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Abstract
Mixed-membership network models permit
a node in a graph to take on different la-
tent roles in different interactions. However,
while mixed-membership block models often
do out-perform classical network models, the
actual degree of mixed-membership in many
graphs is small, with nodes usually taking on
only a handful of many possible roles. We
thus present a novel slightly mixed member-
ship stochastic block model, in which the de-
gree of mixed-membership can be controlled.
This model is based on a novel regularization
method, where the generative model is ex-
tended to include variables that measure ag-
gregate statistics (e.g., the entropy of the dis-
tribution of latent roles assigned to nodes), as
well as “noisy copies” of these aggregates. We
then pseudo-observe a desired value for the
noisy copies, which has the effect of penal-
izing models whose aggregates differ greatly
from the desired value. Here we demonstrate
two applications of this technique: one which
encourages slightly-mixed membership, and
one which encourages balanced clusters. Ex-
periments with several networks from differ-
ent domains show that the new models im-
prove performance, as measured by link per-
plexity and cluster recovery.

1. Introduction

Modeling relations between pairs of objects by repre-
senting them as graphs with nodes corresponding to
objects is a frequently encountered setting in machine
learning and statistics. Common examples of such
graphs are web graphs, where the relations indicate hy-
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perlinks between webpages, and social networks, with
nodes representing people and edges representing a so-
cial link between pairs of people. Models of relational
data serve as a foundation for tasks like clustering—
i.e., grouping nodes by similarities in interaction pat-
terns, de-noising network representations, and visual-
izing large complex networks.

The task of studying network structure has been a fer-
tile area of research. In this paper, we mainly focus on
stochastic network models (Goldenberg et al., 2010)
i.e. generative models that produce random graphs.
Stochastic block models (Holland et al., 1983; Snijders
& Nowicki, 1997) posit that nodes play a single latent
role and the probability of an edge depends only on the
latent roles of the nodes. While this approach is sim-
ple and elegant, nodes in complex graphs often exhibit
multiple latent roles. For instance, in a social network,
a person might assume a personal role while creating a
link with a relative or a family member and don a more
professional role while doing the same with a colleague.
Airoldi et al. (2008) introduced the mixed membership
stochastic block model (MMSB) that models this phe-
nomenon. This idea of mixed membership has been
successfully used previously in non-relational settings
in models such as Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) where a word is free to take on dif-
ferent latent roles when it appears multiple times in
the corpus. An alternate network model (henceforth
the PSK model) presented by (Parkkinen et al., 2009)
models sparse networks more efficiently.

In this paper, we introduce a novel technique to
regularize mixed membership stochastic blockmodels,
demonstrated using the PSK model, which has been
shown to outperform MMSB(Parkkinen et al., 2009;
Balasubramanyan & Cohen, 2011) on sparse networks,
to obtain slightly mixed membership stochastic block-
models. In this approach, we extend the model to in-
clude a noisy copy of an aggregate function over latent
variables (e.g., the entropy of latent role distributions).
By pretending to see a desired value for the copy (e.g.,
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low entropy of latent role memberships) the model is
coaxed to push the variables that participate in the
aggregate functions to values that make the pseudo-
observed variables likely. This form of regularization
therefore permits us to impose biases that cannot be
obtained by simply modifying the parameters of prior
distributions. By designing the right form for the ag-
gregate functions, restrictions can be imposed on dis-
tributions that are not explicity sampled. Moreover in-
dependence assumptions between multiple draws from
a prior can be potentially overcome by using aggregate
functions that span the multiple draws.

Technically, this regularization method can be easily
added to any generative model, as it requires only
adding new variables and adding observed values of
these variables. In our application, the generative
model posits that the pseudo-observed variables are
distributed as Gaussians, which are parameterized by
the aggregate functions of latent variable (such as en-
tropies of the latent role distributions of nodes, or the
entropy of the cluster volume distribution). This ap-
proach has the advantage of keeping posterior infer-
ence simple; we need only extend the Gibbs sampler
used for the standard network model by adding a few
additional terms, which do not increase the compu-
tational order of complexity of inference. We believe
that this approach is general and can be extended to
model other forms of useful regularizations.

An alternate approach to control the latent role dis-
tributions of nodes is to impose a suitable prior on
the distributions. However, this approach has the
shortcoming of often requiring non-conjugate priors,
which make MCMC sampling complicated, compu-
tationally expensive, and slower to converge. The
pseudo-observation approach also allows the modeler
to express easily preferences on distributions that are
not explicity sampled—such as the latent role distri-
butions of nodes.

