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Abstract. Scientific literature with rich metadata can be represented
as a labeled directed graph. This graph representation enables a number
of scientific tasks such as ad hoc retrieval or named entity recognition
(NER) to be formulated as typed proximity queries in the graph. One
popular proximity measure is called Random Walk with Restart (RWR),
and much work has been done on the supervised learning of RWR mea-
sures by associating each edge label with a parameter. In this paper,
we describe a novel learnable proximity measure which instead uses one
weight per edge label sequence: proximity is defined by a weighted com-
bination of simple “path experts”, each corresponding to following a
particular sequence of labeled edges. Experiments on eight tasks in two
subdomains of biology show that the new learning method significantly
outperforms the RWR model (both trained and untrained). We also ex-
tend the method to support two additional types of experts to model in-
trinsic properties of entities: query-independent experts, which generalize
the PageRank measure, and popular entity experts which allow rankings
to be adjusted for particular entities that are especially important.

Keywords: entity relation graph, random walk, learning to rank, rela-
tional model, filtering and recommending

1 Introduction

Most past research on accessing the scientific literature has focused on a small-
number of well-defined tasks which represent the scientific literature as a set
of documents: such tasks include ad hoc retrieval based on keyword queries, or
named entity recognition (NER) and normalization. In fact, scientific literature
naturally includes substantial metadata such as author names, citations, and
publication venues, as well as derived metadata (such as gene and protein names,
in the biomedical literature). An alternative way to represent the scientific liter-
ature is as a labeled directed graph, with typed nodes representing documents,
terms, and metadata, and labeled edges representing the relationships between
them (e.g., “authorOf”, “datePublished”, etc). This graph represents not only
text, but also implicitly includes social-network information (via co-authorship,
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and paths between authors and conference venues), expertise information (via
paths between an author and entities mentioned in her publications). Domain
knowledge can also be easily added to the graph (e.g., adding known relation-
ships between entities, such as protein-protein interaction information).

Representing the scientific literature as a labeled graph enables a number
of scientific tasks to be formulated as typed proximity queries in the graph, in
which the user provides as input a set of query nodes and answer type, and re-
ceives as output a list of nodes of the desired answer type, ordered by proximity
to the query nodes. For instance, traditional keyword-based ranked retrieval of
documents can be formulated as a proximity query where the query nodes are
term nodes, and the answer type is “document”; also, in past research, future
collaborations between scientists have been predicted by proximity queries on a
co-authorship graph [12], document-level gene annotations have been generated
using proximity queries on a graph of based on NER-annotated documents and
known entity synonyms, and publications involving new gene-protein entities
have been predicted using proximity queries on co-authorship graph including
document-level metadata on entities [3]. In general, the appropriate notion of
“proximity” may be task- or user-specific, and hence must be learned or engi-
neered; however, there are also general-purpose graph proximity measures such
as random walk with restart (RWR) (also called personalized PageRank) which
are fairly successful for many types of tasks.

In this paper we will consider the use of typed proximity queries to solve four
tasks: a “gene recommendation” task considered by Arnold and Cohen [3], and
three additional tasks we call venue recommendation, reference recommendation,
and expert-finding. As we will argue below, all of these tasks are plausible surro-
gates for tasks commonly performed by scientists, and data for them is readily
obtainable, making them suitable for learning and evaluating task-specific prox-
imity measures for the scientific literature. We evaluate these four tasks, in two
subdomains of biology each, and evaluate performance on 2000 test queries for
each of these eight tasks.

The principle contribution of this paper is the development of a new method
for learning proximity measures on labeled graphs. In particular, we describe a
novel scheme for parameterizing such a measure, in which a proximity measure
is defined by a weighted combination of simple “path experts”, each of which
corresponds to a particular labeled path through the graph. The new learning
method outperforms untrained RWR on all eight tasks, achieving an improve-
ment in MAP scores of up to 43%. The new learning method also outperforms a
widely-used simpler parameterization in which a weight is associated with each
label in the graph, again producing high MAP scores on all eight tasks.

Another contribution of the paper is extension of the method to support two
additional types of experts, which we call query-independent experts and popular
entity experts. query-independent experts provide a rich set of query-independent
ranking schemes similar to the PageRank measure. Popular entity experts allow
rankings to be adjusted for particular entities that are especially important: for
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instance, an popular entity expert might assign a higher weight to the specific
venue “PKDD” when the query contains the keyword “mining”.

