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Abstract

The task of matching co-referent records is
known among other names as record link-
age. For large record-linkage problems, of-
ten there is little or no labeled data available,
but unlabeled data shows a reasonably clear
structure. For such problems, unsupervised
or semi-supervised methods are preferable to
supervised methods. In this paper, we de-
scribe a hierarchical graphical model frame-
work for the record-linkage problem in an un-
supervised setting. In addition to propos-
ing new methods, we also cast existing un-
supervised probabilistic record-linkage meth-
ods in this framework. Some of the tech-
niques we propose to minimize overfitting in
the above model are of interest in the gen-
eral graphical model setting. We describe a
method for incorporating monotonicity con-
straints in a graphical model. We also outline
a bootstrapping approach of using “single-
field” classifiers to noisily label latent vari-
ables in a hierarchical model. Experimental
results show that our proposed unsupervised
methods perform quite competitively even
with fully supervised record-linkage methods.

1 Introduction

Databases frequently contain multiple records that re-
fer to the same entity, but are not identical. The
task of matching such co-referent records has been ex-
plored by a number of communities, including statis-
tics, databases, and artificial intelligence. Each com-
munity has formulated the problem differently, and dif-
ferent techniques have been proposed.

In the database community, some work on record
matching has been based on knowledge-intensive ap-
proaches [7, 6, 13]. More recently, the use of string-

edit distances as a general-purpose record matching
scheme was proposed by Monge and Elkan [10, 9], and
in previous work [2, 3], we developed a toolkit of vari-
ous string-distance based methods for matching entity-
names. The AI community has focused on applying
supervised learning to the record-linkage task — for
learning the parameters of string-edit distance metrics
[14, 1] and combining the results of different distance
functions [15, 4, 1]. More recently, probabilistic object
identification methods have been adapted to matching
tasks [12]. In statistics, a long line of research has been
conducted in probabilistic record linkage, largely based
on the seminal paper by Fellegi and Sunter [5].

In this paper, we follow the Fellegi-Sunter approach of
treating the record-linkage problem as a classification
task, where the basic goal is to classify record-pairs as
matching or non-matching. Many record-linkage prob-
lems are quite large, such as the matching of individu-
als and/or families between samples and censuses, e.g.,
in the evaluation of the coverage of the U.S. decennial
census. Often for such large problems, there is little
or no labeled data available, but unlabeled data shows
reasonably clear structure. For such problems, unsu-
pervised or semi-supervised methods are preferable to
supervised methods.

In this paper, we describe a hierarchical graphical
model framework for approaching this problem. In
addition to proposing new methods, we also cast ex-
isting unsupervised probabilistic record-linkage meth-
ods in the framework. The proposed graphical model
has (k + 1) latent variables for records with k fields,
and hence fitting it to the data with minimal over-
fitting is a non-trivial task. We outline approaches to
deal with this estimation problem in Section 4, some of
which could also be utilized in more general graphical
model applications. We address the problem of in-
corporating monotonicity constraints into a graphical
model, which should be helpful in reducing overfitting
in complex generative models where such constraints
exist. We also outline a bootstrapping approach of



using “single-field” classifiers to assign noisy labels to
the latent variables in a hierarchical model. Results
show that this enables us to capture constraints in the
multi-field-record data more effectively. We also note
that the proposed hierarchical model could be used
to address the general problem of fitting a graphical
model to continuous data (Section 7).

Experimental results show that our proposed unsuper-
vised methods are competitive with fully supervised
record-linkage methods.

2 Preliminaries

Given two lists of records, A and B, we look at the the
task of detecting the matching record-pairs (a, b) ∈ A×
B. A record is basically a vector of fields, e.g., Figure 1.
Thus, a record-pair is essentially a vector of field-pairs.
More generally, we can represent a record-pair (a, b) as
a vector of features, often called a comparison vector:
f(a, b) = f1(a, b), ..., fk(a, b), where f1, . . . , fk are the
features.

