
Context-Sensitive Learning Methods for
Text Categorization

WILLIAM W. COHEN and YORAM SINGER
AT&T Labs

Two recently implemented machine-learning algorithms, RIPPER and sleeping-experts for
phrases, are evaluated on a number of large text categorization problems. These algorithms
both construct classifiers that allow the “context” of a word w to affect how (or even whether)
the presence or absence of w will contribute to a classification. However, RIPPER and
sleeping-experts differ radically in many other respects: differences include different notions
as to what constitutes a context, different ways of combining contexts to construct a classifier,
different methods to search for a combination of contexts, and different criteria as to what
contexts should be included in such a combination. In spite of these differences, both RIPPER
and sleeping-experts perform extremely well across a wide variety of categorization problems,
generally outperforming previously applied learning methods. We view this result as a
confirmation of the usefulness of classifiers that represent contextual information.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.6 [Artificial Intelligence]: Learning—concept learning; pa-
rameter learning; I.5.4 [Pattern Recognition]: Applications—text processing

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Context-sensitive models, mistake-driven algorithms,
on-line learning, rule learning, text categorization

1. INTRODUCTION
Learning methods are frequently used to automatically construct classifiers
from labeled documents [Lewis 1992b; Lewis and Ringuette 1994; Lewis
and Gale 1994; Apté et al. 1994b; Yang and Chute 1994; Hull et al. 1995;
Wiener et al. 1995; Cohen 1995b]. In this article, we will investigate the
performance of two recently implemented machine-learning algorithms on
a number of large text categorization problems. The two algorithms consid-
ered are set-valued RIPPER, a recent rule-learning algorithm [Cohen

A earlier version of this article appeared in Proceedings of the 19th Annual International ACM
Conference on Research and Development in Information Retrieval (SIGIR) pp. 307–315.
Authors’ address: AT&T Labs, 180 Park Avenue, Florham Park, NJ 07932; email:
wcohen@research.att.com; singer@research.att.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1046-8188/99/0400–0141 $5.00

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999, Pages 141–173.

1995a; 1996b], and sleeping-experts, a new on-line learning method [Freund
et al. 1997].

These algorithms share several features that make them attractive for
large text categorization problems. First, both algorithms are efficient on
large, noisy corpora, running in linear or nearly linear time. Second, both
algorithms use what could be called a direct representation of text, in
which a document is represented as an ordered list of tokens; in particular,
it is not necessary to extract from a corpus a small set of informative
features.

Third, both algorithms allow the context of a word w to influence how the
presence or absence of w will contribute to a classification. Many common
text categorization schemes, such as “naive” Bayes and Rocchio’s algorithm,
produce linear classifiers, in which the features correspond to individual
terms—typically words or word stems. In a linear classifier, the presence or
absence of a word w in a document d will have the same influence on the
predicted class of d regardless of other words in the document; thus a
linear classifier effectively assumes that the “context” in which the word w
appears (as encoded by the other words present in the document d) has no
effect on the meaning of w. This assumption is obviously unrealistic, and
one might hope that performance could be improved by relaxing it.

One way to relax this assumption is to build a linear classifier that uses
more complex features—for example, features that test for the occurrence
of a word w together with some enclosing context. The principle technical
challenge here is finding useful complex features, given the potentially
enormous space of potential features. One of the algorithms we investigate,
sleeping-experts, is an algorithm of this type. A second way of introducing
context is to learn a nonlinear classifier. The second algorithm we investi-
gate, RIPPER, learns a nonlinear classifier in the form of a boolean
combination of simple terms; alternatively, RIPPER can be thought of as
learning a disjunction of “contexts,” each context defined by a conjunction
of simple terms. The principle technical challenge when this approach is
followed is to learn these nonlinear classifiers efficiently.

A final commonality of sleeping-experts and RIPPER is that both algo-
rithms have the aesthetic advantage that “contexts” are determined by the
learning algorithm itself. There is no external process that selects likely
combinations of words to be used as contexts, or that integrates the
predictions of classifiers learned using different externally imposed notions
of context; instead contexts are created naturally, as a by-product of the
process of finding a predictive classifier.

While sharing these important properties, however, RIPPER and sleep-
ing-experts differ radically in many other respects. For RIPPER, the
context of a word w1 is a conjunction of the form

w1 [document and w2 [document... and wk [document (1)

142 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

In other words, the context of a word w1 for RIPPER consists of a (usually
small) number of other words w2. . . wk that must cooccur with w1, but
which may occur in any order, and in any location in the document. In
contrast, sleeping-experts uses sparse phrases to represent context. A
sparse phrase is a sequence of nearby, but not necessarily consecutive,
words; hence the context of a word for sleeping-experts consists of nearby
words, in a fixed order.1

RIPPER attempts to find a simple hypothesis, in the form of a small
disjunction of conjunctions (of the form shown in (1)) that accurately
classifies the training data. To solve this difficult optimization problem, a
number of heuristic methods are used. In contrast, sleeping-experts’ hy-
pothesis is a linear combination of all sparse phrases that occur in the
training corpus—typically an enormous set. To construct this large linear
combination, sleeping-experts uses a multiplicative update algorithm that
has strong theoretical justifications, being based on recent work in compet-
itive analysis of learning algorithms [Cesa-Bianchi et al. 1993; Freund et
al. 1997] and weak-hypothesis boosting [Freund and Schapire 1995].

Finally, the conjunctions that are included in RIPPER’s hypotheses
always represent “contexts” that are positively correlated with the class
being learned. However, sleeping-experts makes use of phrases that are
both positively and negatively correlated with the class of interest—
negatively correlated phrases being taken as evidence against membership
in the category.

One of the more interesting observations of this article is that both
RIPPER and sleeping-experts for phrases perform extremely well across a
wide variety of categorization problems, generally outperforming previ-
ously applied learning methods. This fact holds in spite of the fundamental
differences listed above as to what constitutes a “context,” how to combine
contexts, how to search for a combination of contexts, and which contexts
should be included in a such a combination. We view this result as a
confirmation of the usefulness of learning classifiers that represent contex-
tual information.

In the remainder of the article, we present the learning algorithms,
describe the benchmark problems used and the experimental results ob-
tained with them, and finally present our conclusions.

2. LEARNING ALGORITHMS

2.1 RIPPER

2.1.1 How RIPPER Learns Rule Sets. We will first describe the rule-
learning algorithm RIPPER. The classifier constructed by RIPPER is a set
of rules, such as the one illustrated in Figure 1, which was learned for
“ireland” category of the AP titles corpus (see Section below.) This set of

1Of course, other types of context could be used in a learning algorithm; the notions of context
adopted by RIPPER and sleeping-experts are just two among many alternatives.

Context-Sensitive Learning Methods for Text Categorization • 143

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

rules can be interpreted as a disjunction of conjunctions: for instance, a
document d is considered to be in the category ireland if and only if

(the word ireland appears in d) OR
(the word ira appears in d AND the word killed appears in d) OR
···
(the word ira appears in d AND the word shot appears in d) OR
(the word ira appears in d AND the word out appears in d)

Rule sets enjoy some properties that make them useful in certain
situations. If a rule set is compact, it is relatively easy for people to
understand; this may make it easier for users to accept a learned classifier
as being reasonable. Rule sets can also be easily converted to queries for a
boolean search engine [Cohen and Singer 1996].

There are a number of subtleties involved in learning rule sets. In
particular, relatively straightforward greedy algorithms often give rule sets
with unnecessarily high error rates; furthermore, many algorithms that do
find accurate rule sets tend to be relatively inefficient for large noisy data
sets. Because of these problems, the algorithm used in RIPPER is relatively
complex. A more detailed description of RIPPER and motivation for some of
the details of the algorithm can be found elsewhere [Cohen 1995a]; here we
will simply summarize the algorithm. We will restrict ourselves to prob-
lems with two classes. In this case all rules learned by RIPPER have an
identical consequent (the name of the positive class).

The algorithm used by RIPPER is summarized in Figure 2 and consists of
two main stages. The first stage is a greedy process which constructs an
initial rule set. This stage is based on an earlier rule-learning algorithm
called incremental reduced error pruning (IREP) [Fürnkranz and Widmer
1994], which in turn is based on earlier work due to Quinlan [1990], Cohen
[1993], Brunk and Pazzani [1991], and Pagallo and Haussler [1990]. The
second stage is an “optimization” phase which attempts to further improve
the compactness and accuracy of the rule set.

Stage 1: Building an Initial Rule Set. The first stage of RIPPER is a
variant of IREP that we call IREP*. IREP* is a “set-covering” algorithm: it
constructs one rule at a time and removes all examples covered by a new

Fig. 1. A learned ruleset for the category ‘ireland’.

144 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

rule2 as soon as the rule is constructed. The heuristics used in constructing
a rule are intended to ensure that the rule covers many positive examples
and few negative examples.

To construct a rule, the uncovered examples are randomly partitioned
into two subsets, a growing set containing two-thirds of the examples and a
pruning set containing the remaining one-third. IREP* will first grow a
rule, and then simplify or prune the rule.

A rule is “grown” by repeatedly adding conditions to rule r0 with an
empty antecedent. This is done is a greedy fashion: at each stage i, a single
condition is added to the rule ri, producing a longer and more specialized
rule ri11. The condition added is the one that yields the largest information
gain for ri11 relative to ri [Quinlan 1990]. Information gain is defined as

Gain~ri11, ri! [Ti11
1 z S2 log

2

Ti
1

Ti
1 1 Ti

2
1 log

2

Ti11
1

Ti11
1 1 Ti11

2 D
where Tj

1 (respectively Tj
2) is the number of positive (negative) examples in

the growing set covered by rule rj. Information gain rewards rules ri11 that
increase the density of positive examples covered by the rule, without
greatly reducing the total number of covered positive examples. The greedy
addition of new literals continues until the clause covers no negative

2An example is “covered by a rule” if it satisfies the rule’s antecedent.