The work of this paper is most closely related to other systems that learn task-
specific proximity measures on labeled graphs. Most of these systems have used
some variant of the simpler one-weight-per-edge-label parameterization scheme
which we use as our baseline (e.g., [7, 6, 20]). One line of work that uses a richer
“feature set” is described in Minkov, Cohen and Ng [15], which explored using n-
grams of edge labels as features for re-ranking results of an RWR-based system,
and Minkov & Cohen[14], who proposed a method that upweights RWR-paths
which are more likely to reach relevant entities. Our approach can be viewed as
principled discriminative version of this algorithm—one important advantage of
which is the ability to easily incorporate additional types of information, such
as the query-independent and popular entity experts described above.

There is an interesting connection between the Relational Retrieval(RR)
problems considered in this work and Statistical Relational Learning (SRL) prob-
lems [9]. RR and SRL have slightly different task definitions: retrieval vs. clas-
sification, and their underlying inference methods have different complexities:
RWR is generally more efficient than the inference for graphical models (e.g.
Markov Logic Networks [19]). However, RR and SRL are based on the same
data model—entity relation graphs, and they share a set of related challenges:
efficient parameters estimation, efficient structure learning (or ILP), and hidden
concept discovery (or predicate invention).

In the remainder of the paper, we first describe the tasks and the datasets
we will use in our experiments in more detail. We next present baseline results
using RWR, a robust general-purpose proximity measure. In the next section,
we present the path ranking algorithm, describing first the way in which path
experts are enumerated, then the learning algorithm, and finally the two exten-
sions of query-independent experts and popular entity experts. We then describe
the experimental results with the new learning methods and conclude.

2 The Dataset and Tasks

2.1 Tasks

We consider here three new tasks that are well-suited to solution by typed prox-
imity queries.

Venue recommendation is the problem of finding a venue to publish a new
research paper. Here the query is a heterogeneous set of nodes: the terms in the
title of the new paper, the set of entities (genes or proteins) associated with the
paper, and the current year. The answer type is “journal”, so the answer will be
a list of biological journals, ranked by suitability for the new paper.

Reference recommendation (or citation recommendation) is the problem of
finding relevant citations for a new paper. The query is, as in venue recommen-
dation, the title terms and relevant entities for the new paper, the current year,
and the answer type is “paper”. The desired answer is a list of papers ranked
by appropriateness as citations in the new paper. This task is similar to The
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TREC-CHEM Prior Art Search Task [13], and can also be seen as a simplified
version of the context-aware citation recommendation task [10].

Expert finding is the problem of finding a domain expert for a particular
topic. The query is again a list of terms and relevant entities, the current year,
and the answer type is “person”. The desired answer is a list of people with
expertise on this topic.

The first two of these tasks are encountered in preparing a new paper, and
the third is encountered in finding reviewers, or new collaborators. To evaluate
performance on these tasks, we will compare the ranked list from a query associ-
ated with a paper to the actual metadata associated with the paper: specifically,
we will compare actual venue to the recommended venues, the actual citations
to the recommended citations. Perhaps more speculatively, we will also compare
the authors of a paper to the experts recommended by the query based on the
title and related-entity set for the paper. In each case the predictions will be
made using a graph that does not contain the actual paper in question—see the
next subsection for details.

As a fourth task, we will consider the gene recommendation task consid-
ered by Arnold and Cohen [3]—i.e., predicting, given past publishing history,
which genes an author will publish about over the next year. Here the query
nodes are an author and a year, and the answer type is “gene”. This task is an
approximation to predicting future interests.

Because the fly data is larger than the yeast data, and has an extra entity
type protein, we do not use the publication year as part of the query for fly data.

2.2 Datasets

Most previous work on supervised training of RWR-based proximity measure
have used a small number of training queries–for instance, Minkov and Cohen
used more than 30 queries [15]—or else used artificially generated document
orderings[21, 1]. Using large amounts of realistic data in this study makes it pos-
sible to learn more complex models. We created two publication data sets (Yeast
and Fly) in the biological domain. Paper content and metadata information are
crawled from two resources: PubMed1 is a free on-line archive of over 18 million
biological abstracts for papers published since 1948; PubMed Central (PMC)2

contains full-text and references to over one million of these papers.
Fig. 1 shows the schema of the yeast corpus. We extracted gene mentions from

the Saccharomyces Genome Database(SGD)3, which is a database of various
types of information concerning the yeast organism Saccharomyces cerevisiae,
including about 48K papers, each annotated with the genes it mentions. The
title words are filtered by a stop word list of size 429. The Authorship relations
are further distinguish into three sub-types: any author, first author, and last
author. We extracted gene-gene relations from Gene Ontology (GO)4, which is

1 www.ncbi.nlm.nih.gov/pubmed
2 www.ncbi.nlm.nih.gov/pmc
3 www.yeastgenome.org
4 www.geneontology.org
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Fig. 1. Schema of the yeast data.
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Fig. 2. Schema of the fly data.

a large ontology describing the properties of and relationships between various
biological entities across numerous organisms.