Unless specified otherwise, we will consider the record-
pair feature vector to be a vector of distances, one for
each field-pair. If there are k fields, we denote the
feature vector by f , where fi is the distance feature for
the ith field.

The record-linkage problem is the classification task
of assigning the record-pair feature vectors to a label
“matching” or “non-matching”. Denote the match-
class by a binary variable M , where M = 0 indicates
a non-match and M = 1 indicates a match. The goal
of probabilistic record-linkage is to formulate a prob-
abilistic model for the match-class M and the feature
vector f , and use the same to estimate the probability
of the match class given the record-pair feature vector,
P (M |f). In an unsupervised setting, this amounts to
estimating a generative model for (f ,M).

3 Graphical Models for existing
Record-Linkage Methods

Existing unsupervised methods for probabilistic
record-linkage use a generative model for the record-
pair feature vector with a single latent match-class
variable, as shown in Figure 2. Note that the genera-
tive model is for the record-pair feature vector rather
than the record-pair itself. Some other generative
models for classification such as Naive-Bayes and Tree-
Augmented Naive Bayes form special cases of Figure 2.

The predominant problem with the graphical model
in Figure 2 is that the fi feature values are contin-
uous, which precludes the normal multinomial prob-
ability model for a Bayesian network. There are two
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Figure 2: Model with a single latent match-class

basic approaches to deal with continuous variables in a
graphical model: we can restrict to specific families of
parametric distributions e.g., Gaussian mixture mod-
els, or we can discretize the variables and learn the
model over the discrete domain.
Discretization: The f feature vector is discretized to
a discrete-valued vector ~w. For example, one way of
discretizing into binary values is:

wi =
{

1 if fi > θi
0 if fi ≤ θi (1)

One could then fit a multinomial probability model to
the graphical model in Figure 2, as the observation
values for the bottom layer are now discrete. This
approach of binarization of the distance-features has
been adopted by Winkler et al [16, 17] and is one of
the baseline methods we compare our model to.

While the above approach enables using the efficient
estimation and inference machinery of discrete graphi-
cal models, it has the problem that discretization into
a small number of values leads to a poor approximation
of the continuous distribution. However, if we increase
the number of discrete values d, there is a potential
explosion in the number of parameters of the model.
In the graphical model of Figure 2, if the average
number of parents for a node is q, and each node has
d values, then the number of multinomial parameters
to estimate for k such nodes is O(kdq). This might
cause standard estimation methods to overfit the data.

Using specific parametric families: Instead
of using the discrete-valued multinomial distribution
for the variables, we could use other parametric
families which allow continuous values, and for which
there exists an efficient machinery for estimation and
inference, such as the Gaussian distribution.

Gaussian distributions have the added advantage
that a mixture of m Gaussians can model any prob-
ability distribution to arbitrary accuracy, provided
m is large enough [8]. This suggests the following
semi-supervised approach: we cluster the unlabeled
feature-vectors using a Gaussian mixture model. We
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Figure 3: Hierarchical generative model for Record
Linkage

then use the limited labeled training data to label
the clusters. The most frequently occurring label in
the labeled feature vectors of a cluster is the label
assigned to that cluster. This approach is another of
the baselines we compare our model to.

Supervised Learning: One could also train
the graphical model in Figure 2 in a supervised
learning setting, if adequate labeled training data is
available. As in [15, 4, 1], we could train, for example,
a binary SVM classifier to predict the match-class
given the continuous-valued feature-vector. Since this
is a fully supervised method, it is not applicable when
little or no labeled data is available.