We consider two applications of pseudo-observations.
First, we constrain the latent role membership distri-
butions of nodes by penalizing high entropy. By vary-
ing the noise model associated with the copy process
for the aggregate variables, one can obtain any de-
sired degree of mixed membership, ranging from a fully
mixed membership block model (such as the PSK or
the MMSB models) to a classical non-mixed network
model.

The second application of pseudo-observed variables is
motivated by spectral clustering (Shi & Malik, 2000;
Luxburg, 2007), a widely used class of techniques for
clustering nodes in a graph, and in particular by the
Normalized Cut technique, which strives to produce
clusters that are balanced in terms of the cluster vol-
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Figure 1. The sparse network model with role entropy and
volume entropy regularization.

umes. (Here volume is the sum of degrees of nodes
belonging to the cluster). In this spirit, we propose
a second regularization term for mixed membership
stochastic models that imposes a preference on bal-
anced volumes.

Results of experiments show that adding either of
these penalty terms, or their combination, is benefi-
cial, as measured by the average accuracy in recovering
cluster labels with known cluster labels.

The rest of the paper is organized as follows. The
mixed membership network model used in the paper
is presented in Section 2. Details of the two types
of regularization proposed are presented in Sections 3
and 4. Section 5 shows experimental results, followed
by a discussion of related work in Section 6 which is
followed by the conclusion.

2. Sparse Network Model

The sparse network model(the PSK model) introduced
in (Parkkinen et al., 2009) allows nodes to take on
different latent roles in different interactions like the
MMSB model. As in LDA, clusters are modeled as
multinomial distributions over nodes. Recent liter-
ature (Parkkinen et al., 2009; Balasubramanyan &
Cohen, 2011) suggests that the model outperforms
MMSB when modeling sparse networks.

Figure 1 shows the plate diagram for the regularized
version of the PSK model that generates a graph repre-
senting links between nodes with an underlying block
structure. The top part of the figure above the dot-
ted line shows variables related to the regularization
introduced in later sections and can be ignored for
now. Clusters in this model are represented as dis-
tributions over nodes. Nodes participating in an edge
are generated from cluster specific node distributions
conditioned on the cluster pairs sampled for the edge.
Cluster pairs for edges(links) are drawn from a multi-
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nomial defined over pairs of cluster labels. Each node
in the set of nodes V in the graph therefore has mixed
memberships in clusters. The generative process to
obtain links in a graph with K clusters is as follows.

1. Generate cluster distributions:

For each cluster k ∈ 1, . . . ,K, sample βk ∼
Dirichlet(γ), the cluster specific multinomial distribu-
tion over nodes.

2. Generate edges between nodes:

(a) Sample πL ∼ Dirichlet(αL) where πL denotes the
multinomial distribution over cluster pair labels.

(b) For every link vi1 → vi2, i ∈ {1 · · ·NL}, where
vi1, vi2 ∈ V :

(i) Sample a cluster pair 〈zi1, zi2〉 ∼Multinomial(πL)

(ii) Sample vi1 ∼ Multinomial(βzi1)

(iii) Sample vi2 ∼ Multinomial(βzi2)

In contrast to MMSB, this model only generates real-
ized links that are observed, which provides better fits
for sparse graphs.

Given the hyperparameters αL and γ, the joint distri-
bution over the links, the cluster pair distribution, the
cluster node distributions and cluster assignments for
edges is given by

L = p(πL,β, 〈z1, z2〉, 〈v1,v2〉|αL, γ)

∝
[∏K

z=1 Dir(βz|γ)
]

Dir(πL|αL)
∏NL

i=1 π
〈zi1,zi2〉
L βvi1zi1 β

vi2
zi2

Since exact inference in the PSK model is intractable,
we use a collapsed Gibbs sampler to perform approx-
imate inference. A cluster pair for every link condi-
tional on cluster pair assignments to all other links
after collapsing πL and β, is sampled using the ex-
pression:

p(zi = 〈k1, k2〉|〈vi1, vi2〉, 〈z1, z2〉¬i, 〈v1,v2〉¬i, αL, γ)

=
p(zi = 〈k1, k2〉, 〈z1, z2〉¬i, 〈v1,v2〉|αL, γ)

p(〈z1, z2〉¬i, 〈v1,v2〉|αL, γ)

∝
(
nL¬i〈k1,k2〉 + αL

) (
n¬ik1vi1 + γ

) (
n¬ik2vi2 + γ

)(∑
v n
¬i
k1v

+ |V |γ
) (∑

v n
¬i
k2v

+ |V |γ
)

(1)

The n’s are counts of observations in the training set,
where nkv is the number of times a node v is observed
under cluster k and nL〈k1,k2〉 is the number of edges as-

signed to cluster pair 〈k1, k2〉. Counts with superscript
¬i indicate that edge i is removed from the counts.

