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Abstract

Because much of the information on the web is presented in some sort of regular, repeated format,
“understanding” web pages often requires recognizing and using structure, where structure is typically
defined by hyperlinks between pages and HTML formatting commands within a page. We survey some
of the ways in which structure within a web page can be used to help machines understand pages.
Specifically, we review past research on techniques that automatically learn and discover web-page
structure. These techniques are important for wrapper-learning, an important and active research area,
and can be beneficial for tasks as diverse as classification of entities mentioned on the web, collaborative
filtering for music, web page classification, and entity extraction from web pages.

1 Introduction

In spite of recent progress on the semantic web and interchange formats like XML, most of the information
available today on the world wide web is targeted at people, not machines. Because of this, the problem of auto-
matically aggregating information from the web [3, 4, 11, 18, 21, 23, 24] is technically difficult: simply put, in
order to make web information machine-readable, it is usually necessary to design a program that “understands”
web pages the same way a human would—at least within some narrow domain.

The task of “understanding” web pages is broadly similar to classical problems in natural language under-
standing. One important difference is that most of the information on the web is not presented in smoothly
flowing grammatical prose; instead, web information is typically presented in some sort of tabular, structured
format. Hence understanding web pages often requires recognizing and using “structure”—a structure typically
being defined by hyperlinks between pages, and HTML formatting commands (e.g., tables and lists) within a
page. In this paper, we will survey some of the ways in which structure can be used to help machines understand
web pages. We will focus on techniques that exploit HTML formatting structure within a page, rather than link
structure between pages.

Broadly speaking, there are two ways in which such structure can be used. It may be useddirectly to
accomplish some task; typically, to determine how to extract data from a page. As an example, consider the
imaginary web page shown in Figure 1. (The markers near the words “Customers”, “Mr. Peabody”, etc will
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“Our products make a temporal difference!”

TD-Lambada, Inc: Our Management Team

Home Bullwinkle Moose+, Mr. Peabody
Products President and CEO A former founder and CEO

Customers+ of Wayback Inc, Peabody
Careers Boris Badinov, is one of the best-known

Our Team VP, International Sales researchers in the area of
Contact Us temporal alteration and

ÀÀ Mr. Peabody,+ improbability extremata.
Chief Scientist Most non-pharmaceutical work

in this area stems from his
Dudley Do-Right+, 1959 Master’s thesis at MIT
Chief Operations Officer under Prof. J. Ward.

[Home| Products| Customers| Careers| Our Team| Contact Us]

Figure 1: An imaginary web page containing non-trivial regular structure

be explained below.) To populate the relationtitleOf(personName, jobTitle)from this page, one might extract
names and titles from alternate non-blank positions in the second column; thus extraction would be based on the
formatting used on the page.

Structure might also be used as one input among many that collectively guide a more complex process. For
instance, consider using a statistical machine learning algorithm to identify job-title phrases on web pages. Such
an algorithm might exploit content features (like “x contains the word ‘CFO’ ”), formatting features (like “x
is rendered in boldface”) or structural features (like “x appears in the same table column as a known job-title
word”). We will call this sort of use of structureindirect, since structure is only one of several factors that affects
the learning algorithm.

In this paper, we will focus on techniques that involve learning structure from examples, or automatically
discovering possible structure using heuristics. We will also discuss how learned or discovered structure can be
used—both directly and indirectly.

2 Learning structure for direct use

A program that derives a database relation from a specific website is called awrapper, andwrapper learningis
the problem of learning website wrappers from examples. For instance, a wrapper for the website of Figure 1
might produce the relationtitleOf(personName, jobTitle)described above.

As an alternative to explicit programming, such a wrapper might be learned from a handful of user-provided
examples. As a very simple example, the four job titles on this page might be learned from the two examples
“President and CEO” and “VP, International Sales”. (Notice that these strings arepositiveexamples,i.e., in-
stances of strings thatshouldbe extracted; most learning systems also requirenegativeexamples,i.e., strings
that should notbe extracted. A common convention in wrapper-learning is for a user to provideall positive
examples in some prefix of the document being labeled. A set of negative examples then can be derived by using
a sort of closed world assumption.)
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Wrapper learning has been an active area from the mid-nineties [20] through the present (e.g., [2, 15, 25]).
Typically a wrapper is defined in terms of the format used on a particular web site: in Figure 1, for instance, a
wrapper might extract as job titles “all boldfaced strings in the second column”. Hence wrapper-learning is a
prototypical example of learning a structure for direct use. By way of an introduction to this active area of work,
we will discuss below a few successful wrapper-learning systems.