Fig. 2 shows the schema of the fly corpus. It is extracted from Flymine5,
which is an integrated database for Drosophila and Anopheles genomics, and
contains about 127K papers tagged with genes and proteins. The schema is
similar to that of the yeast data, except for a new entity type Protein6, and
several relations among genes. Downstream and Upstream relation connect a
gene to its two neighbors on the DNA strand.

Each paper can be used to simulate a query and relevance judgements for
any of the four above mentioned tasks. However, we need to prevent the system
from using information obtained later than the query’s date. Therefore, we define
a time variant graph in which each edge is tagged with a time stamp (year).
When doing random walk for a query generated from a particular paper, we only
consider edges that are earlier than the publication date of that paper.

Table 1. Corpus statistics

Graph Size No. Query

paper node edge train dev test
Yeast 48K 164K 2.8M 2K 2K 2K
Fly 127K 770K 3.5M 2K 2K 2K

5 www.flymine.org
6 In yeast, there is a nearly one-to-one relationship between genes and proteins, as

most genes are transcribed to a unique protein; in flies, alternative splicing means
that a gene can be transcribed to several different proteins.
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For each task on any of the two corpora, we randomly hold out 2000 queries
for development, and another 2000 queries for testing. We evaluate models by
Mean Average Precision (MAP).

2.3 Baseline results

The RWR based retrieval model is commonly used and studied by today’s re-
search community and is serving as our baseline. The two recent extensions with
richer “feature set” [15][14], however, are not selected as baselines for this work,
mainly because we are focusing on large scale problems here. These two exten-
sions are designed for smaller scale problems, therefore not efficient enough to
deal with the Fly and Yeast data sets we used in this study.

Table 2 shows the result of our two baseline methods: untrained RWR model
with all edges set to uniform weight 1.0, and trained RWR model (detail of
which will be described in Section 3.2). Basically, a random walker can follow
any type of edge at each step in a RWR model. While in a trained RWR model,
the walker can have preference over different type of edges which is expressed
as edge weights. We can see that except on the gene recommendation tasks, su-
pervised training can significantly improve retrieval quality. By comparing four
tasks we can see that venue and gene recommendation are relatively easier tasks
because they have smaller number of candidate answers. Although the refer-
ence recommendation task has large number of candidate entities, the models
effectively leverage the citation links among papers to achieve reasonably good
retrieval accuracy. Among all four tasks, expert finding is the hardest one.

Table 2. MAP of the baseline RWR model, and RWR model with learning based on
one weight per edge label (see Section 3.2 for details). The numbers in parenthesis
are relative improvement of MAP(%). Except these†, all improvements are statistically
significant at p<0.0001 using paired t-test.

Corpus Task RWR
untrained trained

yeast Venue Recommendation 40.4 44.2 (+9.4)
yeast Reference Recommendation 11.8 16.0 (+35.6)
yeast Expert Finding 9.9 11.1 (+12.1)

yeast Gene Recommendation 14.4 14.4 (†+0.0)
fly Venue Recommendation 45.4 48.3 (+6.4)
fly Reference Recommendation 18.8 20.5 (+9.0)
fly Expert Finding 5.6 7.2 (+28.6)

fly Gene Recommendation 18.7 19.2 (†+2.7)

3 The Path Ranking Algorithm (PRA)

3.1 Basic Path Experts

One-parameter-per-edge label RWR proximity measures are limited because the
context in which an edge label appears is ignored. For example, in the reference



Path-Constrained Random Walks 7

recommendation task, one of the query nodes is a year. There are two ways in
which one might use a year y to find candidate papers to cite: (H1) find papers
published in year y, or (H2) find papers frequently cited by papers published
in year y. Intuitively, the second heuristic seems more plausible than the first;
however, a system that insists on a using a single parameter for the “importance”
of the edge label PublishedIn cannot easily encode this intuition.

