learnt by CPL and CSEAL.

TextRunner [21] is an Open Information Extraction sys-
tem in which the system makes a single, data-driven pass
over the entire corpus and extracts a large set of relational
tuples, without requiring any human input. It also embeds
synonym resolution mechanism, to collapse multiple noun-
phrases which refer to the same entity. However TextRunner
does not build consistent sets of category or relations.

Gatterbauer et. al. [8] discusses approaches to extract
various forms of tables which might not have tree like struc-
ture of HTML tables but when the page is rendered in a
browser, it looks like table. Their work focuses on extract-
ing tabular data from various kinds of visual representations.
Given an arbitrary noun-phrase, Ritter et. al.[16] describes
a technique which first generates candidate hypernyms us-

ing co-occurrence statistics on a large corpus. It then runs
an SVM classifier on these candidates using Hearst pattern
occurrences and POS tag features to decide which candidate
hypernyms are correct.

Our approach is different from most of the earlier ap-
proaches in the sense that we start with structured data like
HTML tables and build consistent sets of entities, without
any human input. We then use Hearst patterns and co-
occurrence based statistics, to propose candidate category
names for the set.

3. PROPOSED APPROACH
Tables on the Web often contain lists that define meaning-

ful sets. We feel that an Information Extraction system can
make a wise use of this already available structured informa-
tion to come up with sets of entities hidden in the webpages.
The sets extracted can also be seen as a summary telling
what concepts are talked about in those webpages. In this
paper, we propose an unsupervised information extraction
technique WebSets to address this problem.

WebSets is composed of four main components: the Ta-
ble Parser, the Triplet Store Builder, the Bottom-Up Clus-
terer, the Hypernym Recommender. Given a set of HTML
pages, the Table Parser extracts potentially useful tables
using a set of simple hand-coded heuristics. The Triplet
Store Builder then goes over every column of every ex-
tracted table, and builds a dataset of entity triplets found
in them. Each record of triplet store contains entities in the
triplet, all TableID:ColumnId’s in which they co-occurred,
and all domains in which they co-occurred. These triplets
are then ranked by number of distinct domains in which
they co-occurred. The Bottom-Up Clusterer then clusters
these triplets into consistent sets. This component considers
only those triplets that have occurred in at least k number
of domains, where k is a small constant. The Hypernym
Recommender then considers each cluster, and recommends
candidate hypernyms based on the overlap between the clus-
ter and hypernym pattern dataset.

Each component of this unsupervised pipeline, enhances
the quality and completeness of resultant sets of entities. In
this section, we describe each component in detail.

3.1 Table Parser
While doing data analysis, we found that most HTML

pages use tables for formatting or rendering purposes and
hence do not necessarily contain relational data. Another
issue we faced was that lot of HTML pages have broken
HTML syntax, which creates problems while parsing them
correctly.

We used an HTML syntax cleaning software Tidy [1] which
fixes the HTML syntax in these pages. Table Parser is then
run on these clean HTML pages. To filter out tables with
useful relational data, Table Parser uses following set of
features from each table : (1) The table is recursive (if yes
discard it) (2) The number of rows and columns (at least 3
rows and 2 columns) (3) The number of non-link columns
(at least 2 non-link columns) (4) The length of cells after
removing formatting tags (allowed length is 2 to 50 char).

We manually set thresholds for these features, to separate
out reasonable quality tables. These thresholds remain con-
stant for all the experiments described in this paper. Cur-
rently Table Parser parses only HTML tables which have
< table > tags in them. This is only a fraction of struc-

Country Capital City
India Delhi
China Beijing

Canada Ottawa
France Paris

Table 1: Example Table (TableId = 10 , URL =
“http://www.dummy.com/index.html”)

Entities Tid:Cids Domains
India,China,Canada 10:0 www.dummy.com::1

China, Canada, France 10:0 www.dummy.com::1
Delhi, Beijing, Ottawa 10:1 www.dummy.com::1
Beijing, Ottawa, Paris 10:1 www.dummy.com::1

Table 2: Triplet records created by WebSets

tured data available on the Web. Use of other techniques
like Gatterbauer et. al. [8] can provide more input data to
learn sets from.

3.2 Triplet Store Builder
After filtering out potentially useful HTML tables, the

system needs to find out which entities in these tables be-
long to some meaningful category. To solve this problem we
propose a method based on co-occurrence of entity triplets.
The choice of working on triplets instead of individual en-
tities is based on an independent observation by Wang et.
al.[20]. During evaluation of SEAL, it was found that, given
a set of three seed entities belonging to a category, the sys-
tem can find remaining entities with 90% MAP. This shows
that a set of three entities can give reasonable information
about the category they belong to.