4 A hierarchical graphical model for
record-linkage

The graphical model for record linkage in Figure 2 can
be generalized to a hierarchical three-layer model as
shown in Figure 3. The bottom layer f in this model
is a feature-vector layer as before, where each node in
this layer corresponds to a distance-feature fi. The
difference in this model, when compared to Figure 2,
is the set of binary latent variables xi for each distance
feature fi. The match-class latent variable M in turn
depends on these intermediate latent variables. Thus,
we have a hierarchical mixture model with (k + 1) la-
tent variables and k dimensional observed data, given

k fields.
Rationale for the hierarchical model: While the
intermediate latent variables as described above are
operationally free to take any value, superimposing a
certain semantic interpretation upon the latent vari-
ables shall give an intuition for the hierarchical model,
as well as allow us to constrain the model in order to
make the estimation of the structure and parameters
easier.

Specifically, one could interpret the binary-valued mid-
dle layer x nodes in Figure 3 as latent match vari-
ables for each field. Thus, each node xi in the middle
layer corresponds to the match-class of a single field-
pair distance feature fi. The top node in Figure 3
is the record-match class latent variable, which gives
the match class of the entire record-pair, and which
depends on the latent match class variables xi of the
individual fields.

Thus, P (xi|fi) gives the error model for field i. As-
suming an independence of error models, there can be
dependencies among nodes only in the middle layer,
and all the bottom layer nodes are independent con-
ditional on their latent-classes in the middle layer.
This captures a natural intuition, since when we talk
about dependencies between field-pairs, we imply a de-
pendency between the match-classes of the field-pairs
rather than the particular values themselves. Thus,
when we say that the address field-pair is dependent
on the name field-pair, we intuitively imply only that
an address-match is dependent on a name-match. This
is what is captured by the above graphical model.

As we model dependencies only between nodes in the
middle layer, which are binary valued, we do not have
to estimate as many parameters as a discretization of
the model in Figure 2. Thus, assuming the average
number of parents of a node in the middle layer is q,
the number of multinomial parameters for any node in
the middle layer is O(2q) and for all k nodes is O(k2q).
This is as opposed to O(kdq) if we directly modeled
dependencies in Figure 2 after discretization as in the
previous section.

However, the number of multinomial parameters in the
graphical model of Figure 3 is still quite large, which is



not surprising given that it is a hierarchical latent vari-
able model with (k + 1) latent variables and k obser-
vation variables. Hence, normal estimation techniques
like EM would overfit the data. The remainder of the
paper describes assumptions and constraints that re-
duce overfitting substantially: in fact, the final model
does overfit, but performance is still very good and is
competitive with supervised approaches.

5 Probability Estimation in the
general model

Estimating the probabilities in the graphical model of
Figure 3 via structural EM without any constraints
is expensive with respect to both computation and
generalization-error. Hence, we impose three types of
constraints on the model before performing structural
EM on the same. Our experiments thus follow the
procedure below:

• We discretize each node in the bottom layer fi to
have d values. This does not cause a blowup of
parameters since each bottom-layer node fi has
only one parent xi, and thus the number of multi-
nomial parameters for each node fi is just O(d).

• We then impose further constraints on the model
as described in this section.

• Given the constraints, we then use structural EM
to estimate the structure of the dependencies in
the middle layer, and the parameters of the entire
model.

5.1 Semantic Constraints

As described in Section 4, we can impose a semantic
interpretation on the latent variables of the hierarchi-
cal graphical model: the middle layer x nodes as la-
tent match-classes for the individual fields, and the top
node M as the match-class for the entire record-pair.
This gives the constraint:

P (M = 1|x) =
{

1 if x eq ~1
0 otherwise

(2)

The constraint in Equation 2 follows from the intuitive
expectation that for a matching-record pair, the indi-
vidual field-pairs would also be matches. Note that
this does not assume that the field-pairs are error-free.
In fact, given that the xi nodes represent the true
match class for each individual field-pair i, P (xi|fi)
captures the error model for field i.

