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ABSTRACT
Graph-based semi-supervised learning methods have shown to be
efficient and effective on network data by propagating labels along
neighboring nodes. These methods can also be applied to general
data by constructing a graph where the nodes are the instances and
the edges are weighted by the similarity between feature vectors of
instances. However, whereas a natural network is often sparse, a
network of pairwise similarities between instances is dense, and
prohibitively large for even moderately sized text datasets. We
show, through using a simple general technique, how these learning
methods can be exactly and efficiently applied to text data—using
the complete pair-wise similarity manifold—without resorting to
sampling or sparsification. This technique also provides a unify-
ing view of prior work on label propagation on text graphs, and we
assess its effectiveness applied to two popular graph-based semi-
supervised methods on several large real datasets.

1. INTRODUCTION
Traditional supervised learning methods learns from labeled in-

stances, and how well they learn depend on the amount of labeled
data available. Labels often require substantial human effort, giving
rise to semi-supervised learning (SSL), which learns from both la-
beled data (expensive to obtain) and unlabeled data (of which there
is usually plenty), often by leveraging the similarity between data
points [26].

Graph-based SSL methods are known for their simplicity, effec-
tiveness, and scalability [27, 16, 20]; in particular, they are well-
suited for large datasets with “natural” graph structures, such as a
YouTube video dataset where nodes represent videos and weighted
edges between nodes represent how often the same user view these
two videos [3]. These methods are efficient for large datasets be-
cause (1) they are methods that propagate labels from labeled to
unlabeled nodes through the edges and (2) most large graphs are
sparse in the number of edges.

However, data from natural language tasks often do not come
naturally in the form of a graph. Here we consider text classifi-
cation and information extraction by noun phrase classification; to
use many of these SSL methods, we first need to construct a man-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MLG ’11 San Diego, CA, USA
Copyright 2011 ACM 978-1-4503-0834-2 ...$10.00.

ifold in the form of a pair-wise similarity matrix—a graph where
the nodes are data points and weighted edges denote pair-wise sim-
ilarity between points. This manifold is a powerful and useful rep-
resentation, allowing graph-based SSL methods to be applied to
any dataset given a similarity measure. But there is a caveat—this
graph is almost always dense (∼ n2 edges).

With dense graphs many methods are no longer scalable. To
construct, to store, and to operate on such a graph is O(n2) in
terms of both time and space. In making SSL learning methods
practical on general dense graph data, prior work has mostly re-
lied on sparsifying techniques by either sampling nodes or edges
[24, 6] or constructing a new, smaller graph that is representa-
tive of the original graph [15]. The construction of these sparsi-
fied graphs often require some expertise and familiarity with the
technique and incur additional non-trivial computation costs (e.g.,
constructing a k-nearest neighbor graph using a kd-tree, inverted
index, or locality sensitive hashing). In contrast, we propose a sim-
ple yet effective solution to this problem that is exactly equivalent
to using a complete pair-wise similarity manifold while keeping
runtime and storage linear to the input size, without sampling or
calculating a sparse representation of the data. This is possible us-
ing a “path-folding trick", which is based on a simple observation:
many iterative semi-supervised learning methods have at their core
matrix-vector multiplications, where the matrix is based on the ad-
jacency matrix of the graph. If the graph is sparse (number of edges
|E| = O(n)), these methods terminate quickly and require small
amounts of memory. If the graph is dense (e.g., |E| = O(n2)),
the methods become slow and require large amounts of memory.
Thus, if we are able to decompose a dense similarity matrix into a
number of sparse matrices, the dense matrix-vector multiplication
becomes a series of sparse matrix-vector multiplications, reducing
the cost of both space and time to linear w.r.t. input size. We call
this implicit manifold construction.

While prior work in text mining has explored learning through
label propagation on graphs constructed from text data [11, 22, 5,
4], it is often not clear how these methods are related each other
or how they are related to SSL method outside text mining litera-
ture. By looking at each of these methods as one of two basic SSL
label propagation methods with implicit manifold construction us-
ing different manifolds, seemingly different propagation algorithm
may be brought under a unifying view, thus creating an organized,
general set of tools which NLP researchers can utilize methodically
for large-scale text mining.