Triplet Store Builder goes over every column of every ex-
tracted table, and builds a dataset of entity triplets found
in them. Each record of triplet store contains entities in the
triplet, all TableID:ColumnId’s in which they co-occurred,
and all domains in which they co-occurred. For a table col-
umn containing n entities, considering all possible triplets
will result in O(n3) triplets. This will considerably increase
the size of the triplet store. Hence we only consider triplets
which are size three sub-sequences of sequence of entities in
each table column.

Consider an example table containing countries and their
capitals. Original table and the triplet records created by
the Triplet Store Builder are shown in Table 1 and Table
2. Second row in Table 2, indicates that the triplet (China,
Canada, France) occurred in TableId = 10, ColumnId = 1,
on a webpage which resides in the domain
“www.dummy.com”. Similarly, “www.dummy.com::1” de-
notes that the triplet occurred in this domain only once. If
a triplet occurs in multiple tables or domains, all of them
will be stored in the triplet record.

When we actually store these triplets, we canonicalize
them by converting them to lower case and arranging the
constituent entities in alphabetical order. The system keeps
track of all TableId:ColumnId a triplet occurred in, which
makes it possible to reconstruct a column by joining triplets
on TableId:ColumnId. Hence this storage method does not
result in any loss of information.

After scanning all tables from all HTML files, a huge list of

entity triplet records is produced. The Triplet Store Builder
ranks these triplets according to number of domains they
were found in. We create O(n) triplets from a table column
of size n. Adding each triplet to the Triplet Store using
hashmap takes O(1) time. Given a set of T html tables
with a total of N entities in them, the Triplet Store can be
created in O(N) time. Ranking the triplets using any com-
mon sorting technique will take O(N ∗ logN) time. Hence
total complexity of the Triplet Store Builder is O(N ∗ logN)

3.3 Bottom-Up Clusterer
Bottom-Up Clusterer scans all records of the triplet store

and clusters them into consistent sets of entities. This is
an unsupervised system and we do not know in advance
how many clusters are present in the triplet store. Hence
we can not use parametric clustering algorithm as k-means
clustering. Non-parametric algorithms like agglomerative
clustering [5] fits our requirements. The Bottom-Up Clus-
terer uses a variant of agglomerative clustering for the task
of clustering entity triplets.

3.3.1 Algorithm

Refer to Algorithm 1 for a formal description of the al-
gorithm. The clusterer scans through each triplet record
t which has occurred in at least k distinct domains. This
makes sure that it considers only those triplets which are
considered meaningful across multiple domains. A triplet
and a cluster are represented with the same data-structure,
which consists of set of entities, a set of TableId:ColumnId in
which entities co-occurred and a set of domains that entities
co-occurred in.

Clusterer compares the overlap of triplet t against each
cluster Ci. Triplet t is merged in Ci if either of the following
two cases is true :
(1) If any two entities from t appear in already existing
cluster Ci
(2) If any two TableId:ColumnId from t appear in already
existing cluster Ci.
In both these cases, intuitively there is a high probability
that t belongs to same category as Ci.
If no such overlap is found with existing clusters, algorithm
creates a new cluster and initializes it with the triplet t.

3.3.2 Computational complexity

Suppose that our dataset has total T tables and N entities
in the cells of those tables. For each triplet t, Algorithm 1
finds entity and TableId:ColumnId overlap with all existing
clusters. This operation can be implemented efficiently by
keeping two inverted indices : (1) from an entity to all clut-
serIds it belongs to and (2) from each TableId:ColumnId to
all clusterIds it belongs to. ClusterIds in each posting list
will be kept in sorted order.

Merging k sorted lists, with resultant list size of n takes
O(n ∗ logk) time. Now let us compute worst case time
complexity of Algorithm 1. To compute entity overlap of
each triplet, we will merge 3 posting lists with total size
of O(N). This step will take O(N) time. To compute
TableId:ColumnId overlap of each triplet, we will merge
O(T) posting lists with total size of O(N). This step will
take O(N ∗ logT) time. Hence for each triplet, finding the
clusterId to merge a triplet takes O(N ∗ logT) time. There
are O(N) triplets. So the Bottom-Up Clusterer will have
worst case time complexity of O(N2 ∗ logT).

