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Abstract
In this paper, we propose a single low-dimensional represen-
tation for entities found in different datasets on the web. Our
proposed PIC-D embeddings can represent large D-partite
graphs using small number of dimensions enabling fast sim-
ilarity queries. Our experiments show that this representation
can be constructed in small amount of time (linear in number
of dimensions). We demonstrate how it can be used for vari-
ety of similarity queries like set expansion, automatic set in-
stance acquisition, and column classification. Our approach
results in comparable precision with respect to task specific
baselines and up to two orders of magnitude improvement in
terms of query response time.

1 Introduction
On the web, many entities are mentioned many times, in
many contexts. In particular, many entities appear frequently
in hyponym patterns or “Hearst patterns” [8] (e.g., “cities
such as New York”, or more abstractly, “concept such as
entity”) and also in semi-structured web pages that can be
easily parsed into tables and lists. In past work, hyponym
and table data about entities has been used to address a
number of distinct tasks, such as fact extraction (e.g., [5]),
semi-supervised learning (e.g., [14, 3]), set expansion (e.g.,
[19]), determining the type of columns in tables (e.g., [9]),
and automatic set instance acquisition (e.g., [18]).

However, existing methods to solve these tasks make
quite different use of the underlying data: for instance, SEAL
[19] performs set expansion by performing web queries and
recognizing “wrappers” for semi-structured pages and merg-
ing the results on-the-fly, while WebTables [2] uses a pre-
computed collection of tables with header information to
perform schema auto-completion. Label propagation meth-
ods like MAD [14] can address multiple such tasks using the
same graph based representation, but results in huge query
response times. Having diverse methods for processing web
data, with diverse storage and access requirements, can lead
to unnecessary inefficiencies and complexities.

Let us consider a scenario where there is a large set

of entities x1, . . . , xn, small number m of them are labeled
(x1, y1), . . . , (xm, ym). We have D different datasets which
has co-occurrence information about xi’s. Some examples
of such datasets are co-occurrence of entities in HTML
table columns on the Web pages, occurrences of entities
in the free text around Hearst patterns [8], occurrences of
entities as Subject-Verb-Object triples etc. Our focus is
on representing this high-dimensional data about entities in
a low dimensional representation so that, many similarity
queries can be efficiently executed against this presentation.
Consider following three tasks:

1. Set Expansion (SE) [19]: Here the query is a set of
seed entities {x1, . . . , xs} of a single class y, and the
task is to return a larger set of entities from the same
class (e.g., given a set of three seed baseball teams, find
more teams from the same league.)

2. Concept name expansion, or “automatic set instance
acquisition” (ASIA) [18]: Here the query is a single
class name (e.g., “baseball teams”). The task is to return
a set of instances of that concept.

3. Column Classification (COL-CLASS) [9]: Here
again we have a set of seed examples and unlabeled ex-
amples. The task is to learn a classifier that can predict
the class label yc for an unlabeled table column c where
c is a set of examples c = {x1, . . . , xc}.

Note that xi’s mentioned here are entities, and the above
mentioned tasks can be considered as similarity queries
because they rely on putting similar entities closer to each
other in the data space. Our hypothesis is that If we can
learn a low dimensional data representation in which entities
belonging to the same concept are together, we can solve
the above mentioned tasks efficiently operating in this low
dimensional space.

Contributions of this paper are as follows : (1) We pro-
pose a low-dimensional representation (henceforth referred
to as the PIC-D representation) and handle the distinct tasks
listed above as similarity queries to be executed against
this representation. (2) Further we demonstrate that the



PIC-D representation can be created very quickly, in time
linearly proportional to the total number of dimensions in the
dataset. Once this pre-processing is done, queries run much
faster in the lower-dimensional space. (3) We compare our
proposed approach with baseline approaches like similarity
queries over the original high-dimensional space and state of
the art label propagation techniques [14].

We are interested in representing the data extracted from
the web, hence we consider three representations that can
be constructed efficiently for very large datasets. One such
scheme is to represent each entity as a sparse vector of all
its occurrences in all datasets. Another potential scheme is
a graph, in which entities along with all features are nodes
and edges represent co-occurrence of entities with features.
Finally, we consider our proposed PIC-D representation
for this graph, which internally uses an efficient network
clustering method called Power Iteration Clustering [11].