Fig. 2. The RIPPER algorithm.

Context-Sensitive Learning Methods for Text Categorization • 145

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

examples in the growing set, or until no condition has a positive informa-
tion gain.

After growing a rule, the rule is pruned (i.e., simplified). This is another
greedy process. At each stage, IREP* considers deleting any final sequence
of conditions from the rule and chooses the deletion that maximizes the
function

f~ri! 5
Ui11

1 2 Ui11
2

Ui11
1 1 Ui11

2

where Ui11
1 (respectively, Ui11

2) is the number of positive (negative) exam-
ples in the pruning set covered by the new rule. After pruning, the pruned
clause is added to the rule set, and the examples covered by it are removed.

When to Stop Adding Rules. The requirement that information gain is
nonzero means that every rule must cover some positive example, guaran-
teeing that IREP* will eventually terminate. However, with noisy data, it
is possible for many rules to be constructed, each of which covers only a few
examples; this can be computationally expensive for large data sets. IREP *
thus includes an additional heuristic which attempts to determine if the
current rule set is already “large enough” given the training data. This
stopping criterion is based on a minimum description length (MDL) heuris-
tic.

MDL heuristics are based on the assumption that the best model of a
given set of data is the model that allows one to most succinctly encode the
data. Generally, the encoding of data is done in two parts: first the model is
encoded, and then the errors made on by the model on the data are
encoded. The preferred model is one with the smallest description length
(the number of bits required for this two-part encoding). To encode the
errors made by a model, RIPPER uses an encoding scheme proposed by
Quinlan [1995]. A variant of this scheme is also used to encode rules.3

In IREP*, after every rule is added to the rule set, the total description
length of the current rule set and the examples is computed. IREP* stops
adding rules when this description length is more than d bits larger than
the smallest description length obtained so far, or when there are no more
positive examples.4 The rule set is then compressed by examining each rule
in turn, starting with the last rule added, and deleting any rules that
increase the description length.

3In Quinlan’s scheme, 2log2 p z e 1 2log2~1 2 p! z ~n 2 e! bits are used to encode a subset
of e elements from a set of size n, where p represents the expected value of the fraction e/n.
We encode a rule by first encoding the length k of the rule’s antecedent, and then encoding the
antecedent as a k-element subset of the set of all possible conditions, with p 5 k/n.
4By default d 5 64.

146 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

Stage 2: “Optimizing” a Rule Set. After RIPPER stops adding rules, the
rule set is “optimized” so as to further reduce its size and improve its
accuracy. Rules are considered in turn in the order in which they were
added. For each rule r, two alternative rules are constructed. The replace-
ment for r is formed by growing and then pruning a rule r9, where pruning
is guided so as to minimize error of the entire rule set (with r9 replacing r)
on the pruning data. The revision of r is formed analogously, except that it
is grown by greedily adding literals to r, instead of to the empty rule.
Finally a decision is made as to whether the final theory should include the
revised rule, the replacement rule, or the original rule. This decision is
made using the description length heuristic—the definition with the small-
est description length after compression is preferred.

After optimization, the definition may cover fewer positive examples;
thus IREP* is called again on the uncovered positive examples, and any
additional rules that it generates are added.

This optimization step can be repeated, occasionally resulting in further
improvements in a rule set. Experiments with a large collection of proposi-
tional learning benchmark problems indicate that two rounds of optimiza-
tion are usually sufficient, and so in RIPPER, this optimization step is by
default repeated twice.

It should be emphasized that while RIPPER is a fairly complex algo-
rithm, the algorithm and all parameters were fixed before any of these
experiments were conducted. The primary set of benchmarks used in
developing the algorithm and setting its parameters was a set of nontex-
tual classification problems taken from the UC/Irvine Repository [Cohen
1995a].

2.1.2 Extensions to RIPPER Motivated by Text. Before running these
experiments, RIPPER was modified so as to be more appropriate for text
categorization problems. One extension allows the user to specify a loss
ratio [Lewis and Catlett 1994]. A loss ratio indicates the ratio of the cost of
a false negative to the cost of a false positive; the goal of learning is to
minimize misclassification cost on unseen data. By using an appropriate
loss ratio RIPPER can trade off recall on a category for precision. Loss
ratios in RIPPER are implemented by appropriately changing the weights
given to false positive errors and false negative errors in the pruning and
optimization stages of the learning algorithm.

A second extension to RIPPER was motivated by the large number of
features typically available in text categorization problems. In the initial
implementation of RIPPER, examples were represented as feature vectors.
This implementation could be used to learn rule sets such as the one shown
above by constructing an appropriate set of boolean features; for example,
one could construct a boolean feature bi for each word wi appearing in the
corpus, letting bi be true for example x if and only if wi appears in the
corresponding document. A corpus with m documents and n words would
thus be represented as an m 3 n matrix.

Context-Sensitive Learning Methods for Text Categorization • 147

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

For text classification, this representation is very inefficient in its usage
of space; even a moderately large corpus will usually contain many differ-
ent words, only a few of which appear in any particular document. To avoid
this problem, RIPPER was extended to allow the value of an attribute to be
a set of symbols—for instance, a document can be represented with a single
attribute, having as its value the set of words that appear in the document.
The primitive tests on a set-valued attribute a (i.e., the tests which are
allowed in rules) are of the form “wi [a.”

The implementation of this extension is explained briefly below and in
more detail elsewhere [Cohen 1996b]. When constructing a rule, RIPPER
must find a single test that maximizes information gain; most of RIPPER’s
run-time is spent in this operation. For set-valued attributes, that can be
done in two steps. First, RIPPER iterates over the set of examples S that
are covered by the current rule, recording the set of words WS

a that appear
as elements of attribute a for some example x [S and recording for each
word wi [WS

a two statistics, namely pi, the number of times wi appears in
a positive example in S, and ni, the number of times wi appears in a
negative example in S. Second, RIPPER iterates over the words in WS

a ,
using these statistics to compute the gain for each possible test of the form
wi [a. The entire process requires time linear in the size of S. Notice that
all symbols wi that appear as elements of attribute a for some training
example will be considered by RIPPER.

Optionally, RIPPER can also include tests of the form “wi [/ feature” in
its rules. Although extending RIPPER to find and use such tests is a simple
matter, there are some formal reasons for being wary of using them [Cohen
1996b]. In this article we will typically present results for RIPPER with
negative word tests forbidden.

In our experiments, a document is generally represented with a single
set-valued feature, the value of which is the set of all words appearing in
the document. In the implementation, the set can include multiple occur-
rences of an element (extra occurrences are simply ignored), so one can
represent a document with the list of words that appear in it.

Alternatively, one could also use set-valued features to encode more
sophisticated representations of a document, such as either a set of word
stems or a set of words and a set of phrases. In this article we have elected
to use sets of unstemmed words, a word being any sequence of alphanu-
meric characters (ignoring case). This choice was made largely for the sake
of simplicity and is consistent with our emphasis on using direct represen-
tations for text. However, it is likely that our results could be improved
somewhat by using word stems instead of words; experimental results on
retrieval problems show that stemming does lead to a slight gain in
average performance [Hull and Grefenstette 1996], and it is plausible to
believe that this gain could also be achieved in classification.

For similar reasons, we have adopted an unusual approach to handling
the large number of features available in text categorization problems:

148 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

while previous researchers have generally relied on preprocessing to reduce
the number of possible features, particularly when applying symbolic
learning systems to text categorization, we have elected to extend the
algorithms to directly handle large sparse feature sets directly, and use
little feature selection. There are two reasons for this choice. One reason is
that the evidence as to the effectiveness of feature selection is mixed; while
in some contexts use of appropriate feature selection methods has improved
generalization performance [Almuallim and Dietterich 1991; John et al.
1994], in other cases, performance is only degraded by feature selection
[Lewis and Ringuette 1994; Cohen 1996b]. Hence it is important to be able
to work efficiently with large feature sets, if only so that one can explore a
wide range of levels of feature selection. The second reason is that a good
learning system should not only be accurate in its generalization perfor-
mance, but also be easy to use. Even when feature selection does improve
generalization performance, it makes application of a learning system
somewhat more complex, if only because it introduces another set of
parameters that must be set.

2.2 Sleeping-Experts for Phrases

2.2.1 Background. Sleeping-experts is based on a new framework for
combining the “advice” of different “experts” (or in another words the
predictions of several classifiers) which has been developed within the
computational learning community (see for instance Littlestone [1988],
Littlestone and Warmuth [1994], Kivinen and Warmuth [1994], and
Freund et al. [1997]). Prediction algorithms in this framework are given a
pool of fixed, yet possibly infinite, “experts”—each of which is usually a
simple, fixed classifier—and build a master algorithm, which combines the
classifications of the experts in some manner. Typically, the master algo-
rithm classifies an example by using a weighted combination of the
predictions of the experts.