Algorithm 1 Bottom-Up Clustering Algorithm

1: function Bottom-Up Clusterer (TripletStore) :
Clusters

2: Initialize Clusters = φ; max = 0
3: for (every t ∈ TripletStore : |t.domains| >= k) do
4: assigned = false
5: for every Ci ∈ Clusters do
6: if |t.entities ∩ Ci.entities| >= 2 OR

|t.T idCid ∩ Ci.T idCid| >= 2 then
7: Ci = Ci ∪ t
8: assigned = true; break;
9: end if

10: end for
11: if not assigned then
12: increment max
13: Create new cluster Cmax = t
14: Clusters = Clusters ∪ Cmax;
15: end if
16: end for
17: end function

Hyponym Concepts
USA country:1000
India country:200
Paris city:100, tourist place:50

Monkey animal:100, mammal:60
Sparrow bird:33

Table 3: Example records in Hyponym Concept
Dataset

3.4 Hypernym Recommender
This component of the system recommends candidate hy-

pernyms for each entity set produced by the Bottom-Up
Clusterer. For this task, we created a Hyponym Concept
Dataset, which is derived from Clueweb dataset. Detailed
description of how the Hyponym Concept Dataset was de-
rived is given in Appendix A.

Each record in this dataset contains an entity and all con-
cepts it co-occurred along with co-occurrence counts. Table
3 shows a dummy example of records in this dataset. Ac-
cording to this table, entity “USA” appeared with the con-
cept “country” 1000 times. Similarly, “Monkey” appeared
with two different concepts, 100 times with “animal” and 60
times with “mammal”.

For each set produced at the end of clustering, the Hyper-
nym Recommender finds which entities from the set belong
to Hyponym Concept Dataset, collects all concepts they co-
occur with. Then these concepts are ranked by number of
unique entities in the set it co-occurred with. This ranked
list serves as hypernym recommendations for the set. Note
that this part of the system uses information extracted from
unstructured text from the Web, to recommend category
names to sets extracted from tables on the Web.

The Hyponym Concept Dataset described above can be
noisy ,i.e., it may contain hyponyms which are not mean-
ingful entities. This noise can get introduced due to various
issues including but not limited to, sentence parsing and seg-
menting errors, spam on the Web etc. A Knowledge Base
(KB) can be used to restrict hyponyms to only the valid
entities in KN. This will generate a high quality Hyponym
Concept Dataset but it will have very low coverage.

Dataset #HTML pages #Useful tables #triplets
DS-1 30K 116K 1148K
DS-2 112K 233K 421K
DS-3 121K 216K 374K
DS-4 100K 176K 78K

Table 4: Dataset Statistics

4. EXPERIMENTAL EVALUATION
While evaluating performance of WebSets, we want to an-

swer three main questions:
(1) What fraction of the generated clusters are meaningful?
(2) How precise are the meaningful clusters? I.e. what frac-
tion of the entities in a cluster belong to the category name
assigned to that cluster.
(3) Does the Hypernym Recommender generate reasonable
category names?

In order to answer these questions, we run WebSets in
unsupervised setting and do manual evaluation of meaning-
fulness and precision of clusters.

4.1 Datasets
To test the performance of WebSets, we created focused

datasets of webpages which are likely to have consistent sets
of entities. An evaluation can then be done to check whether
the system extracts expected sets out of those datasets.

1. DS-1 (SEAL Useful) : This dataset is a collection of
30K pages in which SEAL found useful entities which
are part of NELL KB. SEAL mostly extracts entities
out of semi-structured information on the Web, which
include HTML tables. Hence we expect that WebSets
will extract good quality sets out of this dataset.

2. DS-2 (ASIA NELL) : This dataset is collected us-
ing the ASIA system. Frequent hypernyms associated
with entities in the NELL KB were used as queries
on ASIA. Examples of hypernyms in this domain are
“City”, “Bird”, “Sports team” etc. ASIA [19] is a ver-
sion of SEAL which takes a category name as input and
finds possible instances of that category using set ex-
pansion techniques. It stores all the pages downloaded
during this process in a cache, so that they can be
reused for any similar queries in the future. The cache
contents generated by a set of related ASIA queries
can serve as reasonable dataset for our experiments.

3. DS-3 (ASIA INT) : This dataset is collected using
the ASIA system by giving another set of category
names as input. These category names come from
“Intelligence domain”. Examples of categories in this
domain are “government types”, “international orga-
nizations”, “federal agencies”, “religions” etc.

4. DS-4 (Clueweb HPR) : This dataset is collected
by randomly sampling pages in the Clueweb dataset
[3] with spamrank score higher than 60%. For this
purpose we used the Fusion spam scores provided by
Waterloo university [12].

Table 4 shows the number of tables and triplets extracted
from each of these datasets. Recall from Section 3 that
during processing, HTML pages in all these datasets are

cleaned using Tidy software [1]. Also note the difference be-
tween DS-4 and remaining datasets. DS-4 contains random
sample of the Clueweb dataset, and its considerable fraction
may not contain good relational tables. On the other hand,
remaining datasets are derived using either SEAL or ASIA,
which work on structured text like lists, tables etc. This
might explain comparatively lower number of useful tables
and triplets extracted from DS-4.