To demonstrate our representation, we use hyponym
and semi-structured occurrence data from the web, and
represent it as a tri-partite graph. Our experiments show that
this representation is generally preferable to other methods,
especially with respect to performance at query time (12x to
240x faster than the sparse representation and 65x to 300x
faster when compared to state of the art label propagation
technique [14]) at the expense of modest pre-processing time
(around 365 msec. for a graph with half a million edges).

Below, Section 2 describes our low-dimensional repre-
sentation named PIC-D representation. Then Section 3 dis-
cusses how can we make sure that the PIC-D is a reason-
able representation of the underlying data. Section 4 demon-
strates the use of this representation for the previously men-
tioned similarity queries. Experimental results on various
semi-structured datasets are described in Section 5, Section
6 discusses previous work in this research area, and finally
we present our conclusions in Section 7.

2 The PIC-D Representation
We propose a low-dimensional representation for entities
based on the embedding internally used by the PIC algorithm
[11]. Briefly, PIC assigns each node in a graph an initial
random numeric value, and then performs an iterative update
which brings together the values assigned to nearby nodes,
thus producing a one-dimensional embedding of a graph.

Algorithm 1 describes the procedure of creating the
PIC-D representation for a (D+1)-partite graph containing
entity occurrences in D different datasets. Figure 1 shows
the schematic diagram of intermediate matrices while cre-
ating this embedding. Specifically, we start with m ran-
dom vectors to generate m-dimensional PIC embedding for
each bi-partite graph corresponding to each dataset. Since
we have D such bipartite graphs, we create embeddings for
each of them separately and final PIC-D embedding is the
concatenation of these individual embeddings. (See Section

1: function Create PIC-D Embedding(m, X , X1, X2,... XD):
XPIC-D

2: Input: m: Number of PIC dimensions per dataset
X: Set of all entities,
X1: Co-occurrence of X in dataset1,
X2: Co-occurrence of X in dataset2,
....
XD: Co-occurrence of X in datasetD ,

3: Output: XPIC-D: (|X|, D ∗m) dim. embedding of X .
4: XPIC-D = φ
5: t = a small positive integer
6: for i = 1: D do
7: for j = 1: m do
8: V0 = randomly initialized vector of size |X| ∗ 1
9: Vt = PIC Embedding(Xi, V0, t)

10: Append Vt as a new column XPIC-D
11: end for
12: end for
13: end function

Algorithm 1: Create PIC-D embedding

5.2 gives some insights on how to choose a right value of m).
We have experimented with a version of this algorithm

in which we create PIC embeddings of the data by con-
catenating the dimensions first instead of computing sepa-
rate embeddings and later concatenating them. We observed
that the version showed in Algorithm 1 performs as good
as or better than its variant. Further, PIC is proved to be
equivalent to computing diffusion maps followed by random
projection of points in a one dimensional space ([10] Sec-
tion 3.6). Instead PIC-D representation can be considered
as random projection in m ∗D dimensional space.

We use Algorithm 1 to produce a low-dimensional em-
bedding of a tripartite graph, in particular the data graph of
Figure 2 (a). This tri-partite graph is populated using entity-
tableColumn co-occurrence dataset and Hyponym Concept
dataset published by Dalvi et al.[5]. Each edge derived from
the entity-tableColumn dataset links an entity name with
an identifier for a table column in which the entity name
appeared. Each edge derived from the Hyponym Concept
Dataset links an entity X and a concept Y with which it ap-
peared in the context of a Hearst pattern (weighted by fre-
quency in a large web corpus). We combine these edges
to form a tripartite graph, as shown in Figure 2 (a). Oc-
currences of entities with hyponym (or “such as”) concepts
form a bipartite graph on the left, and occurrences of enti-
ties in various table-columns form the bipartite graph on the
right. Our hypothesis is that entities co-occurring in multi-
ple table columns and/or with similar suchas concepts might
belong to the same class label.

Here we have two bipartite graphs, entity-tableColumn
and entity-suchasConcept. We create bipartite PIC embed-
dings for each of these in turn (retaining only the part of the
embedding relevant to the entities). The embedding for enti-



(a) Example Tri-partite Graph (b) Example PIC-D representation (m=2)

Figure 2: Example PIC-D embeddings
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Figure 1: Schematic diagram of intermediate matrices,
where |X|: number of entities, ni: number of dimensions
in Dataseti, n: total number of dimensions (n =

∑
i ni),

and m: number of PIC dimensions per bipartite graph.

ties is then the concatenation of these separate embeddings.
Our hypothesis is that these embeddings will cluster

similar entities together. Figure 2 (b) shows an example
PIC-D embedding of the tri-partite graph with d = 2 and
m = 2. Columns X1 and X2 denote the PIC embed-
dings corresponding to entity-tableColumn bipartite graph,
while Y1 and Y2 represent the embeddings corresponding
to entity-suchas bipartite graph. In the next section, we will
discuss how to evaluate whether the PIC-D embeddings are
reasonable.