The cluster multinomial parameters and the clus-
ter pair distributions of links are recovered us-
ing their point estimates after inference using the
counts of observations - βvk = nkv+γ∑

v′ nkv′+|V |γ and

π
〈k1,k2〉
L =

nL
〈k1,k2〉+αL∑

k′
1,k′

2
nL
〈k′

1,k′
2〉

+K2αL
. A de-noised form of

the entity-entity link matrix can also be recovered from
the estimated parameters of the model. Let B be
a matrix of dimensions K × |V | where row k = βk,
k ∈ {1, · · · ,K}. Let Z be a matrix of dimensions

K ×K s.t Zp,q = π
〈p,q〉
L . The de-noised matrix M of

the strength of association between the nodes in V is
given by M = BTZB.

3. Role Entropy Regularization

Each node v ∈ V in the PSK model has a set of asso-
ciated latent roles (z’s) it plays when participating in
edges. For every node v, we define a distribution zv of
dimension K where

zkv =
∑

vi1→vi2

I(vi1 = v)I(zi1=k) + I(vi2 = v)I(zi2 = k)

I(vi1 = v) + I(vi2 = v)

(2)
where I(·) takes the value 0 or 1 depending on the con-
dition being true. The expression effectively computes
p(z = k|v), the latent role distribution of the node v.
Figure 1 shows blue dashed edges from the latent role
and edge-node variables to variables that represents
the entropy of zv. Note that there is no distinction
made between the occurrences of the node as a source
or destination node, i.e. directionality of the edges is
ignored while determining the latent role distribution.

It should be noted that zv is not explicitly sampled
during the generative process and is an aggregate func-
tion of the z and v variables that are generated. Since
the different z and v values are independent draws con-
ditioned on πL and β, any preference on a function
that aggregates over different z and v values cannot
be imposed by simply adjusting the parameters of the
Dirichlet prior αL.

We now introduce the role entropy regularization term
by adding pseudo-observed variables, lv, one for each
node in V , which are noisy copies of H(zv), to the
generative process as seen in Fig. 1. H(zv) is defined
as −∑k z

k
v log2z

k
v and represents the Shannon entropy

of zv. These pseudo-observed variables are drawn from
Gaussians with mean H(zv) and variance σ2

lv
which

is a hyperparameter to the model. The addition of
the terms penalizes large entropies in the latent role
distributions while retaining the generative nature of
the model. The σ2

lv
parameter dictates the strictness of

the penalty. The imposition of the penalty therefore
allows us to overcome the independence assumption
between the different z draws for a given node v.

The regularization term is expressed as∏
v lv, v ∈ V, lv ∼ N

(
H(zv), σ

2
lv

)
. Therefore
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p

(∏
v

lv|〈z1, z2〉, 〈v1,v2〉, σ2
lv

)
=
∏
v

p(lv|〈z1, z2〉, 〈v1,v2〉, σ2
lv )

∝
∏
v

exp
− (lv −H(zv))

2

2σ2
lv

Since lv is observed, i.e., its value is known during
inference, the inference procedure tends to push the
mean of the Gaussians i.e. H(zv) close to the lv values.
We therefore set (pseudo-observe) lv to be 0 to coax the
inference procedure to return low entropy latent role
distributions for nodes. The variance parameter σ2

lv
can be used to adjust the tightness of the Gaussian to
permit more or less entropy in the label distributions.
In the limit, as σ2

lv
tends to 0, the model reduces to the

stochastic block model since the regularization will re-
quire the entropies to be close to 0 implying that the
distribution over latent roles has all its mass on one
cluster. Similarly, as the variance tends to ∞, the
model reduces to a fully unconstrained mixed mem-
bership model. 1

The joint distribution of the model with regularization
is given by

Lm = p(πL,β, lv, 〈z1, z2〉, 〈v1,v2〉|αL, γ, σ2
lv )