4.2 Mechanical Turk Evaluation
Mechanical Turk has been shown to be an inexpensive and

fast method for obtaining labels for language tasks [17]. Sub-
jective evaluation like “deciding whether a cluster is mean-
ingful or noisy”, “assigning label to an unlabeled cluster” is
done with the help of our colleagues, we refer to them as
evaluators.

Objective evaluation of the kind “whether X belongs to
category Y” is done using Mechanical Turk. We created
yes/no questions of the form “Is X of type Y?”. To evalu-
ate precision of clusters created by WebSets, we uniformly
sampled maximum 100 clusters per dataset, with maximum
of 100 samples per cluster and gave them to the Mechanical
Turk in the form of yes/no questions. Each question was
answered by three different individuals. The majority vote
for each question was considered as a decision for that ques-
tion. We evaluated quality of labels produced by Mechanical
Turk, to make sure that precision estimates we present are
not biased high. We observed that labels are accurate more
than 90% times and precision estimates are biased low. For
more details about this evaluation refer to Appendix B.2.

4.3 Experimental Results
In this section we will see the results of evaluating Web-

Sets using three criteria : (1) Are the clusters generated by
WebSets meaningful? (2) What is precision of the meaning-
ful clusters? (3) How good are recommended hypernyms?
Subsequent sections will discuss the experiments in detail.

4.3.1 Meaningfulness of Clusters

In this experiment, we did manual evaluation of mean-
ingfulness of clusters, with the help of evaluators. We uni-
formly sampled maximum 100 clusters from each dataset.
We showed following details of each cluster to the evaluator
: (1) top 5 hypernyms suggested by the Hypernym Recom-
mender (2) maximum 100 entities sampled uniformly from
the cluster.

An evaluator was asked to look at the entities and check
whether any of the hypernyms suggested by the system is
correct. If any one of them is correct then he labels the
cluster with that hypernym. If none of the hypernym is
correct, he can label cluster with any other hypernym that
represents the cluster. If entities in a cluster are noisy or
do not form any meaningful set, then the cluster is marked
as “noisy”. If the evaluator picks any of the candidate hy-
pernyms as label or gives his own label then the cluster is
considered as meaningful, else it is considered as noisy.

Table 5 shows that 63-73% of the clusters were labeled
as meaningful. Note that number of triplets used by the
clustering algorithm (Table 5) is different from total num-
ber of triplets extracted by the Triplet Store Builder (Table
4). This is due to the fact that the Bottom-Up Clusterer
considers only those triplets which occurred in at least k
distinct domains. We set k = 2 for these experiments.

#Triplets #Clusters

#clusters
with
Hyper-
nyms

%
mean-
ingful

DS-1 165.2K 1090 312 69%
DS-2 11.4K 448 266 73%
DS-3 15.1K 395 218 63%
DS-4 561 47 34 70.5%

Table 5: Meaningfulness of generated clusters

Dataset #Meaningful clusters evaluated % Precision
DS-1 69 98.6%
DS-2 73 98.5%
DS-3 63 97.4%
DS-4 24 99%

Table 6: Avg. precision (%) of meaningful clusters

4.3.2 Precision of meaningful clusters

In this experiment we want to evaluate following two things:
(1) How consistent are the clusters? I.e. do all entities in
a cluster belong to the category specified by manual label
assigned to the cluster?
(2) How accurate is the manual labeling of clusters?

To answer these two questions, we evaluated the mean-
ingful clusters found in previous experiment, using the Me-
chanical Turk. This evaluation procedure is already dis-
cussed in Section 4.2. Table 6 shows that the meaningful
clusters have precision in the range 97-99%. This indicates
that those clusters are indeed consistent and and cluster la-
bels of meaningful clusters assigned by the evaluators are of
good quality.

4.3.3 Performance of Hypernym Recommender

In this experiment, we evaluate the performance of the
Hypernym Recommender using following criterion:
(1) What fraction of total clusters were assigned some hy-
pernym? : This can be directly computed by looking at the
outputs generated by the Hypernym Recommender.
(2) For what fraction of clusters evaluator chose the label
from the recommended hypernyms? : This can be com-
puted by checking whether each of the manually assigned
labels was one of the recommended labels.
(3) What is Mean Reciprocal Rank (MRR) of the hyper-
nym ranking? : The evaluator gets to see ranked list of
top 5 labels suggested by the Hypernym Recommender. We
compute MRR based on rank of the label selected by the
evaluator. While calculating MRR, we consider all mean-
ingful clusters(including the ones for which label does not
come from the recommended hypernyms).

Table 7 shows the results of this evaluation. Out of the
random sample of clusters evaluated, Hypernym Recommender
could label 50-60% of them correctly. MRR of labels is 0.56-
0.59 for all the datasets. There is definitely a chance of
improvement in this component of the system. We use very
simple technique based on co-occurrence of entities and con-
cepts. However our system is modular and in future we plan
to plug in more complex techniques like Ritter et. al. [16] to
improve the performance of the Hypernym Recommender.