Building a good master algorithm is thus a matter of finding an appro-
priate weight for each of the experts. The vast majority of the weight
allocation algorithms are on-line algorithms; that is, the examples are fed
one-by-one to the master algorithm, which updates the weight of the
different experts based on their performance (prediction) on that example.
Several weight-updating methods have been examined and analyzed. In
this article we will use a multiplicative update method, in which weights
for the individual experts are modified by multiplying them by a constant.
(The algorithm we use also includes certain normalization steps, which we
will describe shortly.)

Empirical evidence indicates that multiplicative update algorithms often
outperform traditional learning techniques for linear classifiers [Blum
1995; Lewis et al. 1996]. More intriguingly, formal results show that under
some circumstances, very high dimensional weight allocation problems can
be handled with moderate amounts of training data, if an appropriate
multiplicative weight update algorithm is used [Littlestone and Warmuth

Context-Sensitive Learning Methods for Text Categorization • 149

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

1994; Kivinen and Warmuth 1994; Freund et al. 1997]. In particular,
certain multiplicative update procedures can learn quickly even if the set of
experts is huge, as long as a few of these experts are accurate; in contrast,
formal bounds on the performance of more traditional additive update rules
suggest that the number of experts must be small in order to guarantee
good generalization performance.

These results suggest that multiplicative update procedures might per-
form well on text categorization problems, if they are provided with some
appropriate large set of experts. Below we will describe an application of
multiplicative update algorithms where the experts correspond roughly to
all length-k phrases that occur in a corpus.

2.2.2 The Sleeping-Experts Algorithm. The sleeping-experts algorithm is
an update algorithm that is based on two recent formal advances in
multiplicative update algorithms. The first is a weight allocation algorithm
called Hedge [Freund and Schapire 1995], which is applicable to a broad
class of learning problems and loss functions. The second is the infinite-
attribute model [Blum 1990]. In this setting, there may be any number of
experts, but only a few actually post predictions on any given example; the
remainder are said to be “sleeping” on that example.

In the context of document classification, an expert can be any lexical
unit. Such an expert is “awake” and predicts if the unit appears in a given
document. In order to test and compare simple context-sensitive models we
chose the pool of possible experts to be the set of all (sparse) phrases that
appear in a document. Let v i be the ith word appearing in the document.
Each expert is an ordered list of up to n words and is of the form
v i1v i2. . . v ij where i1 , i2 , . . . ij21 , ij and ij 2 i1 , n. Put another
way, each expert corresponds to a given phrase that may appear in any
position in the text and are not bound to particular positions. Since we
allow “holes” in each phrase, we will use the term “sparse” phrases for this
generalization of the word n-gram model. Note that when n 5 1 the set of

Table I. Experts with Large Weights for the Category ireland

Log-Weight Number of Occurrences

Phrase [/ ireland [ireland [/ ireland [ireland

belfast -7.19 12.05 8 31
haughey -6.35 11.10 2 10
ira says -1.07 10.44 2 7
northern ireland -7.20 10.17 18 38
catholic man -0.87 6.03 0 3
ulster -3.98 5.20 4 8
killed ? ira -0.09 4.68 1 4
protestant extremists claim -0.12 4.59 0 2
moderate catholic -0.02 4.58 0 2
ira supporters -3.20 3.68 0 3
sinn fein -3.52 3.38 2 5
west belfast -5.90 3.05 3 16

150 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

sparse phrases is exactly the set of words appearing in the corpus. Table I
gives some examples of sparse phrases that were found useful for the
“ireland” category of Figure 1.

In the sleeping-experts framework the weight associated with each
phrase is “learned” in an on-line manner so as to minimize a cost function,
in our case the classification error.5 However, in order to have a fair

5Other cost functions that associate a different utility value with each possible pair of the
correct outcome and the outcome predicted by the algorithm can be implemented in the
sleeping-experts framework. Such cost functions might result in a nonsymmetric weight
update and are beyond the scope of this article.

Fig. 3. The sleeping-experts for phrases algorithm.

Context-Sensitive Learning Methods for Text Categorization • 151

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

comparison with other systems, we will update the weights of the different
phrases only during the training phase, and keep them fixed during the
test phase. We will now give a description of the sleeping-experts procedure
for phrases. Pseudocode for the algorithm is shown in Figure 3.

The master algorithm maintains a pool, which is a set recording the
sparse phrases that have appeared in any of the previous documents, and a
set p containing one weight for each sparse phrase in the pool. At all times,
all weights in p will be nonnegative; however, the weights need not sum to
one.

At each time step t, a new document is presented. Let the content of the
tth document be denoted by v1

t , v2
t , . . . , v l

t, where l is the length (number
of words) of the document. Therefore, the set of active phrases, denoted by
Wt, is

Wt 5 $w# w# 5 vi1

t vi2

t . . . vij

t %

where

1 # i1 , i2 , . . . ij21 , ij # l, ij 2 i1 , n.

Thus a phrase is a sequence of words, possibly containing some “gaps,”
appearing in a fixed order but at any position in a document. Given this set
the first task of the master algorithm is to make a prediction based on the
prediction of each of the active miniexperts. In our implementation, we
associate with each phrase, w# , two miniexperts, denoted by w# 1 and w# 0. The
first miniexpert consistently predicts that the document belongs to the
class (whenever the sparse phrase v# appears in a document), and the
second consistently predicts that the document does not belong to the class.
Clearly, only one of them is right given the correct classification of the
document. To make a prediction, the master algorithm decides on a
distribution p̃ over the active miniexperts, which is determined by restrict-
ing the set of weights p to the set of active miniexperts and normalizing the
weights. Therefore, the set of active miniexperts, denoted by Et, is,

Et 5 $w# kw# [Wt, k [$0,1%%.

We denote the vector of normalized weights by p̃, where

p̃w# k

t 5 pw# k

t Y O
w#9l[Et

pw#9l

t .

The prediction of the master algorithm, denoted by yt, depends on the
weighted sum of the miniexperts. Since half of the miniexperts always

152 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

predict 0 when they are active, this sum can be efficiently calculated by
summing the weights6 of miniexperts that predict 1:

yt 5 O
w# k[Et

p̃w# k

t k 5 O
w# [Wt

p̃w# 1

t 5
Ow# [Wtpw# 1

t

Ow# [WtOk50,1pw# k

t .

Therefore, the master algorithm combines the predictions of all the experts
into a single prediction which is a number between zero and one. In order
to classify a document we set a threshold uc, and classify a document as
positive (class 1) if and only if yt . uC. When minimizing error, we always
use uC 5 1/ 2. However, to achieve a desired precision (or recall), the
threshold can be adjusted; a low value usually results in higher recall, and
a high value usually results in higher precision.

After receiving the predictions of all the miniexperts, the master algo-
rithm receives the true classification of the document and then updates the
weights of the miniexperts appropriately. The goal is to update the weights
of the active miniexperts so as to reflect their correlation with the correct
classification of the document. To update the weights, the weight of each
expert is multiplied by the factor b l~w# k! where l~w# k! is the loss of the
miniexpert w# k. The parameter b , 1 is called the learning rate, and it
controls how quickly the weights are updated. We used values for b in the
range @0.1,0.5#.

In our implementation we used the absolute error as our loss function,
i.e., l~w# k 5 1! if the miniexpert w# k predicted incorrectly, and l~w# k 5 0! if
the miniexpert is w# k predicted correctly. Thus the rule above can be
summarized as follows: for each two miniexperts based on the same phrase,
we multiply the weight of the incorrect miniexpert by b and keep the
weight of the correct miniexpert unchanged. Then, after updating weights
for the miniexperts, weights of the active miniexperts are normalized so
that the total weight of the active miniexperts does not change; the effect of
this renormalization is to actually increase the weights of the miniexperts
which were correct.

As an illustration of the effect of the weight update procedure, Table I
lists 12 experts for which the weight of their miniexperts predicting that
the document belongs to the category ireland (from the AP titles corpus)
is large. (The symbol ? is a place-holder which stands for any word in a
sparse n-gram.) For each expert we give the logarithm of the weight of its
two miniexperts, and the number of positive (respectively negative) exam-
ples in which the phrase appears. For this category, the set of all sparse

6If the goal is to minimize the absolute loss of the master’s predictions, then a nonlinear
function, denoted by fb, should be applied to the weighted sum of the experts’ predictions.
However, since fb is monotonically increasing such that fb~0! 5 0, fb~1/ 2! 5 1/ 2, and
fb~1! 5 1 (see Vovk [1990] and Cesa-Bianchi et al. [1993]), then for classification purposes we
can simply use the weighted sum of the predictions itself.

Context-Sensitive Learning Methods for Text Categorization • 153

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

4-grams was used to construct the set of miniexperts. There are a total of
1,813,632 sparse phrases, and hence 2 z 1,813,632 5 3,647,264 miniex-
perts. Like RIPPER, sleeping-experts is applied separately to each cate-
gory; thus we built a separate pool of experts for each different classifica-
tion problem.

To classify a new document d using this pool, one first finds all sparse
n-grams appearing in the document, and then computes the weights of the
corresponding miniexperts. For instance, in classifying the documents
“prayers said for soldiers killed in ira bombing ” and “taxi
driver killed by ira ” the relevant set of phrases would include
“killed ? ira ” and “bombing ”. The documents above are classified
correctly; among the miniexperts associated with these phrases, the total
weight of the miniexperts predicting d [ireland is larger than the total
weight of the miniexperts predicting d [/ ireland .