To define heuristics of this sort more precisely, let R be a binary relation.
We write R(e, e′) if e and e′ are related by R, and define R(e) ≡ {e′ : R(e, e′)}.
We use dom(R) to denote the domain of R, and range(R) for its range. A
relation path P is a sequence of relations R1 . . . R` with constraint that ∀i :
1 < i < ` − 1, range(Ri) = dom(Ri+1). We define dom(R1 . . . R`) ≡ dom(R1)
and range(R1 . . . R`) ≡ range(R`), and when we wish to emphasize the types
associated with each step in a path, we will write the path P = R1 . . . R` as

T0
R1−−→ . . .

R`−−→ . . . T`

where T0 = dom(R1) = dom(P ), T1 = range(R1) = dom(R2) and so on. In this
notation,the two heuristics suggested above would be written as:

H1 : year PublishedIn−1

−−−−−−−−−→ paper

H2 : year PublishedIn−1

−−−−−−−−−→ paper Cite−−−→ paper

This notation makes it clear that the range of each relation path is paper, the
desired type for reference recommendation. We use −1 to denote the inverse of
a relation, which is considered as a different relation: for instance, PublishedIn
and PublishedIn−1 are considered as different relations.

For any relation path P = R1 . . . R` and set of query entities Eq ⊂ dom(P ),
we define a distribution hEq,P as follows. If P is the empty path, then define

hEq,P (e) =
{

1/|Eq|, if e ∈ Eq

0, otherwise (1)

If P = R1 . . . R` is nonempty, then let P ′ = R1 . . . R`−1, and define

hEq,P (e) =
∑

e′∈range(P ′)

hEq,P ′(e′) · I(R`(e′, e))
|R`(e′)|

,

where I(R(e′, e)) is an indicator function that takes value 1 if R(e′, e) and 0
otherwise. If we assume that I(R(e′, e)) = 0 when e′ is not in dom(R), then the
definition naturally extends to the case where Eq is not a subset of dom(P ).

Given these definitions, the intuition that “heuristic H1 is less useful than
H2” could be formalized as follows: for reference recommendation queries Eq, Tq,
where Eq is a set of title words, gene-protein entities, and a year y, entities e1

with high weight in hEq,PublishedIn−1 are not likely to be good citations, where
as entities e2 with high weight in hEq,PublishedIn−1 .Cite are likely to be good
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citations. More generally, given a set of paths P1, . . . , Pn, one could treat these
paths as features for a linear model and rank answers e to the query Eq by

θ1hEq,P1(e) + θ2hEq,P2(e) + . . . θnhEq,Pn(e)

where the θi are appropriate weights for the paths.
In this paper, we consider learning such linear weighting schemes over all re-

lation paths of bounded length `. For small ` (e.g., ` ≤ 4), one can easily generate
P(q, l) = {P}, the set of all type-correct relation paths with range Tq and length
≤ l. The distributions defined by all the relation paths can be summarized as a
prefix tree (Figure 3), where each node corresponds to a distribution hP (e) over
the entities. A PRA model ranks e ∈ I(Tq) by the scoring function

s(e; θ) =
∑

P∈P(q,l)

hEq,P (e)θP , (2)

In matrix form this could be written s = Aθ, where s is a sparse column vector
of scores, and θ is a column vector of weights for the corresponding paths P . We
will call A the feature matrix, and denote the i-th row of A as Ai.

P a p e r

P a p e r

A u th o r

P a p e r

P a p e r

P a p e r

A u th o r

P a p e r

W r i t te n B y

W r i te

C i te

C i te

C i te B y

C i te B y

W r i t te n B y

Fig. 3. A 2-level relation tree for a simple schema of paper and author

We found that, because some of the relations reflect one-to-one mapping,
there are paths give exactly the same distribution over the target entities. For
example, the following three paths among years are actually equivalent, where
Before−1 is the inverse of relation Before:

year
Before−1

−−−−−−→ year
Before−−−−−→ year

Before−−−−−→ year

year
Before−−−−−→ year

Before−1

−−−−−−→ year
Before−−−−−→ year

year
Before−−−−−→ year

Before−−−−−→ year
Before−1

−−−−−−→ year
To avoid creating these uninteresting paths, we add constraint to the following
relations that they cannot be immediately preceded by its inverse:

year
Before−1

−−−−−−→ year
Before−−−−−→ year

year
Before−−−−−→ year

Before−1

−−−−−−→ year

journal
PublishedBy−1

−−−−−−−−−−→ paper
PublishedBy−−−−−−−−→ journal

year
PublishedIn−1

−−−−−−−−−−→ paper
PublishedIn−−−−−−−−→ year
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3.2 Parameter Estimation