The match-class probability conditional on the obser-

vations can be estimated from Figure 3 as:

P (M = 1|f) =
∑
x

P (M = 1,x|f) (3)

As the overall match-class latent variable M at the
root is independent of the feature vector f of the bot-
tom layer, given the latent match-classes x, we have
∑
x

P (M = 1,x|f) =
∑
x

P (M = 1|x)P (x|f) (4)

From Equations 3 and 4, and the constraint in Equa-
tion 2 it follows:

P (M = 1|f) =
∑
x

P (M |x)P (x|f)

= P (M = 1|x = ~1)P (x = ~1|f) + 0
= P (x = ~1|f)
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Figure 4: Two Layer Model

Thus, it follows that the dependencies between the la-
tent variable M and the latent variable layer x need
not be modeled, and the graphical model in Figure 3
reduces to a non-hierarchical latent variable model
with only the middle and bottom layers as shown in
Figure 4. The record-linkage task thus reduces to a
more manageable task of estimating P (x = ~1|f) after
learning the structure and parameters of the model in
Figure 4.

5.2 Monotonicity Constraints

Given that the parent’s label is “match”, the probabil-
ity of a node also having the label “match” is greater
than having the label “non-match”. The multinomial
model of Figure 4 is still prone to overfitting as it does
not capture such monotonicity constraints.

Specifically, if we discretize fi ∈ [0, 1], with a higher
discrete value indicating a higher degree of “match”,
we would like to enforce the monotonicity constraint:

j1 ≥ j2 ⇒ P (fi = j1|xi = 1) ≥ P (fi = j2|xi = 1)

We can capture these constraints by a simple modifica-
tion to the multinomial model. Consider the standard
multinomial model with Pr(x) =

∏
i p
ni
i where pi are



the multinomial parameters and ni are the counts. We
want to enforce additional constraints:

pi ≥ pj if i > j (5)

We can do this by requiring pi = pi−1 + ∆i and
constraining ∆i to be positive. This leads to the
reparametrization:

p1 = ∆1, p2 = ∆1 + ∆2, . . . , pk =
k∑

j=1

∆j

∆i ≥ 0 for i = 1, . . . , k

The constraint in Equation 5 follows.

Estimation of the ∆ parameters
The parameters pi of the standard multinomial model
Pr(x) =

∏
i p
ni
i , when estimated via maximum

likelihood, are given by pi = ni∑
i ni

.

We want to estimate the ∆i parameters by maximiz-
ing the likelihood Pr(x) =

∏
i(
∑i
j=1 ∆j)ni under the

constraints ∆i ≥ 0,
∑
i(
∑i
j=1 ∆j) = 1. We cast this

as an unconstrained optimization problem by using a
Lagrange multiplier for the equality constraint, and
using a barrier function for the inequality constraints.
The barrier function attains value 0 if any ∆i < 0 and
attains value 1 otherwise. In other words, we want
the barrier function to be a step function at zero, but
would also like it to be continuous and smooth to fa-
cilitate an easy optimization of the objective function.
We use the sigmoid function σ(x) = 1

1+e−ax for such a
barrier function. In our experiments, we used a = 20.
The optimization function then becomes:

∏

i

(
i∑

j=1

∆j)n
i

σ(∆i)− λ[
∑

i

(
i∑

j=1

∆j)− 1]

where λ is a Lagrange multiplier.

On setting the derivative of the above function
to zero, we get the following fixed point equations:

pi =
ni − gipi

N −∑j gjpj
(6)

where N =
∑
i ni, pi =

∑i
j=1 ∆j , gi = a(σ(∆i) −

σ(∆i+1)) for i < k and gk = a(σ(∆k)− 1).

The optimal estimates are thus given by the following
iterative updates:

∆̂(t)
i = p̂i

(t) − p̂(t)
i−1

g
(t)
i = a(σ(∆̂(t)

i )− σ(∆̂(t)
i+1))

p̂i
(t+1) =

ni − g(t)
i p̂i

(t)

N −∑j g
(t)
j p̂

(t)
j

The convergence rate is quite fast empirically, averag-
ing around 20 iterations for our datasets.