3 Is the PIC-D representation reasonable?
We would like the PIC-D representation to capture the prop-
erties of the underlying dataset, so that similar entities (be-
longing to the same concept) are put closer to each other in
the new low-dimensional space. In this section we will dis-
cuss how to tune the parameters of Algorithm 1 to generate
a reasonable PIC-D representation.

Parameter Tuning There are two parameters in Algo-
rithm 1 (1) t: number of iterations of PIC algorithm and
(2) m: number of dimensions of the PIC-D embedding.
We set t to a small number (say 5) to generate indepen-
dent embeddings starting with different random initializa-
tion vectors. We then note that the effectiveness of the
PIC-D representation depends on parameter m.

We use semi-supervised learning task to measure the ef-
fectiveness of the PIC-D representation. Here the query is a
small set of labeled “seed” examples (x1, y1), . . . , (xm, ym)
and many unlabeled instances xm+1, . . . , xn. The task is to
label the unlabeled instances accurately with labels y (i.e.,
we assume a transductive setting [14].)

To use the PIC-D representation for this task, we sim-
ply learn a linear classifier in the embedded space. In Sec-
tion 5.2, we experiment with various datasets to find the
relation between ideal value of m for a given dataset with
n number of dimensions. We also note that SSL task is
much more effective (precision on test data) with the use
of PIC-D representation than applying graph-based iterative
semi-supervised learning methods [14].



4 Similarity Queries on PIC-D
In this section we will see how the PIC-D representation
for entities can be used for different tasks. In general,
our algorithms exploit the property that semantically similar
entities are nearby (with respect to Euclidean distance) in
the PIC-D space. In the experimental section, we will also
discuss baseline approaches to solving each of these tasks
using the other representations.

4.1 Set Expansion Set expansion refers to the problem of
expanding a set of “seed” entities into a larger set of entities
of the same type. Algorithm 2 formally describes how to
perform set expansion with the PIC-D representation. Given
a set of query entities, the algorithm computes their centroid
in PIC-D space. k nearest neighbors are then found by
measuring distances from the centroid using a KD-tree. At
the end we apply Otsu’s threshold the ranked list of entities
to get optimal set expansion for a given set of seed entities.

In some prior set expansion papers, the result of set
expansion was evaluated as a ranked list [17]; however,
here we apply Otsu’s thresholding algorithm [13] to select
the correct number of results for each query from a large
ranked list, following He and Xin [7]. In our experiments we
threshold an ranked initial list of k=200 entities. Again, this
approach is quite efficient at query time; prior approaches
such as SEAL [19] ranked nodes using random-walk-with-
restart methods within a graph it built on-the-fly at set
expansion time using queries to the web.

1: function Expand Set(Q, XPIC ): Q′

2: Input: Q: seed entities for set expansion,
XPIC : low dimensional PIC-D embedding of E

3: Output: Q′: Expanded entity set
4: xQ = XPIC(row, :), row ∈ Q
5: xcentroid = centroid(xQ)
6: k = a large positive number
7: [Qk, Scorek] = Find-K-NearestNbr(xcentroid, XPIC , k)
8: Q′ = Apply-Otsu-Threshold(Qk, Scorek)
9: end function

Algorithm 2: Set Expansion with K-NN on PIC-D

4.2 Automatic Set Instance Acquisition (ASIA) This
task takes as input the name of a semantic class
(e.g.,“countries”) and automatically outputs its instances
(e.g., “USA”, “India”, “China” etc.). As described in Al-
gorithm 3, we look up instances of the given class in the
hyponym dataset, and then perform set expansion on these -
a process analogous to that used in a prior work [18]. Here,
however, we again use Algorithm 2 for set expansion in the
PIC space created using only entity-tableColumn bipartite
graph. The entity-suchasConcept data is used only to find
seeds for a particular class Y . Again this method requires
minimal resources at query time.