Additional contributions of this work are: (1) implicit manifold
versions of two widely used graph-based SSL methods, (2) alter-
nate manifolds for these methods based on different similarity func-
tions (inner product, cosine, and bipartite graph walk), and (3) eval-
uation and comparison of these two methods on a number of large,



non-network datasets using implicit manifolds.
The rest of this paper examines this solution in more detail. First

we present “path-folding” and how it can be used for scalable SSL
(Section 2). Next we look at two popular graph-based SSL meth-
ods (Section 2.1), why they are natural candidates for implicit man-
ifolds, and how we can “plug in” different similarity functions re-
sulting in different manifolds (Section 2.2). Then we study the ef-
fectiveness and behavior of these methods on four medium to large
datasets (Section 3) and conclude that graph-based SSL methods
can be efficiently and effectively applied to large non-graph data
via implicit manifold construction (Section 4).

2. SSL WITH IMPLICIT MANIFOLDS
The idea of path-folding (PF) is often used in network science

to transform a two-mode network (graph with two distinct types of
nodes) into a one-mode network, and it has been used as an efficient
way to apply a graph-based clustering method to large text datasets
[14]. Here we extend the application to graph-based SSL methods
and general datasets. PF is related to the notion of a bipartite graph.
A bipartite graph consists of two mutually exclusive sets of nodes
where only edges between nodes of different groups are allowed.
Any dataset with instances and features can be viewed as a bipar-
tite graph, where one set of nodes corresponds to instances and
the other set corresponds to features. If an instance has a certain
feature, an edge exists between the instance node and the feature
node; if the feature is numerical or if its weighted, the edge can be
weighted accordingly. If two instances contain the same feature, a
path of length two exists between them. If two instances are very
similar (i.e., they share many features), there would be many paths
of length two between them; if two instances are very dissimilar,
then there would be very few such paths or none at all. Thus the
number of paths (and their weights) between two instance nodes
in this graph can be viewed as a similarity measure between two
instances.

If we are just interested in the similarity between instances, we
may “fold” the paths by counting all paths of length two between
two instances and replacing the paths with a single edge, weighted
by the path count. This “folding” can be expressed concisely with
a matrix multiplication:

FFT = S (1)

where rows of F represent instances and columns of F represent
features. S is then the “folded” graph—each node is an instance,
and a weighted edge between two instances (S(i, j)) represent the
count of all paths of length two in the original “unfolded” graph F .

Now consider the density of these two different representations,
the “unfolded” bipartite graph F and the “folded” graph S, as the
size of the dataset (the number of instances) grows. In real datasets,
F can often be consider sparse because either (a) the feature space
is small w.r.t. dataset size (e.g., census data with a small set of
per-household questions) or (b) the feature space is large but each
instance has only a small fraction of these features (e.g., document
data with word features). S, on the other hand, is likely dense.
As examples, for census data S will be a full matrix (a complete
graph), and for document data S(i, j) is zero only if no words are
shared between documents i and j—yet the frequent occurrence of
many common words makes S(i, j) = 0 highly unlikely.

As the number of instances increases, S, a direct representation
of a similarity manifold, becomes very costly to store and oper-
ate on. Its decomposition FFT , on the other hand, is a much
more compact representation. This observation—the equivalence
of S and FFT together with the contrast between their density—
becomes a powerful tool when applied to certain algorithms. Specif-

ically, any algorithm involving the multiplication of the similarity
matrix S with a vector can turn a dense matrix-vector multiplica-
tion into a series of sparse matrix-vector multiplications: instead of
v′ = Sv, we do v′ = F (FT v) (note the parentheses), thus turning
an O(n2) operation into O(n) while getting the exact same result.
Next, we look at two representative graph-based SSL methods and
how we can apply path-folding to them and adapt them to different
types of data.

2.1 Two Graph-based SSL Methods
We denote the input data asX , composed of unlabeled instances

XU and labeled instancesXL with corresponding labels Y L. Since
in this section the input is a graph with edges representing simi-
larity, X is equivalent to the similarity matrix S. We also define
D =

∑
i Si, and thus D−1S is the row-normalized similarity ma-

trix and SD−1 the column-normalized one.