#Clusters
Evalu-
ated

#Mean-
ingful
Clusters

#Hyper-
nyms
correct

MRR
(mean-
ingful)

DS-1 100 69 57 0.56
DS-2 100 73 66 0.59
DS-3 100 63 50 0.58
DS-4 34 24 20 0.56

Table 7: Evaluation of Hypernym Recommender

4.4 Application : Adding to an existing
Knowledge Base

One of the applications of WebSets lies in enhancing any
existing knowledge base. It can contribute new instances of
the existing categories and can also suggest new categories
that can be added to make it richer. We used NELL knowl-
edge base [18] for our experiments. As described in Section
2, the NELL knowledge base is created using the Clueweb
corpus and contains around 518K beliefs. NELL has an
underlying ontology which contains description of a set of
categories, relations. It also includes few seed examples of
each category and relation.

4.4.1 Semi-supervised Bottom-Up Clusterer

We changed the Bottom-Up Clusterer slightly for the task
of enhancing a knowledge base. The Clusterer initializes
Clusters with existing categories in the knowledge base. For
experiments in this paper, we use around a dozen seed ex-
amples in each category of NELL for initialization. With
this simple modification Bottom-Up Clusterer starts from
NELL KB categories and end up with clusters which contain
additions made to already existing KB clusters and sugges-
tions of some new clusters. New entities added to existing
NELL KB clusters, are referred by the term “promotions”.
This version of the algorithm uses facts already learnt by a
knowledge base, hence categorized as Semi-supervised.

4.4.2 Experimental Evaluation using NELL

The set of experiments explained in this section, will en-
able us to answer following questions: (1) How precise are
the recommendations made for existing categories of a knowl-
edge base? (2) What is the coverage of WebSets system?
Does it find the expected sets of entities? (3) How mean-
ingful and precise are the new categories suggested for a
knowledge base?

To answer these questions, we ran the WebSets system in
semi-supervised mode. Coverage is measured by looking at
promotions made by WebSets and other IE techniques (CPL
and CSEAL) for same set of NELL categories. Manual eval-
uation process for measuring precision and meaningfulness
of clusters is same as discussed in Section 4.3.

CPL extracts information out of sentences i.e. unstruc-
tured text, whereas WebSets use structured data like ta-
bles to extract entity sets. Both CSEAL [4] and WebSets
use structured information to come up with entity sets, but
the process they follow have some fundamental differences.
CSEAL starts with seeds for each category and queries the
Web for pages containing co-occurrence of seed instances.
It then extracts more instances of same category from those
pages by building wrappers, and the process continues. On
the other hand, WebSets starts with set of all available
HTML pages and comes up with sets that the system strongly

Category #Promotions by WebSets
DS-1 DS-2 DS-3 DS-4

academicfield - 3 9 -
athlete 2 - - -
boardgame - 18 - -
city 3117 90 245 -
coach 11 - - -
company 336 - - -
country 1569 262 778 19
emotion - 4 - -
hobby 7 13 - -
mammal - 8 - -
politician - - 26 -
scientist 423 - - -
sportsteam 88 - - -
stateorprovince 106 41 38 31
university - - 9 -
Total 5659 439 1105 50

Table 8: Number of promotions by WebSets to ex-
isting NELL categories

Category #Promotions
CPL CSEAL

academicfield 46 203
athlete 132 276
boardgame 10 126
city 1000 368
coach 188 619
company 1000 245
country 1000 130
emotion 483 183
hobby 357 77
mammal 224 154
politician 178 30
scientist 83 928
sportsteam 301 864
stateorprovince 202 114
university 1000 961
Total 6204 5278

Table 9: Number of promotions by CPL and CSEAL
to existing NELL categories

believes are meaningful. These differences in approaches and
nature of inputs indicate that direct comparison between
WebSets and other IE techniques is not possible. Hence we
compare WebSets and other IE systems in terms of their
usefulness in enhancing existing knowledge base.