= L ×
∏
v

p(lv|〈z1, z2〉, 〈v1,v2〉, σ2
lv ) (3)

To obtain the conditional distribution required for
Gibbs’ sampling with the regularization term added,
we see that (derivation in the Appendix)

p(zi = 〈k1, k2〉|lv, 〈z1, z2〉¬i, 〈v1,v2〉, αL, γ, σ2
lv )

∝
(
nL¬i〈k1,k2〉 + αL

) (
n¬ik1vi1 + γ

) (
n¬ik2vi2 + γ

)(∑
v n
¬i
k1v

+ |V |γ
) (∑

v n
¬i
k2v

+ |V |γ
)

× exp
− (lvi1 −H(zvi1))

2

2σ2
lv

exp
− (lvi2 −H(zvi2))

2

2σ2
lv

(4)

where zvi1 and zvi2 use the assignment of zi1 = k1 and
zi2 = k2.

It can be seen from the expression that adding the role
entropy regularization is computationally inexpensive

1The pseudo-observed variables lv can be modeled us-
ing a variety of distributions parameterized on H(zv). We
use Gaussian distributions for this in this paper because
of its property of controllable peakiness (by adjusting the
variance) around a desired mean and due to its minimal
impact on sampling complexity.

since the extra terms introduced in the Gibbs sampling
expression only require the entropies of the current
edge’s source and destinate nodes’ latent role distribu-
tions to be computed and does not require any com-
putation over nodes and edges that do not participate
in the edge being considered.

4. Cluster Volume Regularization

Cluster balance is an important aspect in clustering.
Spectral clustering methods which are relaxed versions
of Ratio Cut and Normalized Cut (Shi & Malik, 2000)
use different ways to define notions of cluster balance.
In the case of Normalized Cut, the clusters are coaxed
to have balanced volumes (which is defined as the sum
of the degrees of the nodes in the cluster). To impose
a similar preference in the PSK model, we propose a
regularization scheme that prefers a higher entropy in
the volume distribution B, which is defined as follows:

Bk, k ∈ 1, . . .K =
∑NL

i=1
I(zi1=k)+I(zi2=k)

2∗NL
.

The regularization term lb (seen in Figure 1) is drawn
from the GaussianN (H(B), σ2

lb
)−1. It should be noted

that the regularization term is the multiplicative in-
verse of the density.

Since the Gaussian term in the sampling equation be-
low (Equation 5) is raised to the power −1, setting lb
to 0 will cause the sampling procedure to diminish the
probability p(lb|H(B), σ2

lb
) by returning a mean for the

Gaussian i.e. H(B) that is far from 0, which means
that H(B) will tend to be high, implying that B will
tend to be more balanced. σ2

lb
like σ2

lv
in the case of

role entropy regularization, controls the strictness of
this preference. This value can be set to a lower value
in cases where the network is believed to have more
balanced clusters and can be set higher when bigger
variations in the volumes of clusters is expected.

The joint distribution after adding vol-
ume and role entropy regularization terms
to the PSK model is defined as Lbm =
p(πL,β, lb, lv, 〈z1, z2〉, 〈e1, e2〉|αL, γ, σ2

lv
, σ2
lb

). There-

fore Lbm = Lm × p(lb|〈z1, z2〉, σ2
lb

).

Similar to Equation 4, the Gibbs sampling equation
for the latent cluster pair of an edge, with B using the
assignment zi1 = k1 and zi2 = k2 is now defined as

p(zi = 〈k1, k2〉|lb, lv, 〈z1, z2〉¬i, 〈v1,v2〉, αL, γ, σ2
lv )

∝
(
nL¬i〈k1,k2〉 + αL

) (
n¬ik1vi1 + γ

) (
n¬ik2vi2 + γ

)(∑
v n
¬i
k1v

+ |V |γ
) (∑

v n
¬i
k2v

+ |V |γ
)

× exp
−(lvi1 −H(zvi1))2

2σ2
lv

exp
−(lvi2 −H(zvi2))2

2σ2
lv

×
(

exp
−(lb −H(B))2

2σ2
lb

)−1
(5)
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Table 1. Evaluation of regularization in the smaller datasets.