There have been much previous work in supervised learning of random walk
models. Nie et al.[16] use exhaustive local search over each edge type, which is
only applicable when the number of parameters is very small. Diligenti et al. [7]
and its follow up [15] optimize weights on the relations using back-propagation,
which has linear convergence, therefore requires many iterations to reach conver-
gence. Recent work [1][6] uses more efficient second order optimization procedure
like BLMVM for numerical optimization. In this study, we use L-BFGS [2], one
commonly used second order optimization procedure in many machine learning
problems, and binomial log-likelihood loss functions.

The training data can be represented as D = {(q(m), r(m))}, m = 1...M ,
where r(m) is a binary vector. r

(m)
e = 1 if entity e is relevant to the query q(m),

and r
(m)
e = 0 otherwise. Given the training data, parameter estimation can be

formulated as maximizing a regularized objective function

O(θ) =
∑

m=1..M

o(m)(θ) − λ|θ|2/2 (3)

where λ is a regularizer, and o(m)(θ) is a per-instance objective function. In this
paper we use binomial log-likelihood (the loss function for logistic regression);
however, negative hinge loss (for SVM), negative exponential loss (for boosting),
and many other functions could be used instead. Binomial log-likelihood has the
advantage of being easy to optimize, and also does not penalize outlier samples
too harshly, as exponential loss does. For a training instance (q(m), r(m)), let
A(m) be its corresponding feature matrix, R(m) be the index set of the relevant
entities, and N (m) the index set of the irrelevant entities. In order to balance
uneven number of positive and negative entities, we use the average log-likelihood
of positive and negative entities as the objective

o(m)(θ) =
∑

i∈R(m)

ln p
(m)
i

|R(m)|
+

∑
i∈N (m)

ln(1 − p
(m)
i )

|N (m)|
(4)

where p
(m)
i = p(r(m)

i = 1; θ) = σ(θT A
(m)
i ), σ is the sigmoid function σ(x) =

exp(x)/(1 + exp(x)), and the gradient is

∂o(m)(θ)
∂θ

=
∑

i∈R(m)

(1 − p
(m)
i )A(m)

i

|R(m)|
−

∑
i∈N (m)

p
(m)
i A

(m)
i

|N (m)|
. (5)

For most retrieval tasks, there are just a few positive entities but thousands
(or millions) of negative ones. Therefore using all of them in the objective func-
tion is expensive. Here we used a simple strategy similar to stratified random
sampling [17]. First, we sort all the negative entities using PRA model without
training (i.e., all feature weights are set to 1.0). Then, entities at the k(k +1)/2-
th positions are selected as negative samples, where k = 0, 1, 2, ... This is helpful
because, in generally, non-relevant entities highly ranked by some weak ranking
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function are more important than lower ranked ones: for in-depth comparisons
of different selection strategies we refer the reader to Aslam et al.’s work [4].

For parameter estimation of the one-weight-per-edge-label RWR model, we
use the same log-likelihood objective function and LBFGS optimization proce-
dure as for PRA. Since a RWR can be seen as the combination of all the PCRWs
with each path having its weight set to the product of all the edge weights along
the path, we can calculate the gradient of edge weights by first calculating the
gradient w.r.t. the paths, and then applying the chain rule of derivative.

3.3 Query-Independent Experts

The features above describe a entity only in terms of its position in the graph
relative to the query entities. However, the relevance of an entity may also de-
pend on query-independent qualities—for instance, its recency of publication, its
citation count, or the authoritativeness of the venue in which it was published.
To account for these intrinsic properties of entities, we extend every query set
Eq to include a special entity e∗. We then extend the graph so that for each
type T , there is a relation AnyT such that AnyT(e∗,e) is true for every e ∈ T .
For example, the relation AnyPaper maps e∗ to each paper, and the relation
AnyYear maps e∗ to each year.

For example, the path e∗
AnyPaper−−−−−−−→ paper

Cite−−−→ paper defines this random-
walk process: start from any paper with equal probability, and then jump to one
of its referenced papers. This results in higher probability mass to the papers
with high citation count. A path that starts with AnyPaper and then follows two
Cite edges assigns weight to papers frequently cited by other highly-cited papers:
as path length increases, a combination of this variety of query-independent paths
begins to approximate the PageRank for papers on the citation graph.