The Harmonic Functions Method
The harmonic functions method (HF), proposed in [27], is a pop-
ular graph-based label propagation SSL method that assigns labels
based the harmonic function values induced over the graph given
some training instances. HF assumes homophily between nodes in
the graph, and the harmonic function value assigned to a node is
also the probability of a random walk from that node hitting a pos-
itively labeled node before hitting a negative one (generalizes to
multi-class cases). It is one of the best classifiers on many bench-
mark network datasets as noted in [16], where it is referred to as
wvRN. HF for large sparse graphs can be solved simply and effi-
ciently using an iterative algorithm:

Algorithm 1 An iterative harmonic functions alg.
Input: S = {XL, XU}, Y L

Output: Labels Y U for unlabeled instances XU

1. V 0
ci ← 1 if Y L

i = c, else Vci ← 0 and t← 0
2. V t+1 ← D−1SV t;
3. ∀i ∈ Y L : V t+1

i ← V 0
i and t← t+ 1

4. Go to step 2 unless V t has converged
5. Y U

i ← argmaxc(Vci)

MultiRankWalk
MultiRankWalk (MRW) [13] is a graph-based SSL method based
on random graph walk (RW). It is directly related to personal-
ized PageRank [9] and random walk with restart [23]. Given a
graph represented by matrix S, a vector of random walk proba-
bility distribution over the nodes v is satisfies the equation v =
αr+ (1−α)SD−1v, where SD−1 is the column-stochastic tran-
sition matrix of the graph, r is a normalized restart vector where
||r||1 = 1, and α is the restart probability. The vector v can be
interpreted as the probability distribution of a random walk on S,
but at each step there is an α probability of “teleporting” to a ran-
dom node with distribution r. The basic idea of SSL via random
walks is to (1) do multiple RW’s, one for each class c, with the la-
beled instances from c defining the restart vector; then (2) assign
label to an instance i by comparing its scores across different RW
distributions. See Algorithm 2 for a basic MRW algorithm.

HF vs. MRW
Many of the recent graph-based label-propagation methods can be
viewed as a variation of HF [16, 3, 22, 20] or MRW [21, 25, 8,
10, 7], , and while both assume homophily in data and are related
to random walks, they are different propagation methods and pro-
duce very different results. Viewed in light of random graph walks,



Algorithm 2 A basic MultiRankWalk algorithm
Input: S = {XL, XU}, Y L

Output: Labels Y U for unlabeled instances XU

1. Rci ← 1 if Y L
i = c, else Rci ← 0

2. Norm. columns of R to sum to 1
3. V 0 ← R and t← 0
4. V t+1 ← (1− α)SD−1V t + αR and t← t+ 1
5. Go to step 4 unless V t has converged
6. Y U

i ← argmaxc(Vci)

HF finds the probability of hitting (landing for the first time on)
a labeled node in class c if we start walking randomly from an
unlabeled node; with respect to labeled nodes, this is propagation
via reverse random walks, or diffusing. MRW finds the probabil-
ity of landing on a node by walking from labeled nodes in c, with
a fixed probability of “teleporting” back to c at each step; this is
propagation via random walk with restart. Classification experi-
ments comparing these two methods on network datasets [13] have
shown that, while the classification accuracies are similar with a
large number of seeds (labeled instances), MRW consistently out-
performs HF when seeds are scarce and MRW seems more consis-
tent with seeds of varying quality.

2.2 Implicit Manifolds
Differences aside, an important algorithmic similarity between

HF and MRW (as shown in Algorithms 1 and 2) is that both have
as their core operation iterative matrix-vector multiplications (step
2 and 4, respectively). This allows us to replace the costly dense
matrix as in Equation 1, and the iterative operations for HF and
MRW become:

HF: V t+1 ← D−1FFTV t

MRW: V t+1 ← (1− α)FFTD−1V t + αR

The usefulness of this representation is made more apparent if we
specify the order of multiplication:

HF: V t+1 ← D−1(F (FTV t))

MRW: V t+1 ← (1− α)F (FT (D−1V t)) + αR

Now instead of a dense matrix-vector multiplication with n2 space
and time requirements, we have a series of sparse matrix-vector
multiplication linear to n. Before plugging these into the algo-
rithms, we need to do one more thing: we need to find the diag-
onal matrix D−1 without S. It follows that the values of the di-
agonal matrix D−1 can also be calculated efficiently via a number
of sparse matrix-vector multiplications using the same decomposi-
tion: compute a vector d = FFT1, where 1 is a vector of 1’s, and
let D(i, i) = d(i). Thus the implicit manifold S is constructed
through mathematical equivalence, resulting in a simple, fast, and
space-efficient algorithms that yield the exact same solutions.