Dataset
Perplexity Accuracy

Regularization Regularization
None Role Volume Both None Role Volume Both

agblog 2.47e+05 2.47e+0.5 2.33+05 2.31+05 0.921 0.925 0.922 0.947

citeseer 2.31e+06 1.73+06 1.60e+06 1.51+06 0.243 0.268 0.282 0.291

cora 3.41e+06 2.27e+06 2.52+06 2.62e+06 0.198 0.268 0.210 0.230

dolphin 2.10e+03 2.03e+03 2.03e+03 2.00e+03 0.871 0.935 0.897 0.881

football 1.31e+04 0.79e+04 0.96e+04 0.79e+04 0.161 0.833 0.515 0.560

karate 5.72e+02 5.35e+02 5.39e+02 5.54e+02 0.941 1.00 0.951 0.961

polbook 4.95e+03 4.91e+03 4.84e+03 4.77e+03 0.752 0.778 0.774 0.778

senatevote 3.50e+03 3.50e+03 3.44e+03 3.46e+03 0.969 0.980 0.980 0.971
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Figure 2. Role entropy - varying the variance hyperparam-
eter. (Horizontal line indicates no-regularization baseline)

5. Experimental Results

5.1. Datasets

We investigate the effects of regularization on a collec-
tion of datasets consisting of social networks, citation
networks, yeast protein-protein interaction networks
and other similar networks that have been studied in
the sociology literature.

The first set of graphs (Balasubramanyan et al., 2010)
are relatively small and have one known true cluster

Table 2. Dataset statistics.
Dataset Nodes Edges Clusters #Labels

per-node

ag 1222 33428 2 1

cora 2485 10138 7 1

citeseer 2114 7396 6 1

dolphin 62 318 2 1

football 115 1226 10 1

karate 34 156 2 1

polbooks 105 882 3 1

senate 98 9506 2 1

yeast 844 14780 15 2.5

blogcatalog 10,312 333,983 39 1.4

youtube 1,138,499 2,990,443 47 1.6

label for every node, which is used solely for evaluating
the accuracy of node clustering. Statistics about the
datasets are shown in the first 8 rows of Table 2.

Next, we study the Munich Institute for Protein Se-
quencing (MIPS) database which contains a collection
of protein interactions covering protein complex as-
sociations in yeast. We use a subset of this collection
containing 844 proteins, for which all interactions were
hand-curated. The proteins in the dataset are also an-
notated with functional categories based on the func-
tions that they play. There are 15 top-level functional
categories which are treated as known cluster labels.
On average, a protein is annotated with 2.5 functional
categories.

In addition to the smaller networks described above,
we also run experiments on two larger benchmark net-
works, namely the BlogCatalog and YouTube datasets
(Zafarani & Liu, 2009). These larger networks also
have known mixed-membership labels for nodes. On
average across all nodes, nodes in the BlogCatalog
dataset have 1.4 labels per node and nodes in the
YouTube dataset have 1.6 labels per node. More
statistics about these networks are in Table 2.
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Table 3. Predicting cluster labels in mixed-membership datasets.

Model
BlogCatalog YouTube Yeast

Micro F-1 Macro F-1 Avg KL Micro F-1 Macro F-1 Avg KL Micro F-1 Macro F-1 Avg KL

Unregularized 0.131 0.076 2.271 0.154 0.084 0.117 0.435 0.284 1.91
Role entropy 0.153 0.077 2.141 0.165 0.086 0.114 0.485 0.321 1.80
Volume entropy 0.154 0.080 2.150 0.171 0.089 0.112 0.468 0.305 1.83
Both 0.161 0.082 2.075 0.198 0.096 0.115 0.523 0.310 1.83

5.2. Experimental Setup

We evaluate the regularized and unregularized versions
of the PSK model using the following metrics. The
first metric used is average node entropy defined as∑
vH(zv)/|V |. This metric shows the extent to which

each node participates in multiple latent roles. The
second metric used to evaluate the model is link per-
plexity which is a function of the likelihood of the edges
in the dataset and is defined as

2
−

∑
vi1→vi2

log2p(vi1→vi2)

NL

A lower perplexity value indicates an higher likelihood
of data and a better fit.

For datasets with only one node per label, we can eval-
uate the model by checking its accuracy in predicting
node labels. Nodes in the PSK model are associated
with a distribution over clusters which can be obtained
by normalizing βvz . Predicted class labels can be as-
signed to nodes using the 1-NN algorithm using the
Jensen-Shannon distance between these cluster distri-
butions as the metric to measure the distance between
two nodes.