1: function Set Instance Acquisition(ys, XPIC ): Xys

2: Input: ys: class name (one of suchas concepts),
XPIC : low dimensional PIC-D embedding of E

3: Output: Xys : Entity set belonging to concept ys
4: numSeeds = a small positive number
5: seeds = top numSeeds entities that occur with ys in Hyponym

Concept Dataset
6: Xys = Expand Set(seeds, XPIC )
7: end function

Algorithm 3: ASIA on PIC-D

4.3 Column Classification Column classification is sim-
ilar to using SSL for entity classification, except that our sys-
tem is tested by finding a class label for an entire column of
a table—a column which contains entities of the same (un-
known) type. This operation is useful in many contexts—
e.g., in schema integration, or in indexing semi-structured
web pages with relevant terms for retrieval.

Algorithm 4 describes our approach. SVM classifiers
are learned as in the SSL learning case for each class
of interest. Given a novel column c = {x1, . . . , xk},
the PIC-D representation is retrieved for each entity xi.
Note that some entities may not correspond to nodes in the
original tripartite graph; these entities are simply ignored.
To classify column c, we find the centroid of all the xi’s
that are represented in the PIC-D space, and classify that
centroid with the SVM classifier. This is a very inexpensive
operation, since SVM uses linear classifier.

In the experiments we compare this approach to per-
forming SVM classification in the original space. In addition
to classifying the centroid of the examples, we also consider
taking the majority classification.

1: function Classify Table Column(c, XPIC , svm model): Yc

2: Input: c: Query Table Column (Set of entities),
XPIC : Low dimensional PIC-D embedding of E,
svm model: SVM classifier trained on a fraction of XPIC

3: Output: Yc: Class label of c
4: xc = XPIC(row, :), row ∈ c
5: xcentroid = centroid(xc)
6: Yc = predict(svm model, xcentroid)
7: end function

Algorithm 4: Column Classification using PIC-D

Table 1 shows the summary of all tasks be-
ing represented as a set of simple operations on
PIC-D representation:

5 Experiments
In this section we evaluate the performance of the
PIC-D representation on publicly available and extensively
labeled datasets described in Section 5.1. Then in Section
5.2 we will evaluate whether the PIC-D representation is



Task Training Testing
SE PIC-D Centroid(entity-set) + K-NN(centroid)

ASIA
PIC-D +
Index HCD

seeds = top-k-entities( lookup concept in HCD)
+ SE(seeds)

COL-
CLASS

PIC-D +
Train SVM centroid(column) + Predict SVM(centroid)

Table 1: Summary of tasks

Dataset Toy Delicious ASIA Clueweb
Apple Sports INT Sports

# HTML pages 574 21K 121K 918K
|X|: # entities 14,996 438 14,906 30,382
|C|: # table-columns 156 925 8,087 78,423
|(x, c)|: # (x, c) edges 70,551 5,546 90,902 566,080
|Ys|: # suchas concepts 2348 1649 3,868 21,454
|(x, Ys)|: # (x, Ys) edges 7683 4799 18,345 107,810
|Yn|: # NELL Classes 11 3 23 23
|(x, Yn)|: # (x, Yn) pairs 419 39 691 977
|Yc|: # manual column labels 31 30 - -
(c, Yc): # (c, Yc) pairs 156 925 - -

Table 2: Datasets Statistics

scalable in terms of pre-processing time and is it a reason-
able representation of the original dataset. Next we will go
through evaluation of similarity queries like Set expansion,
ASIA and column classification in Sections 5.3, 5.4 and 5.5
resp. executed on the PIC-D representation.

5.1 Datasets We use the Toy Apple, Delicious Sports,
ASIA INT, Clueweb Sports and Hyponym Concept datasets
made publicly available by [5]. Table 2 shows the statistics of
these datasets. Numbers for |Ys| and |(x, Ys)| are derived us-
ing the Hyponym Concept Dataset. Further we use an exist-
ing knowledge base NELL [3] for retrieving seed examples
for a set of concepts to be used in semi-supervised learn-
ing. Statistics regarding this data are represented as |Yn| and
|(x, Yn)|. To do a quantitative evaluation on multiple tasks,
we manually labeled the table columns from Toy Apple and
Delicious Sports datasets, denoted by |Yc| and |(c, Yc)|.

5.2 PIC-D embeddings Here we will first go through the
pre-processing times for creating PIC-D embeddings. Next
we will see how to tune the number of dimensions in
PIC-D (parameter m from the Algorithm 1). Finally we will
evaluate whether PIC-D embeddings are reasonable based
on their performance on a semi-supervised learning task.