2.2.3 Discussion. The result of the sleeping-experts algorithm is a large
pool of sparse phrases each associated with a weight. In testing the
performance of the sleeping-experts algorithm, whenever a new (unclassi-
fied) document is presented, the phrases which appear in the document are
extracted from the pool and their weights normalized so that they sum to 1.
Following the same steps as in the training phase (but without updating
the weights) the master’s prediction is then computed from the weighted
sum of the active miniexperts. The actual classification is done by compar-
ing the master’s prediction with the threshold uC. It should be emphasized
that both the update and prediction steps depend on only the active
experts—the phrases appearing in the document. This means that the
run-time of these steps depends only on the size of the document being
processed, not the total number of experts.7

Two properties of this algorithm require further explanation. First, if a
phrase that appears in many documents is not relevant to the class
considered, then the number of times each phrase’s miniexpert is correct
will be approximately equal to the number of times it is incorrect. This
means that over time the weight of both miniexperts corresponding to the
phrase will be demoted. Second, when many “relevant” phrases appear in a
document, the total weight of the active miniexperts is large, and the
promotion of the correct miniexperts due to the renormalization is small;
however, if there are only few “relevant” phrases, then the total weight of
the active miniexperts is small, and hence the renormalization results in a
higher promotion of the correct miniexperts. Clearly, this is a desirable
property in text categorization, since it allows a rare but highly correlated
phrase to have a large influence on classification.

An analysis of the general sleeping-experts algorithm for various settings
is provided by Freund et al. [1997]. This analysis technique can be directly

7We assume here that the “pool” is implemented as a hash table, so that weights can be
updated in constant time.

154 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

applied to our setting. Briefly, if one defines the loss of the master
algorithm to be the average loss with respect to the instantaneous distribu-
tion defined by the set of active miniexperts on each example, p̃, the
cumulative loss of the master algorithm over all t can be bounded relative
to the loss suffered by the best possible fixed weight vector. These results
hold only in a pure on-line model, in which the weights are updated after
each round; when the weight update is “turned off,” the assumptions used
in deriving the cumulative loss bounds no longer hold. Nevertheless, the
experiments described below indicate that the algorithm also performs well
in a batch setting, in which weights are updated during a training phase
and then held fixed while a set of test cases is classified.

Finally, we note that many other types of experts could be constructed.
For instance, an expert may record the number of appearances of a phrase
in the current document, or previous documents, and then use an inverse
document frequency or a mixture of Poisson models [Church and Gale
1995] to predict classification. The focus of this article is methods for
exploiting contextual information, rather than frequency statistics, and
thus we will restrict ourselves here to experts which are based only on the
presence and absence of phrases (sparse n-gram). This also enables a fairer
comparison with RIPPER, whose rules are based on only the presence or
absence of words in documents.

2.3 Rocchio

We also implemented a version of Rocchio’s algorithm [Rocchio 1971], as
adapted to text categorization by Ittner et al. [1995]. We represent the data
(both training and test documents) as vectors of numeric weights. The
weight vector for the mth document is vm 5 ~v1

m, v2
m, . . . , vl

m!, where l is
the number of indexing terms used. We use single words as terms. We
follow the TF-IDF weighting [Salton 1991] and define the weight vk

m to be

vk
m 5

fk
m log~ND/nk!

O
j51

l

fj
m log~ND/nj!

.

Here, ND is the number of documents; nk is the number of documents in
which the indexing term k appears; and fk

m is

fk
m 5 H 0 l 5 0

log~l! 1 1 otherwise,

where l is the number of occurrences of the indexing term k in document
m. In Rocchio’s algorithm a prototype is produced for each class c. This
prototype is represented as a single vector ṽc of the same dimension as the
original weight vectors v1, . . . , vND. For class c, the kth term in its
prototype is defined to be

Context-Sensitive Learning Methods for Text Categorization • 155

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

ṽk
c def

5 maxH0,
b

?Rc?
O

m[Rc

vk
m 2

g

?R# c?
O

m[R# c

vk
mJ

where Rc is the set of all documents in class c and R# c is the set of all
documents not in c. The parameters g and b control the relative contribu-
tion of the positive and negative examples to the prototypes vector; follow-
ing Ittner et al. and others [Buckley et al. 1994], we use the values b 5
16 and g 5 4. Documents to be classified are first converted into weight
vectors and then compared against the prototype ṽc by computing the dot
product. A novel document is classified as a member of class c if its
distance (dot product with the prototype) is less than a threshold uc, which
can be chosen so as to balance recall and precision in some set manner. In
our experiments, uc was chosen to either minimize error on the training set
or to minimize total loss on the training set for a specific loss ratio.

In the experiments described below, we will compare our results to
previously published results whenever possible. We will use Rocchio as an
additional reference point, supplementing these previous results; this al-
lows us to compare the performance of RIPPER and SLEEP with a
well-understood existing algorithm under precisely the same experimental
conditions.

3. EXPERIMENTAL RESULTS

3.1 The AP Titles Corpus

The first benchmark we will use is a corpus of AP newswire headlines,
tagged as being relevant or irrelevant to topics like “federal budget” and
“Nielsens ratings.” This data set is described in more detail elsewhere
[Lewis and Catlett 1994; Lewis and Gale 1994]. The corpus contains
319,463 documents in the training set and 51,991 documents in the test set.
The headlines are an average of nine words long, with a total vocabulary of
67,331 words. No preprocessing of the text was done, other than to convert
all words to lower case and remove punctuation marks. We will use nine
representative categories.8 Examples of titles from this corpus are given in
Table II.

In previous work, Lewis and Gale [1994] and Lewis and Catlett [1994]
used this domain to evaluate the performance a new sampling method
called uncertainty sampling. Following Lewis and Catlett’s work, we will
use error rate (as estimated by the number of errors made on the test set)
as our principle evaluation metric. However, rather than using subsamples,
we will train our learning systems on the entire training set.

8We have discarded one of the 10 categories (“tickertalk”). This category seems to be very hard
to learn, and hence learning algorithms often generate classifiers with extreme recall and
precision values. This tends to distort averages across the categories.

156 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

Table III summarizes performance of the learning systems on this task.
Performance for SLEEP is given with both four-word phrases and single-
word phrases; we provide numbers for single-word phrases as a second
example of a linear, context-insensitive classifier.

On average, both RIPPER and sleeping-experts with four-word phrases
achieve lower error rates than the linear classifiers. RIPPER achieves a
lower error rate than Rocchio (the better of the two linear classifiers) on
seven of nine categories and has a higher error rate only twice. Using
four-word phrases, sleeping-experts achieves a lower error rate than Roc-

Table II. Titles from the TREC-AP Corpus

Title Class

george burns back on the best seller list aparts
bond prices rise bonds

war of the roses wins box office battle for first place boxoffice
deutsche bank controls percent of morgan grenfell britx

cheney gets billion to spend in budget
burmese troops seize major rebel base on thai frontier burma

park returns to playground status after bush leaves anti drug rally bush
dollar little changed gold higher dollargold

dukakis adopts bush strategy executive experience counts dukakis
west german mobile phone license awarded to international consortium german

paulson says bid for gulfstream to be ready soon gulf
iran said advising friends in lebanon to release hostages hostages

belfast police find explosives arrest six ireland
palestinians mark second anniversary of rebellion israel

superpower detente won’t stop rise in japan’s defense outlays japan
bill cosby leads nbc to another ratings victory nielsens

quayle tells soviets they may like star wars after all quayle
stock analysts see not so nifty tickertalk
yugoslovia consumed by crisis yugoslavia

snow hits arkansas plains weather

Table III. RIPPER, Sleeping-Experts, and Rocchio’s Algorithm on AP Titles with Full
Sample

Number of Errors

Experts

Domain Rocchio RIPPER Four-Words One-Word

bonds 31 34 31 60
boxoffice 26 20 22 37
budget 170 159 161 171
burma 46 33 33 34
dukakis 107 112 98 107
hostages 212 206 185 214
ireland 106 97 86 87
nielsens 49 35 41 53
quayle 73 65 66 68

Average 91.11 84.56 80.33 92.33

Context-Sensitive Learning Methods for Text Categorization • 157

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

chio on eight of the nine categories and achieves an identical error rate
once. In both cases the improvement in error rate is statistically significant
using a two-tailed paired t-test.9

Table IV gives some additional points of reference on this benchmark.
Lewis and Gale [1994] used the F-measure as the principle evaluation
metric;10 to compare with these results, we also record average F-measure
in the table, as well as the widely used measurements of precision and
recall.

The first rows of Table IV show the average performance of Rocchio’s
algorithm, the probabilistic classifier used by Lewis and Gale, the decision
tree learner C4.5 (from Lewis and Catlett), and RIPPER with negative
word tests allowed (i.e., RIPPER, allowing tests of the form e [/ S.) Again,
sleeping-experts with single-word phrases is also included as an additional
example of a linear classifier. C4.5 contains no special mechanism to
handle the large feature sets encountered in IR problems and was therefore
run on a relatively small subsample of 10,000 examples; this probably
accounts for its relatively poor performance.

The results of this broader comparison are qualitatively the same. Notice
that none of the algorithms considered here explicitly attempt to maximize
F-measure—instead all attempt to minimize error rate. However, RIPPER
and sleeping-experts for phrases also outperform all the linear classifiers
with respect to the F-measure at b 5 1. In fact, sleeping-experts with
four-word phrases, the best of the new learning methods with respect to
error rates, strictly dominates Rocchio on all four performance metrics.