These scores can be seen as a rich set of query-independent features, which
can be combined with query-dependent path features to rank the target enti-
ties. To use them, the scoring function in Eq.(2) remains unchanged. However,
since these paths are query-independent, we improve performance by computing
their values for every entity offline. In particular, using the time-variant-graph
described in Section 2.1, we calculate, for each year, the h score for all query-
independent paths, using only edges earlier than that year.

3.4 Popular Entity Experts

Previous work in information retrieval has shown that entity specific character-
istics can be leveraged for retrieval. For the ad hoc retrieval task, some lower
ranked document under a query may be interesting to the users and got clicked
very often because of features not captured by the ranking function of the sys-
tem. In this case, promoting these popular documents to higher rank would result
in better user experience [22]. For personalized search [8], different users may
have different information needs under the same query: for instance, the word
“mouse” can mean different things for a biologist and a programmer. In this
case, modeling the correlation between query entities (users) and target entities
(documents) can be useful.
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In this work, we provide a simple yet general way of modeling entity popu-
larities by adding biases and query-conditioned biases to the target entities. For
a task with query type T0, and target type Tq, we introduce a popular entity
bias θpop

e for each target entity e ∈ Tq. We also introduce a conditional popular
entity bias θe′,e for each query-target entity pair (e′, e), where e′ ∈ T0, e ∈ Tq.
The scoring function in Eq.(2) is extended to

s(e; θ) =
∑

P∈P(q,l)

hEq,P (e)θP + θpop
e +

∑
e′∈Eq

θpop
e′,e, (6)

or in matrix form s = Aθ + θpop + Θq, where θpop is an concatenation of all bias
parameters, Θ is an matrix of all conditional bias parameters, and q is a binary
vector indicating whether each entity is included in the query.

We can see that the number of parameters is potentially very large. For
example, θpop has the length of the total number of entities of the target type,
and Θ is a huge matrix with number of rows and columns equal to the number of
entities in the target and query entity type. Since it is impractical to include all
of them to the model (consider the task of retrieving documents using words), we
use an efficient induction strategy which only add the most important features
[18]. At each LBFGS training iteration, we add to the model the top J popular
entity expert parameters which have the largest gradient (in magnitude) w.r.t
the objective function in Eq.(3). We call J the batch size. In our experiment, we
found J = 20 gives relatively good performance. We also restrict the induction to
be applied no more than 20 times during training. In this way, the computation
cost is not bounded by the size of θpop and Θ, but the number of non-zero
elements in them. In practice, we found that training a PRA model with popular
entity experts is not much more expensive than training a regular PRA model,
and the details will be given in the next section.

4 Experiment

Biologists currently spend a lot of time in searching for relevant information
about specific bioentities (e.g. a set of genes). Here we explore how relational
retrieval can help biologists in various tasks. We report empirical results of
comparing PRA with unsupervised RWR model, and its supervised version
(RWR+train). We also compare to PRA with query-independent path experts
(PRA+qip), and PRA with popular entity experts (PRA+pop).

4.1 Parameter Tuning on Development Data

In this subsection, we show the parameter swiping for reference recommendation
task on the yeast data. Other tasks have similar trend, but their plots are not
shown here due to space limitation.

Fig. 4 shows the relation between path tree depth and model complexity.
For PRA model we can see that both model complexity (measured by number
of features) and query execution time are exponential to the path length. The
query independent path (qip) extension introduces about twice number of paths



12 Ni Lao and William W. Cohen

1

10

100

1000

10000

1 2 3 4
Maximum Path Length L

N
o.

 F
ea

tu
re

s

PRA
PRA+qip
PRA+pop

0.01

0.1

1

10

100

1 2 3 4
Maximum Path Length L

Q
ue

ry
 E

xe
cu

tio
n 

tim
e 

(s
ec

)

PRA
PRA+qip
PRA+pop

Fig. 4. Model complexity verses maximum path length L for reference recommendation
task on the yeast data. Execution time is an average of 2000 test queries.

than the basic PRA algorithm. However, since these query independent random
walks are performed offline, they do not significantly affect query execution time.
Although the popular entity experts introduce a large number of features, they
are easy to calculate, therefore do not significantly affect query execution time.
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Fig. 5. (a) Compare different regularization parameter λ and different path length l.
(b)Effect of training data size for reference recommendation task on yeast data

Fig. 5a shows the effect of L2-regularization and path length on retrieval
quality. We can see that a small amount of L2-regularization can slightly im-
prove MAP, and longer path lengths give better performances, but only to a
certain level. In order to balance between retrieval quality and computational
complexity, we fix max path length, for the rest of the experiment, to 4 for the
venue recommendation task and 3 for the other three tasks.
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In Fig. 5b, we vary the number of training queries to see how training data
size affects the quality of the model. we can see that all learning methods benefit
from more training data, and it is especially evident when popular entity experts
are used. This is due to the fact that they have a large number of parameters
to estimate, and we need at least a thousand training queries to prevent over
fitting and to get good results.