Cosine Similarity Manifold
If we view the rows of F as feature vectors in vector space, then
path-folding is equivalent to the inner product similarity of instances.
However, this is just one of many functions used for measuring data
point similarity. For example, if the instances represent documents
and the features are words, one may want to normalize the feature
vectors by its length.

It turns out that the implicit manifold can be easily constructed
with other similarity functions, as long as the manifold can be rep-
resented with a series of sparse matrix multiplications. Here we
consider cosine similarity [12, 17], widely used for comparing doc-
ument similarity: cos(a,b) = a·b

||a||||b|| where cos(a,b) is simply the

cosine of the angle between vectors a and b. For the normaliz-
ing term 1/(||a||||b||) , we need to calculate an additional diagonal
matrix Ncos(i, i) = 1/

√
(F (i)F (i)T ) where F (i) is the ith row-

vector of F . Following inner product similarity the values of the
diagonal matrix D can be computed by d = NcFF

TNc1. Then
the iterative operations for HF and MRW become:

HF:V t+1 ← D−1(Nc(F (FT (NcV
t))))

MRW:V t+1 ← (1− α)Nc(F (FT (Nc(D
−1V t)))) + αR

As before, all operations in constructing Nc and D are sparse
matrix-vector multiplications. Note that while we could pre-process
F to be cosine-normalized and consequently simplify the above to
a inner product similarity, we point out that with large datasets it
may be inefficient to store a different version of the dataset for ev-
ery similarity function one might want to try; calculating similarity
functions on-the-fly will often prove to be a much more efficient
approach.

Bipartite Graph Walk Manifold
Another useful similarity measure is based on bipartite graphs. Un-
like the inner product similarity where a bipartite graph is “folded”
into a unipartite graph, here we are interested in simulating a Markov
random walk on a bipartite graph. Here S is defined as FD−1

c FT ,
where Dc is the diagonal degree matrix for the columns of F (as
opposed to D, the diagonal degree matrix for the rows of F ), re-
sulting in the following modified iterative operations for HF and
MRW:

HF: V t+1 ← D−1(F (D−1
c (FTV t))) (2)

MRW: V t+1 ← (1− α)F (D−1
c (FT (D−1V t))) + αR

This manifold can be interpreted in two ways. It simulates a ran-
dom walk on F as a bipartite graph, where each iteration is equiv-
alent to taking two Markovian steps—the first step walks from the
instances to the features, and the second step walks from the fea-
tures back to the instances. This similarity function can also be in-
terpreted as a inner product similarity with the features re-weighted
inversely proportional to their dataset frequency. This is closely re-
lated to the TF-IDF weighting scheme found in document retrieval
literature [17]. They are equivalent if we replacing the inverse doc-
ument frequency (IDF) with inverse collection frequency—the total
weighted count of a feature in the entire dataset.

3. EXPERIMENTS
We carry out a series of experiments to see whether these graph-

based SSL methods are effective on large, non-graph data under
our implicit manifold framework and to see how HF and MRW
compare against each other. For all experiments we use the MAT-
LAB implementation of SVM for a supervised learning baseline in
a one-versus-all setting. We run HF fixed at 10 iterations (for rea-
sons noted later), and we run MRW to convergence with parameter
α = 0.25.

We assemble a collection of four datasets; they are all from the
text domain and are of two very different types of text datasets. The
first type is document categorization, where the data is a collection
of documents and the task is to predict category labels for each doc-
ument. Here an instance is a document and the features are word
occurrence counts. The second type is noun phrase categorization,
where the data is a collection noun phrases (NPs) extracted from
web and the context in which they appear. The task is to retrieve
NPs that belong to the same category as a small set of “seed” NPs.
For example, given “Seattle” and “Chicago” as seeds, we would
like to retrieve NPs such as “Pittsburgh”, “Beijing”, and all other
NPs corresponding to cities. Statistics of the datasets are found in



Table 1, and note the memory requirement of using implicit man-
ifolds (IM Size) versus constructing explicit manifolds (EM Size).
We will describe each dataset in more detail in the following sec-
tions.