3.2 The TREC-AP Corpus

In a recent paper, Lewis et al. [1996] describe experiments with a slightly
different version of the AP titles corpus. This data set is somewhat smaller,
has more categories, and is more readily available to other researchers,

9For RIPPER, t 5 2.97 and p . 98%. For sleeping-experts, t 5 3.92 and p . 99%.
10The F-measure is defined as [Van Rijsbergen 1979, pp. 168–176] Fb [~~b2 1 1!precision z

recall!/~b2precision 1 recall! where b is a parameter that controls the importance given to
precision relative to recall; a value of b 5 1 corresponds to equal weighting of precision and
recall, with higher scores indicating better performance.

Table IV. Additional Comparisons for the Full AP Titles Benchmark (all measurements are
averages across nine categories)

Learner
Number of

Errors Recall Precision Fb51

Rocchio 91.11 44.23 77.39 0.56
Probabilistic classifier — — — 0.41
C4.5 (subsample) 100.9 42.75 66.94 0.50
RIPPER (negative tests) 86.00 60.12 72.26 0.64
RIPPER 84.56 51.43 74.46 0.59
Experts (four-words) 80.33 49.78 81.41 0.60
Experts (one-word) 92.33 42.61 67.32 0.52

158 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

being a subset of the AP stories used for the TREC conferences (for
instance, see Lewis and Catlett [1994] and Lewis and Gale [1994]). A final
difference is that the split into training and testing sets was done chrono-
logically, rather than randomly. Thus, the test set is drawn from a
somewhat different distribution than the training set.

We ran RIPPER, Rocchio’s algorithm, and sleeping-experts on these
problems as well. The results are shown in Table V. (The column labeled
“Frequency” will be discussed in Section 3.) The results are broadly similar,
except that the performance of sleeping-experts is even stronger, relative to
the other algorithms. Sleeping-experts is again statistically significantly

Table V. RIPPER, Sleeping-Experts, and Rocchio’s Algorithm on AP Titles with TREC-AP
Sample

Number of Errors

Experts

Domain Frequency Rocchio RIPPER Four-Words One-Word

aparts 790 202 202 202 202
bonds 387 74 81 68 111
boxoffice 17 46 36 35 57
britx 351 874 864 819 859
budget 86 356 365 412 442
burma 43 43 37 37 37
bush 392 1361 136 1230 1349
dollargold 161 204 52 56 141
dukakis 73 20 21 16 20
german 239 1021 962 880 942
gulf 347 2852 280 2842 2843
hostages 91 299 350 345 348
ireland 47 117 123 111 111
israel 365 870 625 617 622
japan 433 1136 742 700 865
nielsens 24 63 62 70 71
quayle 51 51 44 48 52
tickertalk 12 35 35 34 34
weather 182 182 254 163 319
yugoslavia 57 155 111 108 111

Average 1548.2 498.1 456.6 439.65 476.8

Table VI. Additional Comparisons for the TREC AP Titles Benchmark (all measurements
are averages across 20 categories)

Learner
Number of

Errors Recall Precision Fb51

Rocchio (for error) 498.1 28.7 72.0 0.41
Rocchio (for Fb51) — — — 0.52
Widrow-Hoff — — — 0.58
EG — — — 0.55
RIPPER 456.6 56.4 78.5 0.66
Experts (four-words) 439.7 57.1 80.2 0.67
Experts (one-word) 476.8 30.0 72.1 0.43

Context-Sensitive Learning Methods for Text Categorization • 159

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

better than Rocchio, using a two-tailed test; however, RIPPER outperforms
Rocchio with confidence of only 90% on a paired t-test.11 A comparison to
the more recent results of Lewis et al. can be found in Table VI, which
indicates the average performance of RIPPER, sleeping-experts, our imple-
mentation of Rocchio’s algorithm, and three additional linear classifiers
(the first two tested by Lewis et al. [1996]): Widrow-Hoff; Exponentiated
Gradient (EG), another on-line scheme that uses multiplicative updates;
and a version of Rocchio that uses a threshold chosen to optimize the
F-measure at b 5 1. (Recall that our implementation of Rocchio chooses a
threshold so as to minimize error rate.)

3.3 The Reuters-22173 Corpus

3.3.1 Experiments. Another set of experiments was conducted on the
Reuters-22173 data set [Lewis 1992b], a corpus of 22,173 news stories
which have been tagged with 135 different topics. Here we largely followed
the methodology of Lewis and Ringuette [1994]. The documents were first
split into training and test sets as described by Lewis [1992b], discarding
723 stories used as test data in an earlier experiment. This resulted in a
corpus of 14,704 training cases and 6,746 test cases. All words were
converted to lower case; punctuation marks were removed; and “function
words” from a standard stop-list were removed.12 Example of an article
from the Reuters-22173 corpus before and after preprocessing is given in
Figure 4.

To evaluate performance, precision and recall were used. These measure-
ments were microaveraged; in microaveraging, the total number of false
positive, false negative, true positive, and true negative predictions across
all categories is computed, and these totals are used to compute recall and
precision. Performance was further summarized by a break-even point—a
hypothetical point, obtained by interpolation, at which precision equals
recall.

Table VII summarizes these “microaveraged break-even” points for sleep-
ing-experts, with three-word phrases, two-word phrases, and single-word
phrases; RIPPER, with and without negative tests; Rocchio; a simple
decision tree learning system; and a Bayesian classifier. (Using four-word
phrases with sleeping-experts provided no additional improvement over
three-word phrases on these problems.) The last two figures are from Lewis
and Ringuette [1994].

As an additional point of comparison we also show the results of dupli-
cating the experiments conducted by Apté et al. [1994b] on the same
corpus. The main difference is that Apté et al. discarded stories that were
tagged with no categories, resulting in a smaller corpus of 10,667 training

11For sleeping-experts, t 5 2.25 and p . 95%, and for RIPPER, t 5 1.72 and p . 90%.
12“Function words” include high-frequency but contentless words like “of” and “the.” We used
the stop-list given by Lewis [1992b].

160 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

cases and 3,680 test cases.13 Additionally, only 93 classes were consid-
ered—those appearing in at least one document in the reduced corpus. For
this data set, we show results for RIPPER; SWAP-1, the learning system

13To be precise, we discarded from the data set all documents which were tagged with no
topics, legal or otherwise. In particular, documents tagged with the topic word “bypass” were
included. Note that in Lewis’ experiments, these documents were treated as negative exam-
ples of all categories.

Fig. 4. Example of an article from Reuters-22173 before and after preprocessing.

Context-Sensitive Learning Methods for Text Categorization • 161

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

used by Apté et al.; sleeping-experts; and Rocchio. The different numbers
for SWAP-1 reflect different methods for representing text. In each of these
methods a document was represented by a relatively small number of
features (between 80–100, depending on the category), each of which
corresponds to a specific word. Generally, features corresponded to words
that have high mutual information with a category, and features were
either numbers indicating the frequency of a word in a document or boolean
variables indicating the presence of a word.

3.3.2 Discussion.

Previous Work. On this corpus, a number of the learning algorithms of
Table VII make use of context. The hypotheses of SWAP-1, for instance, are
extremely similar to those of RIPPER, and decision trees also use the same
notion of context as RIPPER. (In fact, the decision trees used by Lewis and
Ringuette can be converted into a rule set with negative tests.) As shown in
Table VII, the learning algorithms that use context are uniformly better
than those which do not.

While there has been a long history of applying learning algorithms that
use context to this data set, one contribution of the experiments of this
article is that unlike RIPPER and sleeping-experts, none of these earlier
systems used a direct representation for text—i.e., rather than represent-
ing documents internally as a list of tokens, these algorithms used some
nontrivial process to convert the original documents into feature vectors. In
some cases this process was quite expensive in terms of storage—for
example, Wiener et al. [1995], in a study in which neural networks were

Table VII. Break-Even Summaries for Reuters-22173

Microveraged
Data Set Learner Options Break-Even

Lewis Experts three-words 0.753
Experts two-words 0.737
RIPPER — 0.683
RIPPER negative tests 0.677
decision tree 90 boolean feat. 0.670
Rocchio — 0.660
Experts one-word 0.656
prop. Bayes 10 boolean feat. 0.650

Apté et al. RIPPER negative tests 1 headlines 0.811
SWAP-1 80-100 freq. feat. 1 headlines 0.805
RIPPER negative tests 0.798
RIPPER — 0.795
SWAP-1 80-100 freq. feat. 0.789
SWAP-1 80-100 boolean feat. 0.785
Experts three-words 0.759
Experts two-words 0.753
Rocchio — 0.748
Experts one-word 0.647

162 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

used on the Reuters-22173 corpus to learn nonlinear classifiers using a
variety of representations, noted that one of their representation schemes
required a different 200-dimensional vector representation for each docu-
ment and for each topic. Clearly, using a direct representation is more
efficient for corpora with many categories.

There is also some evidence that reducing dimensionality of the examples
may degrade generalization performance. For instance, although Lewis and
Ringuette report that on the Reuters-22173 problem, performance im-
proved monotonically as more features were added to the decision tree
learner, both Lewis and Ringuette’s decision tree learner and SWAP-1
limited the number of features to around 100, presumably for efficiency
reasons. We conjecture that the ability of RIPPER and sleeping-experts to
use a much larger vocabulary contributes to their improved performance.
We note that both RIPPER and sleeping-experts are reasonably efficient,
even with large vocabularies: the learning time for both RIPPER and
sleeping-experts with four-word phrases averages a little over a 90 sec-
onds14 per category on the larger Lewis data set.15

Special Notions of Context. SWAP-1’s performance was slightly im-
proved by using a special representation in which the frequency associated
with a word was adjusted according to where the word appeared in the
document; specifically, the frequency counts of words appearing in a title
were increased by double-counting each occurrence in the title. Using this
representation, the microaveraged break-even point for SWAP-1 was im-
proved from 0.789 to 0.805.