4.2 Examples of Important Path Features

In the TREC-CHEM Prior Art Search Task [13], people found that instead of
directly searching for patents with the query words, it is much more effective
to first find patents with similar topic, then aggregate these patents’ citations.
The relation path of this strategy can be expressed as “query word

ContainedBy−−−−−−−−−→
patent Cite−−−→ patent”. In our experiment, the PRA model based on PCRW not
only successfully identifies this paths as an important feature in scientific liter-
ature domain (path #2 in Table 3), but also finds several other useful paths.

Table 3 shows a subset of features for a PRA+qip+pop model trained for
the reference recommendation task on the yeast data. Feature #1-#8 are regular
path features. Among them, feature #6 resembles what most ad-hoc retrieval
systems would do to find relevant papers: finding papers with many words over-
lapping with the query. However, we can see that this feature is not considered
the most important by the model. Instead, the model favors the papers that
are well cited by on-topic papers (#2), and the papers cited together with the
on-topic papers (#1). Papers cited during the past two years (#7,#8) are also fa-
vored. In contrary, general papers published during the past two years (#12,#13)
are disfavored.

Features starting with e∗ are query-independent path features. We can see
that well cited papers are generally favored (#9). Since the number of papers
published is increasing every year, feature #14 actually disfavors old papers.

Features of the form “> XXX” are popular entity biases on specific entities.
Features of the form “XXX > XXX” are conditional popular entity biases
that associate a query entity with a target entity. We can see that papers about
specific genes (e.g. CAL4, CYC1) often cite specific early works (#10,#11).

Table 4 shows a subset of features for a PRA+qip+pop model trained for the
venue recommendation task on the fly data. We can see that different journals
have different preferred topics (#7-#9), and some journals are less likely to
accept drosophila related papers (#11-#13). Although journals of old papers
are disfavored (#14), journals of popular papers are favored (#6). Interestingly,
journals with many on-topic first authors (#2) are more favored than those with
just any on-topic authors (#3).

4.3 Main Results

Table 5 compares the effectiveness of different ranking algorithms on all four
tasks and two copora. We can see that PRA performs significantly better than
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Table 3. Subset of features from a PRA+qip+pop model trained for the reference
recommendation task on the yeast data. In is a shorthand for the PublishedIn relation.

ID Weight Feature

1 272.4 word
HasTitle−1

−−−−−−−−→ paper
Cite−1

−−−−−→ paper
Cite−−−→ paper

2 156.7 word
HasTitle−1

−−−−−−−−→ paper
Cite−−−→ paper

3 100.5 gene
HasGene−1

−−−−−−−−→ paper
Cite−1

−−−−−→ paper
Cite−−−→ paper

4 83.7 word
HasTitle−1

−−−−−−−−→ paper
Cite−1

−−−−−→ paper

5 50.2 gene
HasGene−1

−−−−−−−−→ paper
Cite−−−→ paper

6 41.4 word
HasTitle−1

−−−−−−−−→ paper

7 29.3 year
In−1

−−−→ paper
Cite−−−→ paper

8 13.0 year
Before−1

−−−−−−→ year
In−1

−−−→ paper
Cite−−−→ paper

...

9 3.7 e∗
AnyPaper−−−−−−−→ paper

Cite−−−→ paper
10 2.9 GAL4>Nature. 1988. GAL4-VP16 is an unusually potent

transcriptional activator.
11 2.1 CYC1>Cell. 1979. Sequence of the gene for iso-1-cytochrome c

in Saccharomyces cerevisiae.
...

12 -5.4 year
Before−1

−−−−−−→ year
In−1

−−−→ paper

13 -39.1 year
In−1

−−−→ paper

14 -49.0 e∗
AnyY ear−−−−−−→ year

In−1

−−−→ paper

Table 4. Subset of features from a PRA+qip+pop model trained for the venue rec-
ommendation task on the fly data. In is a shorthand for the PublishedIn relation.