Performance in the larger networks which have multi-
ple labels per node is measured using micro and macro
averaged F-1 measures of retrieving the known cluster
labels. The prediction of multiple labels for a node is
done in two stages. In the first stage, the Hungarian
algorithm (Kuhn, 1955) is used to align true cluster
labels to clusters in the model. Next, labels corre-
sponding to elements from posterior role distributions
of nodes that are above a threshold are treated as pre-
dicted labels.

For every dataset, we run experiments with 1) the
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Figure 3. Role entropy demonstration: Inferred Latent
Role distributions in the football network.

baseline PSK model with no regularization, 2) PSK
with role entropy regularization, 3) PSK with volume
entropy and finally 4) PSK with both the regulariza-
tion terms introduced in the paper. In all experiments,
the number of clusters in the model is set to be the
number of known clusters in the dataset. The Gibbs
sampler is set to run for 100 iterations and the av-
erage of the last 10 samples is taken. Since Gibbs
sampling results can vary depending on the random
starting point, the accuracy and perplexity values re-
ported are the means of 10 separate runs. The variance
values σ2

lb
and σ2

lv
are set to 0.5 and we place priors

which favor diagonal blocks over off-diagonal blocks by
using a non-symmetric Dirichlet for αL.

5.3. Results

First we study the direct impact of role entropy and
volume entropy on the smaller networks measured by
link perplexity and 1-NN clustering accuracy. It can
be seen from Table 1 (bold values indicate the best
performing model) that using role and volume en-
tropy consistently decreases link perplexity and in-
creases cluster prediction accuracy when compared to
the baseline unregularized model. The improvements
for both perplexity and accuracy for all variants of reg-
ularization is statistically significant at the 0.05 level
using the Wilcoxon paired-sign test. The direct impact
of role entropy regularization is illustrated further in
Figure 2(a) which plots the average node entropy of 3
sample datasets obtained using different values of σ2

lv
.

It can be seen from the figure that the average node
entropy in these datasets decreases as the variance pa-
rameter value is increased which shows that tightening
the variance leads to models that tend closer to the
stochastic block model where the entropy of the latent
role distribution is 0. Figure 3 shows the reduction of
entropy in latent role distribution more clearly. The
figure shows a heatmap of the latent role distributions
of each node in the network with nodes on the y-axis.
The panel on the far right shows the known true la-
bel distributions with solid single colors in each row
since nodes in the football dataset have one cluster la-
bel per node. The panel on the left shows the latent
role distribution after inference using an unregularized
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PSK model. The middle panel shows the latent role
distribution after inference with a role entropy regu-
larized model. It can be seen clearly that the regu-
larized model returns more peaky distributions with
large probability masses residing in certain roles as
compared to the unregularized model where the distri-
butions are more equally distributed. The rows where
the dominant color in the left and middle panels do
not match the color in the right panel indicate cluster
assignment errors.

Figures 2(b) and 2(c) show how perplexity and clus-
tering accuracy vary with different values for the vari-
ance term σ2

lv
on the same 3 sample networks used

in Figure 2(a). The perplexity curves show a general
U-shaped pattern that dips below the horizontal line
representing the perplexity of the unregularized model,
indicating a “sweet spot” for the variance value. Sim-
ilarly in the 3 accuracy plots, the regularized model
accuracies rise above the baseline value with increas-
ing variance values and then fall when it is increased
further. At very low variance values, the model ef-
fectively approximates a single latent role stochastic
block model since the nodes are restricted to only one
role with high probability. This behavior tends to offer
insufficient flexibility in modeling networks that inher-
ently possess some mixed membership characteristics
leading to drastic fall-offs in accuracies. These results
indicate the although the smaller networks have only
one true label per node, the actual structure of the
networks does exhibit mixed-membership characteris-
tics.

Next, we evaluate the impact of regularization in the
larger multi-labelled networks by checking the ability
of the model to recover the known labels of nodes. Be-
cause nodes in these networks can have multiple labels,
we use the micro and macro averaged F-1 measures
to evaluate the clustering rather than accuracy. The
models are also evaluated by computing the Kullback-
Leiber(KL) divergence between the known true role
distributions and the predicted role distributions av-
eraged over all the nodes in the network. Table 3 shows
the F-1 measures and KL divergences obtained from
the clustering. It can be seen from the table that
adding role and volume regularization improves per-
formance in all 3 datasets. These networks have an
average of 1.4 to 2.5 true labels per node and adding
role entropy forces the model to restrict the number
of roles a node can participate in which is a better fit
to the true nature of the network. Volume entropy
improves performance similarly by penalizing the for-
mulation of trivially small clusters.