5.3 Bootstrapping with noisy labels

In this approach, we take a “single-field” classifier,
which predicts the class-label xi given a single field-
pair fi, and use its output to noisily label the latent
match-class variable xi given the observed field-pair
feature fi. Thus, in Figure 4, we have noisy labels for
the latent match-class variables in the middle layer,
and observed values for the distance feature variables
in the bottom layer. We can thus learn the structure
and parameters of the model as if in a completely su-
pervised setting. In other words, we are able to boot-
strap the model by allowing it to combine the outputs
of k single-field classifiers for each of the k fields.

Our experiments show that while training the entire
model in this way, using noisy labels, performs better
than using plain structural EM, there seems to be a
problem of overfitting the noise in the labels. Thus,
by labeling only a part of the unlabeled data using the
noisy-label approach above, and performing EM on
both the unlabeled and the noisily labeled data, as in
[11], we are able to get even better results. In our ex-
periments, we use a classifier based on the SoftTFIDF
distance-metric[2].

6 Results

We have used two datasets to evaluate and compare
the above methods, both of which have labeled records
consisting of many correlated fields. The “census”
dataset is a synthetic, census-like dataset containing
841 records, from which only textual fields were used
(last name, first name, middle initial, house number,
and street). The “restaurant” dataset contains 864
restaurant names and addresses with 112 duplicates,
the fields being restaurant name, street address, city
and cuisine.

Since it is not computationally practical to consider
all pairs of records, we use a “blocking” method that
outputs a smaller set of candidate pairs. For the
moderate-size test sets considered here, we consider
all pairs that share some character 4-gram. This 4-
gram blocker finds an average of 99% of the correct
pairs.

To evaluate a method on a dataset, we ranked all
candidate pairs from the appropriate grouping algo-
rithm by the posterior probability of the match-class
given the observations. Following our earlier work [3],
we computed the non-interpolated average precision of
this ranking, the maximum F1 score of the ranking,
and also interpolated precision at the eleven recall lev-



els 0.0, 0.1, . . . , 0.9, 1.0. Precision of a ranking con-
taining N pairs for a task with m correct matches at a
position i is the fraction of pairs ranked before position
i that are correct, i.e., c(i)i where c(i) is the number
of correct pairs ranked before position i. Recall at a
position i is the fraction of correct pairs ranked before
position i, i.e, c(i)m . F1 score at a position i is the har-
monic mean of recall and precision at that position,
2pr
p+r .

The non-interpolated average precision is
1
m

∑N
r=1

c(i)δ(i)
i , where δ(i) = 1 if the pair at

rank i is correct and 0 otherwise. Interpolated pre-
cision at recall r is the maxi

c(i)
i , where the max is

taken over all ranks i such that c(i)
m ≥ r.

6.1 Baseline Methods

We compare our hierarchical model and its modifica-
tions to various baseline methods in Table 1. The base-
line methods are described in detail in Section 2. The
Winkler unsup method refers to the unsupervised EM-
based estimation of parameters in the 2 layer model of
Figure 2 as in [16, 17]. Winkler sup refers to a super-
vised Maximum Likelihood Estimation of the above 2
layer model given fully labeled data. Winkler semisup
refers to a semi-supervised EM-based estimation of pa-
rameters given partially labeled data (one-third of a
dataset) as in [11]. The Gaussian Mixture Model, de-
scribed in Section 2, is also a semi-supervised method.
Our experiments used a mixture model of 6 Gaussians.
We used the SoftTFIDF distance metric [2] for all field
distances. For the binarization in the Winkler meth-
ods above, a threshold of 0.8 was used. In the case
of supervised and semi-supervised methods, three-fold
cross-validation was used to evaluate performance.

Figure 5 compares our proposed hierarchical graph-
ical model (HGM) to the above methods. Note
that the HGM is a completely unsupervised method
requiring no labeled data, and hence the compari-
son against semi-supervised and supervised methods
stacks the odds against it. As Figure 5 shows, the
HGM clearly outperforms baseline unsupervised meth-
ods, and is competitive with even fully supervised and
semi-supervised methods.