We choose implicit manifolds based on prior knowledge of what
similarity functions work well on each type of data. For document
collections we use cosine similarity [17]. For NP-context data, this
particular task of NP categorization has been performed success-
fully using co-EM [19], which is closely related to the bipartite
graph walk manifold. In fact, the harmonic functions method with
bipartite graph walk manifold is exactly equivalent 1 to the co-EM
algorithm used for performing information extraction from free text
proposed by [11].

Name 20NG RCV1 City 44Cat
Instances 19K 194K 88K 9,846K
Features 61K 47K 99K 8,622K

NZF 2M 11M 21M 121M
Cats 20 103 1 44
Type doc doc NP NP

Manifold cosine cosine bipart bipart
Input Size 39MB 198MB 330MB 2GB

IM Size 40MB 207MB 335MB 2.4GB
EM Size 5.6GB *540GB *80GB *4TB

Table 1: Dataset comparison. NZF is the total number of non-
zero feature values and Cats is the number of categories. Type
is the dataset type, where doc and NP correspond to document
collection and noun phrase-context data, respectively. Mani-
fold is the choice of manifold for the dataset, where cosine and
bipart refers to cosine similarity and bipartite graph walk, re-
spectively. Input Size is the MATLAB memory requirement for
the original sparse feature matrix; IM Size is the total memory
requirement for using the implicit manifold, including the fea-
ture matrix; EM Size is the memory requirement for construct-
ing a explicit manifold. * indicates that the memory require-
ment is estimated using random sampling and extrapolation.

3.1 Document Categorization
The 20 Newsgroups dataset (20NG) is a collection of approxi-

mately 19K newsgroups documents, roughly 1,000 per newsgroup
[18]. The class labels are the newsgroups groups; the features are
word tokens, weighted according to the log-normalized TF-IDF
scheme [17, 12]. The Reuters Corpus Volume 1 (RCV1) dataset is
a benchmark collection of 804K newswire stories [12]. We use the
test split of 781K documents and industries category for labels. To
simplify evaluation, documents with multiple labels and categories
with less than 500 instances were removed, following previous
work [6]. We ended up with 194K documents and 103 categories.
We evaluate HF and MRW performance on these multi-class cat-
egorization datasets with the macro-averaged F1 score, where F1
score is the harmonic mean between precision and recall [17]. We
randomly select a small number of instances per class as seeds and
vary that number to observe the its effect on classification accuracy.
The choice of manifold here is the cosine similarity commonly used
for comparing document-document similarity. We also compare
the results to that of SVM, a supervised learning method that has
been proven to be state-of-the-art on text categorization datasets.
The results for 20NG and RCV1 are shown in Figure 1.

We see that SVM, the tried-and-true text classifier, outperforms
both HF and MRW on these text categorization datasets, though
MRW’s performance is nearly as good as SVM on 20NG. HF does
1Refer to Appendix A for details.

very poorly on both datasets.2 The difficulty of RCV1 may due to
the imbalance in class distribution; the largest category consists of
23K documents where as the smallest consists of only 504 docu-
ments.

A notable result from previous work comparing HF and MRW on
network data is that the “quality” of seeds (labeled training exam-
ples) is extremely important and makes a marked difference when
only a few seeds are given [13]. We are interested to see if the same
can be observed in document categorization. In network datasets
good seeds can have a high degree (neighboring many nodes) or a
high PageRank score (popular or authoritative); these nodes prop-
agate labels better and are arguably much easier for a human to
label, making them more cost-effective. Here we rank the qual-
ity of instances by its feature-sum—the sum of all of its feature
weights. This roughly corresponds to the length of the document;
it can be argued that longer documents have more information to
allow human labelers to confidently assign it to the right category,
and they also make better seeds because they are able to propagate
their labels through a larger set of features.
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Figure 1: F1 scores on the 20NG and RCV1 datasets. The x-
axis indicates the number of labeled instances and the y-axis
indicates the macro-averaged F1 score. Vertical lines indicate
standard deviation (over 20 trials for 20NG and 10 for RCV1)
using randomly selected seed labels.
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Figure 2: F1 scores on the 20NG and RCV1 datasets using pre-
ferred (high feature weight sum) seeds. Subscript HFS indi-
cates result using high feature-sum seeds and R indicates result
using random seeds—included for comparison.