4.4.3 Coverage of Promotions

In this experiment, we compare the coverage of sets pro-
duced by WebSets with other IE systems CPL and CSEAL.
We did this evaluation for only those NELL categories for
which results of CPL and CSEAL are available in Carlson
et. al. [4]. Number of promotions made by WebSets using
different datasets are shown in Table 8. It shows categories
for which WebSets found nonzero promotions using at least
one of the four datasets. A missing entry in the table in-
dicate WebSets does not produce any promotions for that
particular category and dataset. Table 9 shows the num-
ber of promotions for CPL and CSEAL methods. They are

Category Precision (%) of WebSets
DS-1 DS-2 DS-3 DS-4

academicfield - 100 88.9 -
athlete 100 - - -
boardgame - 72.2 - -
city 84.5 82.2 85.5 -
coach 100 - - -
company 97 - - -
country 60.2 82.4 67.5 84.2
emotion - 75 - -
hobby 71.4 84.6 - -
mammal - 50 - -
politician - - 92.3 -
scientist 88 - - -
sportsteam 97.7 - - -
stateorprovince 53.9 95.1 94.7 90.3
university - - 100 -
Avg. 83.6 80.2 88.1 87.2

Table 10: Precision of promotions by WebSets to
existing NELL categories

put in a separate table to indicate that the numbers are not
directly comparable since they run on different corpuses.

DS-1 is the subset of data used by CSEAL and hence it
behaves very similar to CSEAL in terms of total number of
promotions. DS-2 leads to smaller number of promotions
when compared to DS-1. This can explained by the fact
that DS-1 consists of those pages from which CSEAL found
NELL KB entities and hence are of higher quality than the
pages in the cache of ASIA system. DS-3 largely contains
information from intelligence domain, and does not cover
many pages needed to get overlap with NELL clusters. Very
few promotions from DS-4 can be attributed to the fact that
it is a random sample from Clueweb, hence likely to have
pages from diverse topics and not much redundancy for any
specific topic.

We can also see that number of entities promoted by Web-
Sets on different datasets, has a large variance. This is be-
cause each dataset has a different focus. Coverage of Web-
Sets is lower than CPL and CSEAL when compared at the
level of each NELL category. Please note that CPL runs on
Clueweb [3] dataset (500M webpages), CSEAL issues queries
on the Web, while WebSets is running on datasets of size
30-100K webpages. Taking these corpus differences into ac-
count, the performance of WebSets is encouraging.

4.4.4 Precision of Promotions

To compute precision of WebSets, we gave 100 random
samples from each cluster found in each dataset to the Me-
chanical Turk and calculated precision of whole cluster based
on precision of the sample. Similar to previous experiment,
Table 10 and Table 11 show the precision evaluation for
WebSets and other IE methods (CPL, CSEAL) respectively.
From these results we can say that WebSets produces results
with precision close to CPL and slightly less precision than
CSEAL. More precision results of WebSets on remaining
NELL categories are presented in Appendix B.1.

4.4.5 Evaluation of new category suggestions

In this section, we will evaluate both meaningfulness and
precision of the additional clusters proposed by WebSets.

Category Precision(%)
CPL CSEAL

academicfield 70 90
athlete 87 100
boardgame 80 70
city 97 97
coach 93 100
company 97 100
country 57 97
emotion 77 87
hobby 77 77
mammal 83 93
politician 80 97
scientist 97 100
sportsteam 90 87
stateorprovince 77 83
university 93 100
Avg. 83.6 91.8

Table 11: Precision of promotions by CPL and
CSEAL to existing NELL categories

#Clusters #Meaningful #Noisy Avg.
Precision

(meaningful)
DS-1 107 81 26 94.44
DS-3 126 50 76 92.41

Table 12: Evaluation of meaningfulness of extra
clusters suggested to NELL

These are the clusters which could not get merged with
NELL clusters due to lack of entity overlap or absence of
the category in NELL KB. To judge meaningfulness of these
clusters we asked an evaluator to manually label each clus-
ter after looking at the entities in it. If the cluster does not
represent any consistent set, it is marked as “noisy”.

Table 12 shows these evaluation results for datasets DS-1
and DS-3. We can see that 81 out of 107 clusters from DS-1
are meaningful with average precision within those clusters
being 94.44%. However for DS-3, relatively smaller frac-
tion of clusters (50 out of 126) are meaningful, but within
meaningful clusters precision is quite high i.e. 92.41%. Poor
performance on DS-3 suggests that the system needs some
mechanism to rank meaningful clusters above noisy clus-
ters. Features like “#entity matched in hyponym pattern
dataset”, and “#domains the triplets come from” can be
used for this purpose.