6. Related Work

Regularization by entropy has been used previously
for semi-supervised learning in (Grandvalet & Bengio,
2005), (Jiao et al., 2006) and (Corduneanu & Jaakkola,
2005) where entropy based regularizers are used to
constrain the unknown labels of unlabeled data points.
(Celeux & Soromenho, 1996) also use criteria based on
entropy to determine the optimal number of clusters in
mixture models. The approach presented in this paper
uses entropy for a different purpose i.e. to impose pref-
erences on the mixed-membershipness of nodes and the
volume balance in clusters. Regularization in models
based on Latent Dirichlet Allocation have been previ-
ously proposed in works such as (Cai et al., 2008) and
(Mei et al., 2008), which use a regularization term in
the likelihood expression to remove the independence
assumption between documents by placing them on a
manifold. (Newman et al., 2011) present a technique
that uses structured priors over words as a way to reg-
ularize topic models to be more sensitive to known co-
occurence patterns. Airoldi et al.(Airoldi et al., 2008)
also describe a method to regularize the MMSB model
to permit better fits for sparse graphs. The regulariza-
tion techniques described in this paper however are de-
signed to specifically influence the mixed-membership
and balance characteristics of the network which is dif-
ferent from the goal of the regularization in the work
described above. It also differs from previous regular-
ization approaches through its use of pseudo-observed
variables which allows the model to retain a generative
story. This method provides a general alternate way
to impose preferences without the use of non-conjugate
prior distributions by adding noisy copies of aggregate
functions of latent variables to models which can be
set to desired values to prefer desirable properties in
the latent variable distributions.

7. Conclusion

We presented a general technique to impose prefer-
ences in latent variable models using pseudo-observed
variables and and used it to regularize stochastic net-
work models to control nodes’ ability to take on differ-
ent roles and to obtain balanced clusters. The regular-
ization scheme permits the use of Gibbs sampling for
inference with only an addition of a few terms to the
sampling equations of the original PSK model. The
technique of using pseudo-observed variables can also
be used to impose other soft restrictions on networks
such as controlling the incoming and outgoing latent
roles separately and also to other stochastic network
models such as MMSB. Experiments on real world
network data both small and large, show that using
slightly mixed-membership models using the regular-
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ization introduced provides better fits and consistently
improves link perplexity and cluster label prediction.
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Appendix
We derive the Gibbs sampling equation for the PSK model
regularized with role entropy.

p(zi = 〈k1, k2〉|lv, 〈z1, z2〉¬i, 〈v1,v2〉|αL, γ, σ
2
lv )

=
p(zi = 〈k1, k2〉, 〈z1, z2〉¬i, 〈v1,v2〉|αL, γ)

p(〈z1, z2〉¬i, 〈v1,v2〉|αL, γ)

×
p(lv|〈z1, z2〉¬i, zi = 〈k1, k2〉, 〈v1,v2〉, σ2

lv )∑
k
′
1

∑
k
′
2
p(lv|〈z1, z2〉¬i, zi = 〈k′

1, k
′
2〉, 〈v1,v2〉, σ2

lv
)

(6)

The first term in the product is the same as the unregular-
ized model and we can replace the term with the expression
from Equation 1. In the second term of the product, the
denominator is not dependent on 〈k1, k2〉 and can therefore
be discarded as it only serves as a normalizing constant.

p(lv|〈z1, z2〉, 〈v1,v2〉, σ2
lv ) =

∏
v

p(lv|〈z1, z2〉, 〈v1,v2〉, σ2
lv )

Terms in the product that do not pertain to vi1, vi2, zi1
and zi2 can be discarded since they are constants over all
cluster pair label assignments. Therefore the second term
in Equation 6 is only dependent on zvi1 and zvi2 . The
Gibbs sampling equation can now be expressed as

(
nL¬i
〈k1,k2〉 + αL

) (
n¬i
k1vi1

+ γ
) (
n¬i
k2vi2

+ γ
)(∑

v n
¬i
k1v

+ |V |γ
) (∑

v n
¬i
k2v

+ |V |γ
)

× exp
− (lvi1 −H(zvi1))2

2σ2
lv

exp
− (lvi2 −H(zvi2))2

2σ2
lv

(7)

where zvi1 and zvi2 use the assignment of zi1 = k1 and
zi2 = k2.
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