Dataset Toy Delicious ASIA Clueweb
Apple Sports INT Sports

# edges 78,234 10,345 109,247 673,890
n: # total dimensions 2,504 2,574 11,955 99,877
m =

√
n 51 51 110 317

Total time to create
PIC-D embedding (msec) 49.7 53 69.7630 365.2
Avg. time per
PIC embedding (msec) 0.487 0.0520 0.3171 0.0576

Table 3: Time statistics for PIC-D embeddings
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Figure 3: Time to create PIC-D for various dataset sizes

Scalability Here we evaluate the scalability of our data
representation by recording the time taken to create the
PIC-D embeddings of four varying sized datasets. Ta-
ble 3 shows the statistics of all four datasets in terms
of number of edges, number of dimensions, number
of PIC-D dimensions(m) and total time taken to create
PIC-D embeddings. The plot in Figure 3 shows that total
time required to create PIC-D embeddings grows linearly
with number of dimensions of the dataset.

How many dimensions (m) in PIC-D? We use Semi-
supervised learning (SSL) task as a way to evaluate the the
effectiveness of the PIC-D representation. Carlson et al de-
scribe NELL, a semi-supervised information extraction sys-
tem for web data that works by using SSL to classify entity
names found on the web [3]. We used a version of the NELL
knowledge base to provide labels for entities in our datasets.
To evaluate the PIC embeddings in terms of predicting these
classes, we compared the performance of an SVM classi-
fier on the PIC embeddings (named SVM+PIC-D) vs. the
original high-dimensional dataset (named SVM-baseline); in
SVM-baseline the hyponyms and table-columns associated
with an entity are simply used as features. The number of
iterations t for PIC were set to t = 5 in these experiments.

Algorithm 2 internally uses a parameter m i.e. number
of PIC dimensions per bipartite graph. We study the SSL
performance varying number of PIC dimensions on all four
datasets. Figure 4 (a) shows the results on Delicious Sports
dataset. We can see that as the number of PIC dimensions
increase, performance of the classifier improves for various
values of training percentage and when m = 110 implying
total number of dimensions in the PIC-D representation are
220, the performance is very similar to SVM-Baseline.

Since SSL data is not always available, we performed
some experiments to determine how quickly m grows with
the total number of dimensions n. Figure 4 (b) shows the
effect of varying m on all four datasets with 20% of the
training data available (and the remaining 80% as test). On
these datasets, when m =

√
n, SVM+PIC-D performs com-
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Figure 5: SSL Task: Comparison of all 3 methods

parable to or better than SVM-Baseline. In all further ex-
periments, therefore, we set m =

√
n. To make sure that

the embeddings are distinct from each other, we computed
the rank of the PIC-D embeddings and compared it against
maximum possible rank of the embeddings. We found that
for embeddings of size m =

√
n, rank of the embedding

equals the maximum possible rank, hence ensuring the dis-
tinct values in the embeddings.

Semi-Supervised Learning with tuned parameter (m)
Henceforth we always pick m =

√
n, where n is the

total number of dimensions in the dataset. Now let
us see with this fixed value of m, how effective the
PIC-D representation is on the task of Semi-Supervised
Learning. Figure 5 shows the plot of accuracy vs. train-

ing size for Toy Apple and Clueweb Sports datasets. We
can see that SVM+PIC-D performs better than baseline with
less training data, hence is better in SSL scenarios. Both
these methods perform better than MAD for small training
size. We observed very similar results for ASIA INT and
Delicious Sports datasets, SVM+PIC-D method being com-
parable or better than SVM-Baseline, and better than MAD
(plots omitted due to space constraints).

Also note that the PIC-D embedding reduces the num-
ber of dimensions to square root of actual number of dimen-
sions. In these experiments, we use 10-fold cross validation
for all training set sizes by randomly sampling x% of train-
ing data in each fold. Note that when we say training per-
centage = x, we sample x% of data per class label. Hence
we can say that the PIC-D representation is reasonable for
these datasets and it can represent the underlying class-label
distribution in small number of dimensions.
5.3 Set Expansion We manually labeled every table col-
umn from Delicious Sports and Toy Apple datasets. These
labels are referred to as Yc in Table 2. This also gives us la-
bels for the entities residing in these table-columns. For this
task we construct queries which contain all entities from a
single table column c, and use label yc assigned to column c
to evaluate correctness. (All columns c of Delicious Sports
and Toy Apple datasets are manually labeled.)