Table 13 shows a sample of meaningful clusters from DS-1
and DS-3. We can see that most of the clusters have very
high accuracy (above 95%) while few clusters have very low
accuracy (bellow 50%). These results show that some cat-
egories are very much prone to noise. This suggests a need
to strengthen our algorithm to avoid bridging between very
different sets of entities that have a reasonable overlap. Ta-
ble 13 also shows the diversity of cluster labels across DS-
1 and DS-3 (note the highlighted labels). DS-1 is focused
on pages containing NELL entities hence generates common
categories like like “city”, “bird”, “sports team”. However
DS-3 is focused on intelligence domain, and could gener-
ate some very specialized categories like “religions”, “inter-
national organizations”, “social metrics”, “police designa-

DS-1 DS-3
Manual label Precision Manual label Precision
tv channels 100 airline 100
tourist place 100 apparel 100
shoes/footwear 100 car make 100
researcher 100 n/w protocol 100
months 100 governmentType 100
laptop 100 iraq event 100
language 100 occupation type 100
pond 100 police desgn 100
celebrity 100 region 100
bird 100 religion 100
baseball players 100 contact info. 100
athletics 100 university 100
actress/models 100 Intl.organization 96.67
pond/lake 97.78 service 96.15
chemicals 97.78 department 93.33
product 96 linux jargon 92.86
mountain 91.67 province 88.24
genes 91.11 chemical element 87.38
book type 87.5 action 63.04
shoes 85.71 social metric 55.56
film studio 78.57 USA state 48.42
hobby 55.56 computer h/w 16.67

Table 13: Precision (%) of manually labeled extra
clusters from DS-1, DS-3

tions” etc. These experiments with WebSets for enhancing
the NELL KB do show encouraging results.

5. CONCLUSION
In this paper, we presented an unsupervised information

extraction technique called WebSets, which exploits struc-
tured data in the from HTML tables on the Web. Our ex-
periments with different datasets show that WebSets can
extract meaningful sets with very high precision (97-99%).
It also suggests reasonable category names for these sets.
Further, WebSets can be used for the task of enhancing an
existing knowledge base. Experiments with the NELL KB
show that WebSets can suggest new entities for existing cat-
egories with reasonably high precision (80-87%). It also has
the ability to find new clusters that can be added to NELL.
Existing IE techniques like CPL and CSEAL do not have
this capability.

In this paper we worked on extracting sets belonging to
particular categories. As an immediate next step, we want
to extend this system for extracting relations from tables
on the Web. We also plan to integrate the semi-supervised
version of WebSets with the NELL knowledge base. For
this purpose, we will run WebSets on ClueWeb dataset to
extract candidate instances and new category suggestions
for NELL.

6. REFERENCES
[1] Html tidy library project. http://tidy.sourceforge.net/.

[2] M. J. Cafarella, E. Wu, A. Halevy, Y. Zhang, and
D. Z. Wang. Webtables: Exploring the power of tables
on the web. PVLDB, 2008.

[3] J. Callan. The clueweb09 dataset.
http://boston.lti.cs.cmu.edu/Data/clueweb09/.

[4] A. Carlson, J. Betteridge, R. C. Wang, E. R.
Hruschka, Jr., and T. M. Mitchell. Coupled
semi-supervised learning for information extraction. In
WSDM, 2010.

[5] W. H. E. Day and H. Edelsbrunner. Efficient
algorithms for agglomerative hierarchical clustering
methods. In Journal of Classification, 1984.

[6] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M.
Popescu, T. Shaked, S. Soderland, D. S. Weld, and
A. Yates. Web-scale information extraction in
knowitall: (preliminary results). In WWW, 2004.

[7] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yate.
Unsupervised named-entity extraction from the web:
An experimental study. In AI, 2005.

[8] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl,
and B. Pollak. Towards domain-independent
information extraction from web tables. In WWW,
2007.

[9] R. Gupta and S. Sarawagi. Answering table
augmentation queries from unstructured lists on the
web. In VLDB, 2009.

[10] R. Gupta and S. Sarawagi. Joint training for
open-domain extraction on the web: exploiting
overlap when supervision is limited. In WSDM, 2011.

[11] M. A. Hearst. Automatic acquisition of hyponyms
from large text corpora. In ACL, 1992.

[12] J. Kamps, R. Kaptein, and M. Koolen. Using anchor
text, spam filtering and wikipedia for web search and
entity ranking. TREC, 2010.

[13] Z. Kozareva and E. Hovy. A semi-supervised method
to learn and construct taxonomies using the web. In
EMNLP, 2010.

[14] G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and searching web tables using entities,
types and relationships. PVLDB.

[15] A. Parameswaran, H. Garcia-Molina, and
A. Rajaraman. Towards the web of concepts:
Extracting concepts from large datasets. In VLDB,
2010.

[16] A. Ritter, S. Soderland, and O. Etzioni. What is this,
anyway: Automatic hypernym discovery. In AAAI,
2009.

[17] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng.
Cheap and fast - but is it good? evaluating non-expert
annotations for natural language tasks. In EMNLP,
2008.

[18] M. Tom. Nell: Never-ending language learning.
http://rtw.ml.cmu.edu/rtw/.

[19] R. C. Wang and W. W. Cohen. Automatic set
instance extraction using the web. In ACL, 2009.

[20] R. C. Wang and W. W. Cohen. Character-level
analysis of semi-structured documents for set
expansion. In EMNLP, 2009.