This representational trick can be viewed as making use of a domain-
dependent notion of context, namely that the “context” represented by the
headline of a document is of special importance. We repeated experiments
with RIPPER (with negative tests) on the Apté et al. sample using a
representation in which every document was represented by two set-valued
features: the set of all words appearing in the story and the set of words
appearing in the headline. This representation allows RIPPER to construct
rule sets which explicitly require a word to appear in a headline context.
Not surprisingly (in light of the previous results) this representational trick
improves performance: RIPPER’s microaveraged break-even improves from
0.798 to 0.811.

14These times are on a MIPS Irix 6.3 with 200MHz R10000 processors.
15There are 37,141 different experts representing single-word phrases, more than half a
million two-word phrases, and more than 10 million three-word phrases. However, most (over
99%) of the three-word phrases occur only once in the corpus and do not have any contribution
to the classification. Therefore, during classification, we only keep information on experts that
corresponds to phrases that appear at least twice in the corpus. Using hash tables we can
access each expert in constant time using the phrase it represents as a key. Using this scheme
the amount of memory used for maintaining a pool grows linearly with the total size of the
text (for a fixed n-gram size).

Context-Sensitive Learning Methods for Text Categorization • 163

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

3.4 The Reuters-21578 Collection

We note that Table VII indicates that there is a substantial difference
between the difficulty of the categories in the data sets used by Apté et al.
and those used by Lewis and Ringuette; for instance, the microaveraged
break-even point of Rocchio’s algorithm is 0.748 for the Apté et al. data
sets, but only 0.635 for the Lewis and Ringuette data sets. These differ-
ences are unsurprising in light of the differences in the number of examples
and the number of categories, particularly since the categories and exam-
ples were restricted systematically, rather than by random sampling.
Wiener et al. [1995] describe another series of experiments using the same
corpus but (apparently) a third split into training and testing data, result-
ing in a corpus of 9,610 training examples and 3,662 test examples. While it
is by no means clear which of these data sets contains more representative
learning problems, it seems certain that performance comparisons on
different data sets are at best approximate.

To address this problem, a second version of the Reuters corpus, the
Reuters-21578 corpus, has recently been made available.16 The main differ-
ences are (1) that a small number of duplicate documents have been
removed and (2) that the corpus has been formatted and documented so as
to facilitate systematic and reproducible experimentation. Two different
training and testing splits of this corpus are proposed: the ModApte split,
which contains 9,603 training examples and 3,299 test examples, and the
ModLewis split, which contains 13,625 training examples and 6,188 test
cases. (The ModApte split is perhaps misnamed; it appears to be more
similar to the partition used by Wiener et al. [1995].)

Table VIII presents our results on this variant of the corpora, which also
confirm the hypothesis that context is important.

16On http://www.research.att.com/˜lewis/reuters21578.html.

Table VIII. Break-Even Summaries for Reuters-21578

Microveraged
Data Set Learner Options Break-Even

ModLewis Experts three-words 0.769
Experts two-words 0.753
RIPPER (negative tests) 0.696
RIPPER — 0.689
Experts one-word 0.677
Rocchio — 0.668

ModApte Experts three-words 0.827
Experts two-words 0.823
RIPPER (negative tests) 0.820
RIPPER — 0.819
Experts one-word 0.798
Rocchio — 0.776

164 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

3.5 Further Analysis of the Experimental Results

3.5.1 Effect of Class Frequency on Performance. Although microaver-
aged break-even has been a widely used performance test on this data set,
it has some well-known drawbacks as a metric—in particular, microaver-
aged measurements tend to be dominated by the most frequent categories.
Macroaveraged measurements have a complementary disadvantage for
data sets like Reuters data sets, which contain many very rare categories:
they tend to be dominated by performance on very rare categories, where
performance is hardest to estimate from test data. In this section we will
analyze the data in somewhat more detail, in order to determine which
circumstances are most favorable for which learning algorithms.

In reviewing the experimental results, one property which appears to
greatly affect the relative performance of the three learning algorithms
considered in this article is the relative frequency of class to be learned. By
relative frequency we mean simply the fraction of times that the class
appears in the training data. In both the TREC-AP data set and the
Reuters data sets, there is a broad range of class frequencies. In general,
Rocchio seems to perform better (relative to the other learning algorithms)
on the low-frequency classes—those classes with fewest positive examples
in the data.

For instance, in the TREC-AP data set, there are 20 categories, the least
frequent of which occurs only 123 times in the entire corpus, and the most
frequent of which occurs 4,337 times. (See Table V.) Both RIPPER and
sleeping-experts (with four-word phrases) actually have a slightly higher

Fig. 5. Cumulative difference in errors: TREC-AP.

Context-Sensitive Learning Methods for Text Categorization • 165

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

error rate than Rocchio, on average, on the 12 least frequent classes.
However, both algorithms dominate Rocchio on the more frequent classes:
sleeping-experts achieves a lower error than on the eight most frequent
classes, and RIPPER outperforms Rocchio on five of the six most frequent
classes, and obtains essentially equivalent performance (only one addi-
tional error) on the remaining class.

We also analyzed the effect of frequency on the 93 classes on the
Reuters-21578 ModApte data set, and observed a similar effect.17 Here,
there is no apparent systematic difference between RIPPER and Rocchio
for categories with less than 15 positive examples in the training set. For
more frequent classes, however, RIPPER tends to outperform Rocchio. A
similar behavior is observed for the sleeping-experts algorithm; here,
Rocchio and sleeping-experts achieved similar error rates unless there are
at least 30 positive examples in the training set.

The effect of class frequency on the learners can be easily seen in the
graphs of Figures 5 and 6. Given a category c with an associated training
set and test set, let us define the edge of a learner A relative to a second
learner A9 on category c to be the number of errors made by A9 on the test
set minus the number of errors made by A on the test set; in other words,
the edge of A relative to A9 is simply the number of errors avoided by using
A instead of A9. The graphs of Figures 5 and 6 show, for each frequency n,
the cumulative edge of RIPPER and sleeping-experts, relative to Rocchio,

17In this analysis, we measured the frequency of classes using only the training data.

Fig. 6. Cumulative difference in errors: ModApte.

166 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

for all problems of frequency less than or equal to n.18 Note that when this
cumulative edge is close to zero, then performance is comparable to that of
Rocchio (for problems of this frequency or less); also, when the cumulative
edge curve tends upward (respectively downward) this indicates that the
learning algorithm is generally outperforming Rocchio (respectively being
outperformed by Rocchio) with respect to error rate.

The graphs in the figure illustrate the trends we have discussed above. In
both cases, the cumulative edge is small for relatively low frequency classes
and then begins to drift upward. The points at which this upward drift
begins are different; however in both domains, it is clearly present by the
time the relative frequency reaches the range of 1% of the data set (i.e., 96
examples for Reuters-21578, 2,098 examples for TREC-AP.) The graphs
also clearly indicate, that, although performance is at least competitive
throughout the frequency range, most of the cumulative edge of the novel
algorithms is due to a relatively small number of relatively frequent
classes.

In retrospect, the very competitive performance of Rocchio on rare classes
should not be surprising. Because Rocchio uses an inverse document
frequency (IDF) weighting scheme, its classifier will weight rare words
heavily: this bias is clearly most appropriate in learning a rare class. Also,
historically, Rocchio has been used most successfully in improving perfor-
mance on ad hoc queries against large database; here typically only a small
fraction of the documents in a database would be relevant. Of course, there
are other text categorization domains in which accurate classification of
frequent classes is important—one example of such a domain might be
categorization of a user’s incoming email [Cohen 1996a].

In practical settings there may be a priori reasons to prefer one learning
algorithm to another. For instance, Rocchio has the advantage that its
hypotheses can be easily adapted to retrieval in many statistical IR
systems; RIPPER has the advantage that its hypotheses can be easily
incorporated into a boolean retrieval system; and sleeping-experts has the
advantage of being an on-line algorithm with strong performance guaran-
tees. The experiments in this section suggest that an additional reason to
prefer Rocchio might be an expectation that most classes are rare; con-
versely, one might prefer to use RIPPER or sleeping-experts if most classes
were frequent.

The experiments of this section also suggest that the average case
performance of RIPPER and sleeping-experts might be improved by focus-
ing on their performance on rare classes. One natural extension to the
algorithms described in this article that might improve performance on
rare classes would be to augment the features indicating the presence or
absence of words with additional information such as inverse document
frequency. For instance, in the sleeping-experts framework one could
modify the experts so that their predictions are weighted according to the

18In the graph for the Reuters data set, we have plotted the log of frequency, as there is a very
wide range of frequencies in the data.

Context-Sensitive Learning Methods for Text Categorization • 167

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

IDF weight of the corresponding phase. Similarly, RIPPER could be ex-
tended to prefer tests on words with high IDF weights. We plan to explore
these extensions in future research.

3.5.2 Sensitivity of Rocchio to Parameter Settings. In the experiments
reported above, the parameters b and g for Rocchio were chosen based on
experiments performed by different researchers on a different classification
task [Ittner et al. 1995]. We also performed some smaller-scale experiments
to explore the sensitivity of Rocchio to these parameters, and the degree to
which performance might be improved by parameter tuning. We choose
eight different categories19 from the ModApte split of the Reuters-21578
data set, and ran Rocchio using 31 different combinations20 of b and g.