One baseline approach runs K-Nearest Neighbor on
the original high-dimensional dataset (referred to as K-NN-
Baseline). We also consider a use of MAD for this task,
which is described below.

5.3.1 Unsupervised Modified Adsorption (MAD) for Set
Expansion SEAL [19] performs set expansion by perform-
ing web queries, recognizing “wrappers” for semi-structured
pages, building a graph similar to the entity-tableColumn
portion of our graph, and then ranking nodes in the graph
using a simple label propagation technique. Inspired by this
approach, we adapted the MAD algorithm [14], a state-of-
the art semi-supervised learning method, to the set expansion



Task Method Delicious Sports Toy Apple
Avg. Query Speedup Avg. Query Speedup

Time (msec) of PIC-D Time (msec) of PIC-D
Set Expansion K-NN+PIC-D 12.1 - 72.8 -

K-NN-Baseline 164.4 13.5 17578.3 241.5
MAD 1902.4 157.2 4801.9 65.9

ASIA K-NN+PIC-D 20.0 - - -
K-NN-Baseline 56.0 2.8 - -
MAD 6000.0 300.0 - -

COL-CLASS SVM+PIC-D+Centroid 0.1 - 3.8 -
SVM-Baseline+Centroid 1.2 12 56.8 14.94

Table 4: Comparison of query times

task. Following Talukdar et al. [15], we adapt MAD for un-
supervised learning by associating each table-column node
with its own id as a label, and propagating these labels to
other table-columns. MAD also includes a “dummy label”,
so after propagation every table-column Tq will be labeled
with a weighted set of table-column ids Ts1 , ...Tsn (includ-
ing its own id), and a weight for the “dummy label”.

We denote MAD’s weight for associating table-column
id Ts with table column Tq as P (Ts|Tq), and consider the
ids Ts1 , ...Tsk with a weight higher than the dummy label’s
weight. We consider e1, e2, ... en, the union of entities
present in columns Ts1 ...Tsk , and rank them in descending
order score, where score(ei, Tq) =

∑
j:ei∈Tsj

P (Tsj |Tq).

5.3.2 Comparison of Various Methods Table 4 presents
the running time results for all three methods on 272 set
expansion queries from Delicious Sports dataset and 152
queries on Toy Apple dataset. K-NN+PIC-D method incurs
a small amount of pre-processing time (0.053 and 0.487 sec.)
to create embeddings and compared to other two methods it
is very fast at the query time. The numbers show average
query times for both the datasets. Note the speedup numbers
for K-NN+PIC-D method, indicating the speedup of 13x to
240x over K-NN-Baseline and 65x to 150x over MAD. Thus
the PIC-D representation results in very fast execution of
similarity queries.

Next we compare the three methods in terms of preci-
sion and recall of set expansion. Figure 6(a) shows the ag-
gregate Precision-Recall curves for all 3 methods on the Set
Expansion task on Delicious Sports dataset. The 272 queries
that we executed belong to 12 different column-labels. We
first aggregate the precision values of all queries in a single
class, and Figure 6(a) shows the plots of macro-averaging
these precision recall curves across 12 classes. We can see
that MAD algorithm performs the best in terms of preci-
sion recall curve, at the expense of drastic increase in run
time of queries (Table 4). K-NN+PIC-D produce compara-
ble results to K-NN-Baseline along with the speedup at query
time. Table 5 shows some example queries and results pro-
duced by K-NN+PIC-D method on Clueweb Sports dataset.

Seed Entities: Expanded entity set by K-NN+PIC-D method
Arsenal, Liverpool, Manchester United: Middlesbrough, Man United,
Blackburn Rovers, Manchester City, Tottenham, West Brom, Tottenham
Hotspur, Bolton Wanderers, Newcastle United, Blackburn, Bolton, Birming-
ham City, Aston Villa, Chelsea Fc, Sunderland, Sheffield United, Leicester
City, Everton, Chelsea, Harlequins, ...
France, UK, Denmark: Brazil, Malaysia, Indonesia, Norway, Switzerland,
Great Britain, Thailand, Finland, Argentina, Belgium, Romania, Korea,
Germany, Austria, Chile, Lithuania, Senegal, ...
MSN, Google, Yahoo: Qas, Mitre, Cosco, Cerberus, Cdt, Garrett, Sporting-
bet, Excelsior, Genzyme, Gt, Broad, Ge, Bruno, Nortel, Level 3, Nec, Foster,
Renault, Ricardo, Persepolis, Coca Cola, Nike, ...
Penn State, Michigan, Princeton: Oklahoma State, Clemson, USC,
Columbia, Michigan State, LSU, Dartmouth, Ohio State, Cambridge,
Florida State, Wake Forest, Auburn, Vanderbilt, Duke, Hampshire, UCLA,
Syracuse, Oxford, Pitt, North Carolina State, Mississippi State, ...
San Francisco, Seattle, Houston: Detroit, Philadelphia, Denver, Boston,
Atlanta, Nashville, Minneapolis, New Orleans, San Diego, Dallas, Miami,
Pittsburgh, Cincinnati, Los Angeles, Chicago, Oakland, Tampa, Cleveland,
Portland, Tokyo, Des Moines, Kansas City, Charlotte, ...