[21] A. Yates, M. Cafarella, M. Banko, O. Etzioni,
M. Broadhead, and S. Soderland. Textrunner: Open
information extraction on the web. In NAACL HLT,
2007.

Id Regular expression
1 arg1 such as (w+ (and|or))? arg2
2 arg1 (w+)? (and|or) other arg2
3 arg1 include (w+ (and|or))? arg2
4 arg1 including (w+ (and|or))? arg2

Table 14: Regular expressions used to create Hy-
ponym Concept Dataset

APPENDIX
A. HYPONYM CONCEPT DATASET

To build the Hyponym Concept Dataset, we used data extracted
from the ClueWeb09 corpus by the developers of the NELL system
[18]. They used heuristics to identify and then shallow-parse approx-
imately 2 billion sentences, and then extracted from this all patterns
of the form “ word1 .. wordk ” where the ‘filler’ word1 .. wordk

is between one and five tokens long, and this filler appears at least
once between two base noun phrases in the corpus. Each filler is
paired with all pairs of noun phrases that bracket it, together with
the count of the total number of times this sequence occurred. For in-
stance, the filler ‘ and vacations in ’ occurs with the pair ‘Holidays,
Thailand’ with a count of one and ‘Hotels,Italy’ with a count of six,
indicating that the phrase “Hotels and vacations in Italy” occurred
six times in the corpus . The hyponym dataset was constructed by
finding all fillers that match one of the regular expressions in Table
14. These correspond to a subset of the Hearst patterns used in ASIA
[19] together with some “doubly anchored” versions of these patterns
[13].

B. MORE EXPERIMENTS
B.1 Performance of WebSets on the remaining

NELL categories
In Section 4.4.4, we presented precision results for only those cate-

gories for which we already have precision values for CPL and CSEAL.
In this section, we measure precision of promotions made by Websets
to remaining NELL categories. Here, we evaluate the promotions
against NELL category names. We sample 100 instances at random
from each cluster from each dataset, and do the Mechanical Turk
evaluation.

Results for all four datasets are shown in Table 15. As can be
seen, for most of the clusters, precision is very high. WebSets gives
noisy results few two clusters including “color” and “female names”
when run on DS-3. We did some error analysis to understand, why
the words like “they”, “said”, “no”, “people”, “are”, get added to
category “color”. We found that several educational websites for
children contain tables with all common words, which include the
colors like “green”, “red”, “blue”. As there are several such web-
pages (e.g. http://www.mrsperkins.com/dolch-words-all.html), Web-
Sets promote several common words as “colors”. This suggests the
need for strengthening our clustering algorithm to avoid such cases.

B.2 Evaluating Quality of Mechanical Turk
Experiments

To check the quality of the Mechanical Turk evaluation, we sampled
100 questions at random, and manually answered the questions. Then
we checked whether majority vote by the Mechanical Turk matches
with our answers. We specifically checked majority votes for some
confusing questions which were likely to get labeled wrong. We found
that majority vote of three individuals was correct more than 90%
times. The only mistakes were false negatives, i.e. “X is of type
Y”, but popular vote said “no”. This was mainly because X was
not much popular(some very old scientist’s name) or disputed(it was
difficult to tell whether an island is country by itself or is part of
some other ruling country). Except such cases, majority vote of three
individuals was always correct. Since the mistakes are mainly false
negatives, precision estimates we derive would not be biased high.

Category Precision (%)
DS-1 DS-2 DS-3 DS-4

automobilemaker - 100.00 83.33 -
automobilemodel - - 100.00 -
bird 80.00 100.00 - -
blog 98.80 - - -
buildingmaterial - 91.30 84.62 -
cardgame - 100.00 - -
chemical 88.65 94.87 - -
color - 71.43 29.35 -
consumerelectronicitem - 73.68 - -
continent 82.35 100.00 76.92 -
dayofweek - - - 100.00
ethnicgroup 97.78 - - -
female names - - 20.00 -
fish 94.85 94.44 - -
insect 100.00 - - -
language 88.29 100.00 92.93 100.00
magazine - - 100.00 -
mountain 100.00 - - -
musicgenre 100.00 - - -
musicinstrument - 100.00 - -
newspaper 93.41 - - -
park 98.90 - - -
planet 100.00 - - -
politicsblog 88.00 - - -
programminglanguage - - 81.32 -
recordlabel 55.56 50.00 - -
religion - - 100.00 -
stadiumoreventvenue 96.70 - - -
televisionnetwork 97.80 - - -
televisionstation 87.78 - - -
vegetable - 100.00 - -
videogame 72.73 - - -
Average precision 90.61 90.44 76.85 100.00

Table 15: Performance of WebSets on NELL cate-
gories