To verify this, we first rank all instances by their feature-sum and
pick the top k instances from each category to be seeds; the results
are shown in Figure 2. While HF does not seem to improve at all,
MRW does improve on both datasets, with more dramatic improve
2HF results can be improved by re-weighted output probability; but
this introduces a not-well-understood parameter and is beyond the
scope of this paper.



on 20NG with a small number (1, 2, and 5) of seeds, outperforming
SVM. An interesting note is that SVM performance suffered on
20NG with high feature-sum seeds; a probable explanation is that
high feature-sum seeds are likely to be “central” instances within its
category cluster in the feature space, and whereas central instances
are good for propagating their labels within its cluster, they are
not good “boundary” instances that make good support vectors as
required by margin-based classifiers such as SVM.

3.2 Noun Phrase Categorization
The City and 44Cat datasets are derived from the NP-context

data described in [4]. The NP-context data is extracted from a col-
lection of approximately one billion web pages; unique English
sentences are extracted from these web pages and a noun phrase
chunker is ran over these sentences to extract a set of noun phrases
(NPs) and their surrounding word patterns (contexts). Statistics of
the co-occurrence counts of these NPs and contexts makes up a the
NP-context dataset. Here we use this data for NP categorization; in
this framework, each unique NP is an instance and its co-occurring
contexts are features. For example, if the NP “Pizza” is found to
co-occur with the context “we ordered _” 2 times and “I love _”
5 times, then “Pizza” would have these features with weights 2
and 5, respectively. The choice of graph-based SSL manifold for
this dataset is the bipartite graph walk manifold because HF with
this manifold is closely connected to the co-EM algorithm (see Ap-
pendix A), which worked well on this type of data [11]. Our general
framework enables us to apply the same manifold to MRW as well.

City is the smaller dataset which consists of the most common
(occurrence > 500) 88K NPs and 99K contexts, 7 “city” and 14
“non-city” hand-picked seeds. We also have ground truth labels for
all of the NPs, created thus: first we obtained an exhaustive list of
city names from World Gazetteer [2]; by matching the NPs in the
dataset with the list from World Gazetteer, we end up with 5, 921
NPs that are candidates belonging to the “city” category. However,
many of these are obscure city names that never appear in the data
as cities. To filter these false positives we use Amazon Mechanical
Turk [1] and have human labelers decide whether a NP refers to a
city according to its top 15 most frequent contexts. This resulted in
a final list of 2, 404 “city” NPs.

Unlike document categorization datasets where every document
has a label, here we are retrieving a small set of positive instances
from a much larger set of uncategorized negative instances. Addi-
tionally, since the output of task (a list of NPs belonging to specified
categories) has been used to create a high-quality ontology [5], we
also want to see if a classifier is able to assign higher confidence to
correctly labeled NPs (i.e., we want the classifier to rank these NPs
in order of their likelihood of being in a category). So for evaluat-
ing this dataset we choose to use measures for ranking quality from
information retrieval literature: NDCG (normalized discounted cu-
mulative gain), AP (average precision), and precisions at increasing
level of recall.

Here for HF and MRW the confidence score is simply the ratio
between the positive (city) score and the negative (non-city) score.
For these experiments, we also add a smoothing parameter β to
MRW so that step 4 in Algorithm 2 becomes:

V t+1 ← (1− α− β)SD−1V t + αR+ β(1/n)

where α+β ≤ 1. Typically β is very small, and can be considered
an uniform smoothing factor on the confidence. Note that the label
prediction does not depend on β at all; this only affects the ranking
to avoid problems such as divide-by-zeros and over-confidence on
ratios with very small values. The confidence ranking of SVM is
determined by the distance of an NP to the margin of its assigned

class.
The result is shown in Table 2: using the bipartite graph walk

gives a noticeable advantage over inner product manifold, and MRW
outperforms other methods. Here SVM does poorly due to fea-
ture sparsity, which highlights the effectiveness of graph-based SSL
methods with a small number of seeds. Table 2 also illustrates an
advantage of viewing co-EM as HF with a bipartite graph walk
manifold—it shows that using this particular manifold improves
performance for MRW as well as for HF.