Table 5: Set Expansion on Clueweb Sports Dataset

5.4 Automatic Set Instance Acquisition For the auto-
matic set instance acquisition (ASIA) task, we use concept-
names from Hyponym Concept Dataset (Ys) as queries. Sim-
ilar to the Set Expansion task, we compare K-NN+PIC-D to
the K-NN-Baseline and MAD methods.

5.4.1 MAD used for ASIA task To use MAD for this
task, the concept name Ys is injected as label for the ten
entities that co-occur most with Ys, and the label propagation
algorithm is run. Each entity ei that scores higher than the
dummy label is then ranked based on the probability of the
label Ys for that entity.

Table 4 shows that K-NN+PIC-D takes on average only
20 msec. to run a ASIA query as compared to 56 msec.
by K-NN-Baseline and 6000 msec. by MAD. These query
times are averaged over a set of 25 ASIA queries from
Delicious Sports dataset. Figure 6 (b) shows the com-
parison of all three methods on the ASIA task in terms
of macro-averaged precision recall curves (following the
same procedure for averaging as in set expansion). K-
NN+PIC-D generally outperforms K-NN-Baseline. MAD
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Figure 6: Results on Delicious Sports dataset

Concept
Name

Seed Enti-
ties K-NN + PIC-D: Expanded entity set

Sports

Football,
Basketball,
Soccer

Softball, Ice Hockey, Volleyball, Skating,
Martial Arts, Windsurfing, Hunting, Strength
Sports, Lacrosse, Dodgeball, Curling, ...

City

New York,
London,
Los Angeles

Tokyo, Grand Rapids, San Jose, Memphis,
Long Beach, Ft Lauderdale, Southern New
England, Minnesota, Washington, ...

Country

United
States,
Canada,
India

Australia, Dr Congo, Argentina, Colombia,
North Korea, China, Malaysia, Pakistan, Nor-
way , Philippines, Iceland, Egypt, Ecuador, In-
donesia, Vietnam, South Africa, Brasil, ...

Outdoor
Recreation

Hunting,
Fishing,
Skiing

Cross Country, Martial Arts, Ice Hockey, Cro-
quet, Curling, Climbing, Lacrosse, Softball,
Basketball, Golf, Windsurfing, Baseball, ...

Major
European
Countries

France, Ger-
many, UK

Slovakia, Thailand, Israel, Czech Republic,
United States, Brazil, Iceland, Belgium, Hong
Kong, Canada, Serbia, Uruguay, ...

Leagues

NFL,
Premier
League,
NBA

NHL, NASCAR, NHRA, NCCA, PGA, Sports
Illustrated, ....

Table 6: ASIA task on Clueweb Sports dataset

is slightly batter than K-NN+PIC-D at the expense of
much longer query times. These results show that K-
NN+PIC-D achieves comparable quality results w.r.t MAD
by reducing the query time by a factor of 300 (Table 4). Table
6 shows some example ASIA queries and output produced
by K-NN+PIC-D method on Clueweb Sports dataset.

5.5 Column Classification For this task we use the man-
ual labels (Yc) assigned to all table columns of Deli-
cious Sports and Toy Apple datasets. These labels are fur-
ther extended to entities appearing in those table columns.
Column Classification (COL-CLASS) task is to predict Yc

for a given table column c, using a classifier trained on few
example entities for each Yc.