6.2 Comparisons of modifications to the
HGM

6.2.1 Semantic Constraints

From Table 1, we see that the hierarchical model, in
the absence of semantic constraints on the latent vari-
ables, is not able to fit the data at all. However,
the with the addition of semantic constraints, i.e. the

model of Figure 4, the performance of the model rises
well above other baseline unsupervised methods.

6.2.2 Monotonicity Constraints

As in Section 5.2, we modify the likelihood function by
appending a barrier function, in order to satisfy cer-
tain monotonicity constraints implicit in the graph-
ical model. From the table 1, we see that incorpo-
rating monotonicity constraints raise the performance
markedly for the restaurant dataset, and slightly for
the census dataset.

6.2.3 Bootstrapping

As the Table 1 shows, training the hierarchical model
(Figure 4) by noisily labeling the latent match-class
nodes using a “single-field classifier” as described in
Section 5.3, leads to a great improvement in perfor-
mance. We also observe that adding the monotonicity
constraints in addition to the bootstrapping, does not
lead to a further increase in performance. This in-
dicates that the bootstrapping approach is also able
to constrain the model monotonically for this dataset.
But for other datasets, adding both methods could
conceivably improve performance to a greater extent.

7 Conclusions

For large record-linkage problems, often there is little
or no labeled data available, but unlabeled data has
reasonably clear structure. For such problems, unsu-
pervised or semi-supervised methods are preferable to
supervised methods. We have described a hierarchical
latent variable graphical model (Figure 3) to perform
record-linkage in such an unsupervised setting. Exist-
ing generative record-linkage methods can also be cast
as special cases of the above general model. The hier-
archical model has k + 1 latent variables for k obser-
vations, and hence fitting it to the data with minimal
overfitting is a non-trivial task. We outline approaches
to the estimation problem which are applicable even
in a general graphical model setting. We address the
problem of incorporating monotonicity constraints in a
graphical model, which should be helpful in reducing
overfitting in complex generative models where such
constraints exist. We also outline a bootstrapping ap-
proach of using a single-field classifier to assign noisy
labels to the latent variables in the hierarchical model,
which as results show, enable us to capture constraints
in the data more effectively.

We also note that the above hierarchical model, and
the estimation methods therein, can be used to ad-
dress the general problem of fitting a graphical model
to continuous data. For this continuous variable prob-



Method Restaurant Census
AvgPrec MaxF1 AvgPrec MaxF1

Winkler semi-supervised 0.900 0.900 0.667 0.785
supervised 0.902 0.904 0.679 0.784

Winkler unsupervised 0.617 0.568 0.495 0.612
Gaussian Mixture Model 0.702 0.704 0.242 0.388

Hierarchical Graphical Model 0.102 0.106 0.101 0.116

Semantically Constrained HGM 0.786 0.820 0.727 0.758
+ Monotonic Constraints 0.795 0.823 0.728 0.759
+ Bootstrap 0.820 0.844 0.728 0.759
+ both 0.820 0.844 0.728 0.759

Table 1: Average precision and MaxF1 values for the record-linkage methods
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Figure 5: Comparison of the graphical models: Restaurant dataset to the left, Census dataset to the right

lem, fitting a Gaussian mixture model performs poorly
on our datasets, and discretization does not allow full
freedom in modeling dependencies between variables
as it suffers from a combinatorial explosion in the num-
ber of parameters. The method described in our pa-
per, of introducing a latent variable for each node, and
modeling dependencies only between the latent classes
reduces the dimensionality of the parameter space con-
siderably. Also sometimes, as with the record-linkage
case, it makes more intuitive sense to model depen-
dencies only in a latent-match-class layer.

As Figure 5 shows, the unsupervised methods we pro-
pose are competitive with even fully supervised meth-
ods.
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