Method SVM HF MRW HF MRW
Manifold - inner inner bipart bipart
NDCG 0.0263 0.0402 0.0405 0.0406 0.0408

AP 0.0208 0.6728 0.7067 0.7130 0.7389
P@10% 0.0123 0.8732 0.8926 0.8796 0.9094
P@20% 0.0143 0.8698 0.8991 0.8941 0.9162
P@30% 0.0168 0.8773 0.9093 0.9036 0.9116
P@40% 0.0199 0.8574 0.8957 0.9118 0.9179
P@50% 0.0210 0.8227 0.8647 0.8832 0.9038
P@60% 0.0236 0.7591 0.7990 0.8093 0.8307
P@70% 0.0265 0.6337 0.6743 0.6805 0.7189
P@80% 0.0267 0.4131 0.4533 0.5087 0.5297
P@90% 0.0272 0.1927 0.2155 0.2521 0.2926
P@100% 0.0274 0.0275 0.0279 0.0280 0.0289

Table 2: City dataset result. Boldfaced font indicates the high-
est number in a row. inner refers to the inner product manifold
and bipart refers to the bipartite graph walk manifold. Note
that HF with bipart is equivalent to co-EM as used in [11]

44Cat is a much larger NP-context dataset, consisting roughly
10 million English NPs found in one billion web pages and 9 mil-
lion co-occurring contexts. We removed any NP-context with co-
occurrence count less than three and used roughly 15 hand-picked
NPs as seeds for each of the 44 categories as found in [5]. We
do not have a set a ground truth labels for these categories prior to
running experiments, as obtaining them would be extremely expen-
sive. Instead, we first obtained a list of 1,000 NPs for each category
using SVM, HF, and MRW, ranked by their confidence. Then we
computed the estimated precision for the top 100, 500, and 1,000
NPs of each ranked list, estimated by judging the precision at a
50%, 10%, and 5% sample of the NPs, respectively. The judging
is again done using AMT; every sampled prediction is given three
workers, and when they disagree we take the decision of the major-
ity. The algorithm settings for this dataset is the same as the City
dataset. An overall result, averaged across 44 categories, is shown
in Figure 3.2. Here we see that again SVM does poorly compared
to graph-based SSL methods. Both HF and MRW are equally ef-
fective on this dataset with no statistically significant difference.
We conjecture that the lack of statistical differences may be due
to the relatively small number of samples per category and large
per-category differences; for example, for the top 1,000 NPs, HF
did the best on 23 categories and MRW on 22 (with ties in 4 cat-
egories). A breakdown of the result by category can be found in
Appendix B.

Implicit manifolds also yield fast runtimes. The smallest dataset
(20NG) takes less than 1 second for both HF and MRW, and the
largest (44Cat) takes less than 3 minutes. We did not try running
explicit manifold versions of the algorithm for runtime comparison
because that would require more memory than we have available
for most of these datasets (See Table 1). Experiments were done
on a Xeon 2.27GHz Linux machine using a MATLAB implemen-
tation.



Top k Sample SVM HF MRW
100 50% 0.31 0.52 0.52
500 10% 0.29 0.50 0.47

1000 5% 0.29 0.48 0.47

Table 3: Averaged estimated precisions of the top 100, 500, and
1000 retrieved NPs on the 44Cat dataset. Precisions are aver-
aged over 44 categories and sampled at a rate of 50%, 10%, and
5%, respectively. Note that no statistical significance is found
between HF and MRW.

3.3 Parameter Sensitivity
The parameter sensitivity of a method is an issue for larger datasets

where tuning or sweeping of parameters may be impractical. Pa-
rameters for MRW are α, β, and the number of iterations T (corre-
lated with the convergence threshold). The only parameter for HF
is T . We plot varying parameters and their effect on average preci-
sion in Figure 3. Here neither method appears to be very sensitive.
3
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Figure 3: Parameter sensitivity. The x-axis correspond to pa-
rameter values and the y-axis shows average precisions. α
ranges from 0.05 to 0.65, β ranges from 0.0001 to 0.01; the
number of iterations T are indicated below x-axes.