We refer to our method described in Algorithm 4 as
SVM+PIC-D+Centroid. Similar to SSL task, we cre-
ate a version of this method which trains SVM clas-
sifier and predicts class label of the column in origi-
nal data space. This method is referred to as SVM-
Baseline+Centroid. Figure 6 (c) shows the performance

of all these two methods on Delicious Sports dataset. It
can be seen that SVM+PIC-D+Centroid gives a com-
parable or better performance when compared to SVM-
Baseline+Centroid. Note that along with the superior qual-
ity results, SVM+PIC-D+Centroid achieves a query-time
speedup of 12x to 14x as shown in Table 4.

We also tried a variant of both these methods where
prediction of the label of a table column is the major-
ity of labels predicted for each of its entities. These
methods are referred to as SVM+PIC-D+Majority and
SVM-Baseline+Majority resp. We observed in our ex-
periments that there is no significant difference between
SVM+PIC-D+Centroid and SVM+PIC-D+Majority, while
SVM-Baseline+Majority performs slightly better than SVM-
Baseline+Centroid. The performance of these methods on
Toy Apple dataset followed very similar trends (plots omit-
ted due to space constraints). Overall, PIC-D based methods
performed better than baseline methods for both the datasets
in terms of query-time and prediction accuracy.

6 Related Work
This work uses the Power Iteration Clustering (PIC) algo-
rithm by Lin and Cohen [11]. We propose a low-dimensional
representation for entities based on the embedding used in-
ternally by the PIC algorithm. Briefly, PIC assigns nearby
values to similar nodes, thus producing a one-dimensional
embedding of a graph. Clustering is then performed in
this one-dimensional space. Extension of PIC for bipartite
graphs is demonstrated by Lin and Cohen [12].

PIC is very scalable, and in past experiments it has
shown to be comparable to spectral clustering methods for
certain network datasets, and superior to traditional k-means
clustering on certain text-clustering tasks (where a text cor-
pus is represented as a bipartite graph with nodes that are
terms or documents.) It has also been previously shown that
the performance of PIC can be improved by using multiple
random starting points, thus producing a low-dimensional
(but not one-dimensional) embedding of a graph [1]. This
paper considers D-partite graphs, and evaluates new oper-



ations (other than clustering) on the embedded space. We
note that many of the tasks considered here are quite differ-
ent from cases where PIC was previously used, in that there
are many small clusters rather than a few large ones. We also
showed that similarity queries can be executed extremely fast
on the PIC-D embedding.

Another line of related work concerns information ex-
traction from semi-structured web data sources. WebTables
[2] demonstrated the utility of large corpora of HTML tables,
and such data has been used for various inference tasks by
several other researchers [19, 9, 6, 16], including several of
the individual tasks discussed above, notably set expansion
using semi-structured data [19]. Set expansion has been used
for tasks such as answering entity-list completion queries [4],
and the semi-structured data used in set expansion has been
extended with other sources, such as web search logs [7].
Wang and Cohen also used semi-structured data in an ex-
tended set-expansion system, in conjunction with hyponym
data collected at query time, for the automatic set instance
acquisition task [18].

The combination of tables and hyponym data was also
used by [14] to learn class-instance facts of the form “en-
tity x is a member of concept c”, using a label propagation
method called Modified Adsorption (MAD). Here we use the
same representation as one of our baselines, and consider us-
ing MAD on this graph to propagate labels, but consider a
broader set of tasks, and compare to other representations
as well. WebSets [5] also demonstrated unsupervised class-
instance fact extraction using HTML tables and Hearst pat-
terns [8], and the data we use for evaluation is taken from
the WebSets project [5]. Here again we consider using simi-
lar underlying data, but consider a different set of tasks.

7 Conclusions
In this paper, we propose a single low-dimensional represen-
tation for entities found in semi-structured data on the web.
Further we show that a single, efficiently-constructible rep-
resentation, the PIC-D representation, can be used for an-
swering similarity queries like set expansion, automatic set
instance acquisition, and column classification.

We present experiments on large collections of tables
and hyponym data published by [5]. Our proposed approach
gives comparable precision values with respect to the task
specific baselines. Additionally, it gives up to two orders of
magnitude improvement in query response time. The exper-
imental success of our approach is especially encouraging
given that there are very few parameters to tune in build-
ing the representation (only the number of iterations t for
PIC and the number of PIC dimensions m, set to t = 5 and
m =

√
n in the experiments).

These initial results raise a number of interesting
questions. A plausible research direction would be to
use the PIC-D representation with many more “views” of

entity data (for instance, features describing the content
of an entity name, or properties derived from large broad-
coverage knowledge bases such as FreeBase). One could
also investigate class-instance fact acquisition using the
PIC-D representation.
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