The results indicate that Rocchio is indeed sensitive to b and g. If one
chooses for each category the optimal parameter values for that category
(i.e., the parameter settings that do best on the test set) then the average
error rate is reduced by more than a factor of two relative to the default
settings (from 2.6% to 1.2%). This suggests that the performance of Rocchio
might be improved substantially by appropriate parameter tuning.

However, the experiments also show that finding these optimal parame-
ter settings is not trivial. If, for instance, one adopts the simple procedure
of selecting for each category the parameter settings that give the lowest
training set error,21 the improvement in error rate is quite small (from
2.6% to 2.5%); furthermore, the error rate is much higher on the most
frequent category, which is weighted heavily in the microaveraged cross-
over measure. (The error rate for this category, “acq,” is raised from 11.9%
to 15.0%.)

It is also clear that different categories can behave quite differently for
different variations of Rocchio. We also implemented a variation of Rocchio
in which two prototype vectors are built, one for the positive examples and
one for the negative examples, and new instances are assigned to a
category depending on the distance to the closest of the two prototypes
[Armstrong et al. 1995; Pazzani et al. 1995]. This method was generally not
competitive with the more traditional version of Rocchio, obtaining an
average error rate of more than 20%; however, it obtained a much lower
error rate on the frequent category “acq” (4.2% versus 11.9% for the default
version of Rocchio.)

In summary, we suspect that automatic tuning methods might well
improve Rocchio’s performance; this might perhaps be done by automatic
means on a category-by-category basis, using cross-validation or some other
method to estimate test set error for different parameter settings, and

19The categories were “acq,” “corn,” “grain,” “mony-fx,” “trade,” ship,” “gnp,” and “pet-chem.”
20We selected b and g from the set $0,1,2,4,8,16,32%, and then discarded certain combina-
tions that seemed unreasonable or redundant: combinations where b 5 g and b Þ 1, and
combinations where g 5 0 and b Þ 1.
21In this case, choosing the parameter setting with lowest training set error is a simple but
plausible choice: for linear models, such as that produced by Rocchio, training set error is
often closely correlated with test set error.

168 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

perhaps incorporating recent extensions to Rocchio’s algorithm such as
dynamic feedback optimization [Buckley and Salton 1995]. Development of
such automatic methods is an intriguing direction for future research, and
one that we plan to pursue [Schapire et al. 1998].

We will conclude this section with a methodological point. The sensitivity
of Rocchio to its parameter settings represents not only an opportunity, but
also a danger. In the absence of a clearly defined (and preferably auto-
matic) parameter-tuning mechanism, it is quite possible for an experi-
menter to unwittingly “overfit” a benchmark problem by finding parameter
settings that perform well on the test set for that problem, but do not
perform well in general, and which moreover could not have been discov-
ered without using the test set itself for reference. This phenomenon is also
possible with a small set of benchmark problems, such as those associated
with the AP headline corpus or the Reuters corpora. (For Reuters, while
there are many categories, performance is dominated by a few frequent
ones.)

In evaluating a learning system, it is thus methodologically safer to use
parameter settings (or tuning mechanisms) that have been developed on
problems different from the ones being used as benchmarks. In this article,
we have followed this procedure as much as possible; the parameters for
Rocchio were set based on previous work in text categorization and re-
trieval [Buckley et al. 1994; Ittner et al. 1995], the RIPPER algorithm was
developed and tuned using a set of nontextual classification problems taken
from the UC/Irvine Repository [Cohen 1995a], and the design of sleeping-
experts was driven almost entirely by theoretical results.

4. CONCLUDING REMARKS

To summarize, we have evaluated two new text categorization algorithms.
Both algorithms allow the “context” of a word w to influence how the
presence or absence of w will contribute to a classification. However, the
algorithms use different representations for a classifier, different search
methods to find a classifier, and different notions of context.

For RIPPER, predictions are based on rules which test for the simulta-
neous presence or absence of several words; for sleeping-experts, predic-
tions are based on sparse phrases. Thus for both learners, a word’s effect on
prediction is “context sensitive” in the sense that this effect depends on the
remainder of the document containing that word. For RIPPER, for in-
stance, a word w1 that appears in a conjunction “w1 [D and w2 [D. . .
and wk [D” has no effect on predicting the class of the document D unless
the words w2, . . . , wk also appear somewhere in D; note however that w2,
. . . , wk may occur anywhere in D, in any relative order. For sleeping-
experts, the effect of a word w in predicting a class for a document D
depends on the sparse phrases in which w appears—in other words, the
context of w depends on the words that appear close to w in D, and the
relative order of these nearby words.

Context-Sensitive Learning Methods for Text Categorization • 169

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

We performed experiments with two large text categorization bench-
marks: a corpus of AP titles and a corpus of news stories. We found that the
context-sensitive learning algorithms generally performed better than algo-
rithms which learn context-insensitive classifiers. Our rule-learning results
improve on previous methods that output boolean text classifiers, both in
quality of the results (on the Reuters corpus) and in the scale of problems
that are demonstrated to be practically solvable (on the AP titles corpus).

On the AP titles, both algorithms achieved lower error rates than
Rocchio’s algorithm; in one case, the error rates were almost uniformly
lower. On the more complete version of the Reuters corpus, the two
algorithms performed better than any comparable algorithms previously
applied to the corpus. On a restricted version of the corpus, the algorithms
again performed better than any previously applied linear classifier. We
view these results as a confirmation of the usefulness and practicality of
learning classifiers that represent contextual information.

When possible, we have compared our results to previous results on the
same tasks. There is a large number of relevant studies (see for instance
Lewis [1992a; 1992b], Yang [1994], Yang and Chute [1994], Apté et al.
[1994a], Hull et al. [1995], Wiener et al. [1995], Cohen [1995b], Schutze et
al. [1996], and Ng et al. [1997] and the references therein) for which a
direct comparison is impossible due to the diversity of the different data
sets used in the experiments, the different methods used to preprocess and
partition the data, and the different measures used to evaluate perfor-
mance. It is difficult to predict how RIPPER and sleeping-experts will
perform relative to these previously published algorithms. However, we
would like to note that both RIPPER and sleeping-experts have certain
properties that no previously published text categorization algorithms
have; RIPPER constructs a boolean classifier given a direct representation
of the training corpus, and sleeping-experts has strong formal guarantees
on performance [Freund et al. 1997] in a strict on-line model of learning.
Furthermore, RIPPER and sleeping-experts make only a few statistical
assumptions about the data (in contrast to other approaches such as
Schutze et al. [1996]), and both RIPPER and sleeping-experts attempt to
minimize error directly (as opposed to some related measure, such as
squared loss used in Yang and Chute [1994] and Lewis et al. [1996]).

While this article has compared and evaluated two context-sensitive
learning methods, we note in closing that a potentially valuable research
topic is to combine these two different learning methods, so as to exploit
both of their stronger features. For instance, the output of RIPPER could be
used to derive an additional set of experts, corresponding to the rules that
RIPPER builds. This set could then be added to the existing set of sparse
phrases that is used by sleeping-experts, allowing the learning system to
model both short-range contextual information (using the sparse n-grams)
and long-range correlations (using the conjunctions in the rule set built by
RIPPER).

170 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

ACKNOWLEDGMENTS

The authors would like to thank David Lewis for comments on a draft of
the article and for help in preparing data for the experiments, and the
SIGIR-96 reviewers for a number of useful suggestions. We also would like
to thank Marti Hearst, Mehran Sahami, and the anonymous reviewers of
TOIS for many constructive comments and suggestions.

REFERENCES

ALMUALLIM, H. AND DIETTERICH, T. 1991. Learning with many irrelevant features. In
Proceedings of the 9th National Conference on Artificial Intelligence (AAAI-91, July 14–19),
T. Dean and K. McKeown, Eds. MIT Press, Cambridge, MA.

APTÉ, C., DAMERAU, F., AND WEISS, S. M. 1994a. Towards language independent automated
learning of text categorization models. In Proceedings of the 17th Annual International
ACM Conference on Research and Development in Information Retrieval (SIGIR ’94, Dublin,
Ireland, July 3–6), W. B. Croft and C. J. van Rijsbergen, Eds. Springer-Verlag, New York,
NY, 23–30.

APTÉ, C., DAMERAU, F., AND WEISS, S. M. 1994b. Automated learning of decision rules for text
categorization. ACM Trans. Inf. Syst. 12, 3 (July 1994), 233–251.

ARMSTRONG, R., FRIETAG, D., JOACHIMS, T., AND MITCHELL, T. M. 1995. WebWatcher: A
learning apprentice for the World Wide Web. In Proceedings of the 1995 AAAI Spring
Symposium on Information Gathering from Heterogenous Distributed Environments (Stan-
ford, CA, Mar.). AAAI Press, Menlo Park, CA.

BLUM, A. 1990. Learning boolean functions in an infinite attribute space. In Proceedings of
the 22nd Annual ACM Symposium on Theory of Computing (STOC ’90, Seattle, WA, May
12–14), H. Ortiz, Ed. ACM Press, New York, NY, 64–72.

BLUM, A. 1995. Empirical support for WINNOW and weighted majority algorithms: Results
on a calendar scheduling domain. In Proceedings of the 12th International Conference on
Machine Learning (Lake Tahoe, CA).

BRUNK, C. AND PAZZANI, M. 1991. Noise-tolerant relational concept learning algorithms. In
Proceedings of the 8th International Workshop on Machine Learning (Ithaca, NY). Morgan
Kaufmann, San Mateo, California.