4. CONCLUSIONS
We have introduced a set of tools for efficient semi-supervised

learning on text data with implicit manifolds. We considered two
label propagation methods (HF and MRW) and three similarity
functions (inner product, cosine similarity, and bipartite graph walk),
leading to five new learning methods and a new interpretation of
one old method (as HF with bipartite walks is identical some def-
inition of co-EM). Experiments on document categorization with
cosine similarity seem to favor MRW over HF, and show that MRW
is competitive with, and sometimes superior to, supervised SVM.
On NP categorization, all the SSL methods far outperform SVM,
and are comparable with each other one large dataset, while on
a smaller, more completely-labeled dataset, MRW bipartite-walk
performs best.

Beyond these experimental data points, the more important con-
tribution of this paper is a general framework in which graph-based
semi-supervised learning methods can be very efficiently applied to
general data, without pre-computing pairwise distances between in-
stances. Avoiding explicit computation of pairwise distances means
that the methods considered here are quite different in computa-
tional complexity from label-propagation methods applied to (for
3Note that HF’s AP peaks around T = 5 and it actually degrades
with more iteration. This suggests early-stopping HF may yield
better performance—hence why we fixed T = 10 for HF. This also
points to an advantage MRW has over HF—unlike HF, MRW does
not “over-iterate”.

instance), a k-NN graph over all instances; in particular, all space
and time requirements in our framework are strictly linear in the
size of the input data. The availability of simple, scalable implicit
manifold construction means that many SSL methods can now be
efficiently applied to a wide variety of large text datasets, and pro-
vides an alternative to techniques that sparsify similarity matrices
[27] in order to speed up SSL methods. 4
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APPENDIX
A. RELATION AND EQUIVALENCE TO

CO-EM
The basic idea behind co-EM is to combine features of co-training

(having two views of the data) and Expectation-Maximization (it-
eratively maximize data likelihood) as an iterative bootstrapping
classifier. The bipartite graph walk can be thought of as having two
views with two types of classifiers: first, we train a feature classifier
based on the instance labels and classifies (walks to) the features;
then we train an instance classifier based on the newly labeled fea-
tures and classifies (walks to) the instances. Co-EM with these two
views and two classifiers proved to be effective in extracting noun
phrases in [11].

A co-EM algorithm [11] is shown Figure 3, where f̂n and f̂c
are the two classifiers corresponding to two views of the data (n
and c). If we let vt be a vector indicating f̂n and F be the ma-
trix form of co-occurrence data N , then step 2 in Figure 3 can
be computed by D−1

c Fvt, and step 3 can in turn be computed by
D−1F (D−1

c Fvt), which is equivalent to a single-class version of
Equation 2. This shows that co-EM can be viewed as a graph-
based SSL method with the implicit manifold constructed accord-
ing to the particular classifiers and two views of the data. While
this connection is based on a particular formulation of co-EM, it
generalizes to any classifiers/views where the computation can be
described in terms of sparse matrix operations.

Algorithm 3 The co-EM algorithm from [11]
Input: Data N where N(i, j) indicates the co-occurrence count
of (ni, cj); positive labels L
Output: probability f̂n of an instance being positive

1. initialize f̂n0(ni) =

{
1 if ni ∈ L
0 otherwise

2. f̂c(cj) =
∑

ni
f̂n(ni)∗N(i,j)∑

i N(i,j)

3. f̂n(ni) =

1 if ni ∈ L∑
cj

f̂c(cj)∗N(i,j)∑
j N(i,j)

otherwise

4. Go to step 2 unless f̂n has converged

B. 44CAT DATASET RESULT BY
CATEGORY

We break down the results of the estimated precision at top 1, 000
retrieved NPs into 44 categories in Figure 4. In this figure the cat-
egories are arranged from left to right in order of the difference in
precision between MRW and HF. An immediate observation is that
no one method can claim to be the best on all categories, though
we see that for most categories SSL methods outperforms SVM by
a good margin. Note that points where all three lines dip on the
chart correspond to categories that have a small, closed set of items
(e.g., “country” and “bodypart”), this is understandable since, for
example, the number of countries in the world is much less than
1, 000.



Figure 4: Sampled per-category accuracies of the top 1000 retrieved NPs on the 44Cat dataset. The categories are ordered from left
to right according to the difference between the MRW accuracy and HF accuracy, from the high to low.