ID Weight Feature

1 26.9 word
HasTitle−1

−−−−−−−−→ paper
In−→ journal

2 4.5 word
HasTitle−1

−−−−−−−−→ paper
FirstAuthor−−−−−−−−→ author

FirstAuthor−1

−−−−−−−−−−→ paper
In−→ journal

3 2.8 word
HasTitle−1

−−−−−−−−→ paper
AnyAuthor−−−−−−−→ author

AnyAuthor−1

−−−−−−−−−→ paper
In−→ journal

4 1.1 gene
GeneticallyRelated−−−−−−−−−−−−−→ gene

HasGene−1

−−−−−−−−→ paper
In−→ journal

5 0.9 gene
HasGene−1

−−−−−−−−→ paper
In−→ journal

6 0.6 e∗
AnyPaper−−−−−−−→ paper

Cite−−−→ paper
In−→ journal

...
7 3.5 virus > J V irol
8 2.7 deficiency > Am J Hum Genet
9 2.0 drosophila > Dev Biol

...
10 -2.6 > J V irol
11 -3.2 drosophila > J Bacteriol
12 -3.5 drosophila > Am J Hum Genet
13 -3.6 drosophila > J Med Genet

14 -35.8 e∗
AnyY ear−−−−−−→ year

In−1

−−−→ paper
In−→ journal
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Table 5. Compare baseline RWR with PRA and its two extensions: query-independent
path experts (+qip) and popular entity experts (+pop). The tasks are Venue Recom-
mendation (Ven), Reference Recommendation (Ref), Expert Finding (Exp), and Gene
Recommendation (Gen). Performances are measured by MAP, and the numbers in the
brackets are relative improvement (%) over the trained RWR model. Except these†, all
improvements are statistically significant at p<0.05 using paired t-test.

Corpus Task RWR PRA

trained trained +qip +pop +qip+pop
yeast Ven 44.2 45.7 (+3.4) 46.4 (+5.0) 48.7 (+10.2) 49.3 (+11.5)
yeast Ref 16.0 16.9 (+5.6) 18.3 (+14.4) 19.1 (+19.4) 19.8 (+23.8)
yeast Exp 11.1 11.9 (+7.2) 12.4 (+11.7) 12.5 (+12.6) 12.9 (+16.2)
yeast Gen 14.4 14.9 (+3.5) 15.1 (+4.9) 15.1 (+4.9) 15.3 (+6.3)
fly Ven 48.3 50.4 (+4.3) 51.1 (+5.8) 50.7 (+5.0) 51.7 (+7.0)

fly Ref 20.5 20.8 (†+1.5) 21.0 (+2.4) 21.6 (+5.4) 21.7 (+5.9)

fly Exp 7.2 7.6 (†+5.6) 8.3 (+15.3) 7.9 (+9.7) 8.5 (+18.1)
fly Gen 19.2 20.7 (+7.8) 21.1 (+9.9) 21.1 (+9.9) 21.0 (+9.4)

RWR under most tasks. The query-independent path experts (PRA+qip) man-
age to improve over basic PRA model in all tasks, and especially in reference rec-
ommendation and expert finding tasks. The popular entity experts (PRA+pop)
also manage to improve over basic PRA model in all tasks, and the different is
very significant on yeast tasks.

5 Conclusion and Future Work

We proposed a novel method for learning a weighted combination of path-
constrained random walkers, which is able to discover and leverage complex
path features of relational retrieval data. We also evaluate the impact of using
query-independent path features, and popular entity features which can model
per entity characteristics. Our experiment on several recommendation and re-
trieval tasks involving scientific publications shows that the proposed method
can significantly outperforms traditional models based on random walk with
restarts.

We are very interested in the generalization from simple relations to hyper-
relations which are mappings from possibly more than one source types. For
example, there is much incentive to express the AND relation [5]: e.g. consider
the task of finding papers that are both written by certain author and recent.
However, model complexity will be a major concern. Efficient structure selection
algorithm is very important to make a system practical.

Furthermore, we are interested in algorithms that introduces new entities
and edges to the graph. This can potentially be useful to improving retrieval
quality or efficiency. For example, new entities can represent subtopics of re-
search interests, and new links can represent memberships from words, authors
or papers to these subtopics. In this way, a model might be able to replace some
long paths which we have shown in the experiment with relatively shorter and
more effective paths associated with the introduced structures.
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