BUCKLEY, C. AND SALTON, G. 1995. Optimization of relevance feedback weights. In
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’95, Seattle, WA, July 9–13), E. A. Fox, P.
Ingwersen, and R. Fidel, Eds. ACM Press, New York, NY, 351–357.

BUCKLEY, C., SALTON, G., AND ALLAN, J. 1994. The effect of adding relevance information in a
relevance feedback environment. In Proceedings of the 17th Annual International ACM
Conference on Research and Development in Information Retrieval (SIGIR ’94, Dublin,
Ireland, July 3–6), W. B. Croft and C. J. van Rijsbergen, Eds. Springer-Verlag, New York,
NY, 292–300.

CESA-BIANCHI, N., FREUND, Y., HELMBOLD, D. P., HAUSSLER, D., SCHAPIRE, R. E., AND WARMUTH,
M. K. 1993. How to use expert advice. In Proceedings of the 25th Annual ACM Symposium
on Theory of Computing (STOC ’93, San Diego, CA, May 16–18), R. Kosaraju, D. Johnson,
and A. Aggarwal, Eds. ACM Press, New York, NY, 382–391.

CHURCH, K. W. AND GALE, W. A. 1995. Poisson mixtures. Nat. Lang. Eng. 1, 2, 163–190.
COHEN, W. W. 1993. Efficient pruning methods for separate-and-conquer rule learning

systems. In Proceedings of the 13th International Joint Conference on Artificial Intelligence
(Chambery, France).

COHEN, W. W. 1995a. Fast effective rule induction. In Proceedings of the 12th International
Conference on Machine Learning (Lake Tahoe, CA).

COHEN, W. W. 1995b. Text categorization and relational learning. In Proceedings of the 12th
International Conference on Machine Learning (Lake Tahoe, CA).

Context-Sensitive Learning Methods for Text Categorization • 171

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

COHEN, W. W. 1996a. Learning rules that classify e-mail. In Proceedings of the 1996 AAAI
Spring Symposium on Machine Learning and Information Access (Palo Alto, CA). AAAI
Press, Menlo Park, CA.

COHEN, W. W. 1996b. Learning with set-valued features. In Proceedings of the 13th National
Conference on Artificial Intelligence (Portland, OR).

COHEN, W. W. AND SINGER, Y. 1996. Learning to query the Web. In Proceedings of AAAI-96
Workshop on Internet-Based Information Systems. AAAI Press, Menlo Park, CA.

FREUND, Y. AND SCHAPIRE, R. E. 1995. A decision-theoretic generalization of on-line learning
and an application to boosting. In Proceedings of the 2nd European Conference on
Computational Learning Theory. Springer-Verlag, Berlin, Germany, 23–37.

FREUND, Y., SCHAPIRE, R., SINGER, Y., AND WARMUTH, M. 1997. Using and combining
predictors that specialize. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing. ACM Press, New York, NY, 334–343.

FÜRNKRANZ, J. AND WIDMER, G. 1994. Incremental reduced error pruning. In Proceedings of
the 11th Annual Conference on Machine Learning (New Brunswick, NJ). Morgan Kaufmann
Publishers Inc., San Francisco, CA.

HULL, D. AND GREFENSTETTE, 1996. Stemming algorithms: A case study for detailed
evaluation. J. Am. Soc. Inf. Sci. 47, 1, 70–84.

HULL, S., PEDERSEN, J., AND SCHUTZE, H. 1995. Method combination for document filtering. In
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’95, Seattle, WA, July 9–13), E. A. Fox, P.
Ingwersen, and R. Fidel, Eds. ACM Press, New York, NY.

ITTNER, D. J., LEWIS, D. D., AND AHN, D. D. 1995. Text categorization of low quality
images. In Symposium on Document Analysis and Information Retrieval (Las Vegas,
NV). 301–315.

JOHN, G., KOHAVI, R., AND PFEGER, K. 1994. Irrelevant features and the subset selection
problem. In Proceedings of the 11th Annual Conference on Machine Learning (New
Brunswick, NJ). Morgan Kaufmann Publishers Inc., San Francisco, CA.

KIVINEN, J. AND WARMUTH, M. K. 1994. Exponentiated gradient versus gradient descent for
linear predictors. Tech. Rep. UCSC-CRL-94-16. Computer Research Laboratory, University
of California, Santa Cruz, CA.

LEWIS, D. D. 1992a. An evaluation of phrasal and clustered representations on a text
categorization task. In Proceedings of the 15th Annual International ACM Conference on
Research and Development in Information Retrieval (SIGIR ’92, Copenhagen, Denmark,
June 21–24), N. Belkin, P. Ingwersen, A. M. Pejtersen, and E. Fox, Eds. ACM Press, New
York, NY, 37–50.

LEWIS, D. D. 1992b. Representation and learning in information retrieval. Ph.D.
Dissertation. Department of Computer Science, University of Massachusetts, Amherst, MA.

LEWIS, D. AND CATLETT, J. 1994. Heterogeneous uncertainty sampling for supervised
learning. In Proceedings of the 11th Annual Conference on Machine Learning (New
Brunswick, NJ). Morgan Kaufmann Publishers Inc., San Francisco, CA.

LEWIS, D. AND GALE, W. 1994. Training text classifiers by uncertainty sampling. In
Proceedings of the 17th Annual International ACM Conference on Research and Development
in Information Retrieval (SIGIR ’94, Dublin, Ireland, July 3–6), W. B. Croft and C. J. van
Rijsbergen, Eds. Springer-Verlag, New York, NY.

LEWIS, D. AND RINGUETTE, M. 1994. A comparison of two learning algorithms for text
categorization. In Symposium on Document Analysis and Information Retrieval (Las Vegas,
NV).

LEWIS, D., SCHAPIRE, R., CALLAN, J. P., AND PAPKA, R. 1996. Training algorithms for linear
classifiers. In Proceedings of the 19th Annual ACM International SIGIR Conference on
Research and Development in Information Retrieval (Zurich, Switzerland). ACM Press, New
York, NY.

LITTLESTONE, N. 1988. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Mach. Learn. 2, 4, 285–318.

LITTLESTONE, N. AND WARMUTH, M. K. 1994. The weighted majority algorithm. Inf. Comput.
108, 2 (Feb. 1, 1994), 212–261.

172 • W. W. Cohen and Y. Singer

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

NG, H., GOG, W., AND LOW, K. 1997. Feature selection, perceptron learning, and a usability
case study for text categorization. In Proceedings of the 20th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New
York, NY, 67–73.

PAGALLO, G. AND HAUSSLER, D. 1990. Boolean feature discovery in empirical learning. Mach.
Learn. 5, 1 (Mar. 1990), 71–99.

PAZZANI, M., NGUYEN, L., AND MANTIK, S. 1995. Learning from hotlists and coldlists: Towards
a WWW information filtering and seeking agent. In Proceedings of the AI Tools Conference
(Washington, DC).

LANGLEY, P. 1990. Learning logical definitions from relations. Mach. Learn. 5, 3 (Aug. 1990),
233–266.

QUINLAN, J. R. 1995. MDL and categorical theories (continued). In Proceedings of the 12th
International Conference on Machine Learning (Lake Tahoe, CA).

ROCCHIO, J. 1971. Relevance feedback information retrieval. In The Smart Retrieval
System—Experiments in Automatic Document Processing, G. Salton, Ed. Prentice-Hall,
Englewood Cliffs, NJ, 313–323.

SALTON, G. 1991. Developments in automatic text retrieval. Science 253, 974–980.
SCHAPIRE,, R., SINGER, Y., AND SINGHAL, A. 1998. Boosting and Rocchio applied to text

filtering. In Proceedings of the 21st Annual ACM International Conference on Research and
Development in Information Retrieval. ACM Press, New York, NY.

SCHUTZE, H., HULL, D., AND PEDERSEN, J. 1996. A comparison of classifiers and document
representations for the routing problem. In Proceedings of the 19th Annual ACM Interna-
tional SIGIR Conference on Research and Development in Information Retrieval (Zurich,
Switzerland). ACM Press, New York, NY.

VAN RIJSBERGEN, C. J. 1979. Information Retrieval. 2nd ed. Butterworths, London, UK.
VOVK, V. G. 1990. Aggregating strategies. In Proceedings of the 3rd Annual Workshop on

Computational Learning Theory (COLT ’90, Rochester, NY, Aug. 6–8), M. Fulk and J. Case,
Eds. Morgan Kaufmann Publishers Inc., San Francisco, CA, 371–386.

WIENER, E., PEDERSON, J. O., AND WIEGEND, A. S. 1995. A neural network approach to topic
spotting. In Symposium on Document Analysis and Information Retrieval (Las Vegas,
NV). 317–332.

YANG, Y. 1994. Expert network: Effective and efficient learning from human decisions in text
categorization and retrieval. In Proceedings of the 17th Annual International ACM
Conference on Research and Development in Information Retrieval (SIGIR ’94, Dublin,
Ireland, July 3–6), W. B. Croft and C. J. van Rijsbergen, Eds. Springer-Verlag, New York,
NY, 13–22.

YANG, Y. AND CHUTE, C. G. 1994. An example-based mapping method for text categorization
and retrieval. ACM Trans. Inf. Syst. 12, 3 (July 1994), 252–277.

Received: June 1997; revised: October 1997 and April 1998; accepted: April 1998

Context-Sensitive Learning Methods for Text Categorization • 173

ACM Transactions on Information Systems, Vol. 17, No. 2, April 1999.