Kushmeric’s seminal WIEN system [19, 20] was based on a handful of carefully crafted wrapper languages
with very restricted expressive power. For example, one such language was HLRT. An HLRT wrapper for a
one-field relation is defined by four strings: a stringh that ends the “header” section of a web page, two strings
` andr that precede and follow each data field, and a stringt that begins a “tail” section of a web page. (The
“head” and “tail” sections of a page contain no data fields.) For instance, a plausible HLRT wrapper for job-
title strings in an HTML version of the page of Figure 1 might beh =“Contact Us〈/A〉”, ` =“〈B〉”, r=“〈/B〉”,
and t=“〈/B〉〈/LI〉〈/UL〉”. By limiting a wrapper-learner to explore this restricted set of possible structures,
Kushmeric was able to use a learning algorithm that was elegant and well-grounded formally (for instance, it
was guaranteed to converge after a polynomial number of examples). The disadvantage of this approach was
that some wrappers could not be learned at all by WIEN.

Later wrapper-learning systems such as STALKER [26] and BWI [14] used more expressive languages for
wrappers: for instance, the start of a field might be identified by the disjunction of a set of relatively complex
patterns, rather than a single fixed string`. Surprisingly, these broader-coverage systems didnot require more
examples to learn simple structures, such as those considered by WIEN; instead the learning algorithms used
were designed to propose simpler structures first, and fall back on more complex structures only if necessary.
The disadvantage of these systems (relative to WIEN) is greater complexity, and weaker performance guarantees.

In our own previous work, we developed a wrapper-learning system called WL2 [16, 9]. Like WIEN,
WL2 exploits the fact that many wrappers are based on a few simple structures, and that it is often possible
to design restricted languages that capture these common cases. Like STALKER and other systems, WL2 can
find complex wrappers when simple ones are inadequate. Unlike previous wrapper-learners, WL2 is modular,
and designed to be easily extended to accomodate new classes of structures (perhaps structures common in a
particular domain). The learning system in WL2 is based on an ordered set ofbuilders. Each builderB is
associated with a certain restricted languageLB. However, the builder forLB is not a learning algorithm for
LB. Instead, to facilitate implementation of new “builders”, a separate master learning algorithm handles most
of the real work of learning, and the builderB need support only a small number of operations onLB—the
principle one being to propose a single “least general” structure given a set of positive examples. Builders can
also be constructed by composing other builders in certain ways. For instance, two builders for languagesLB1

andLB2 can be combined to obtain builders for the language(LB1 ◦ LB2), or the language(LB1 ∧ LB2).
WL2 included builders that detected structures of various kinds. Some structures were defined in terms of

string-matches, like HLRT; some were defined in terms of the HTML parse tree for a page; and some were
defined in terms of the geometrical properties of the rendered page. The master learning algorithm can find
extraction rules based on any of these sorts of structures; or, it can combine structures produced by different
builders to form new, more complex extraction rules (e.g., “extract all table cells vertically below a cell con-
taining the words “Job Title” that will be rendered in bold with a font size of 2”). Experiments conducted with
a large number of practical extraction problems showed that WL2 could learn to extract many data fields with
three positive examples or less.

3 Discovering structure for direct use

In wrapper learning, a user gives explicit information about each structure. Even if wrapper-learning is very
efficient, a system that requires information from many web sites will still be expensive to train. A natural
question to ask is: can structure be recognized (and used) without training data?
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In some situations, the answer is “yes”. For instance, Kushmericet al [20] described ways in which au-
tomatic but imperfect entity recognizers could be used to drive wrapper learning; Embleyet al [12] described
accurate and page-independent heuristics for recognizing strings that separate one data record from another in
web pages; and other researchers [13, 22] have described techniques for finding logically meaningful facts from
HTML lists and tables without training data. Below we will summarize some of our own work on automatically
discovering useful structure.

One difficulty with evaluating such a discovery system is that, in general, it is unclear what structures are
“useful”. One definition of “useful” is “structure that could be used to guide web-site wrapping”. In previous
work [5], we evaluated the performance of a structure-discovery algorithm by using it to propose structures for
82 previously-wrapped web pages, and measuring the fraction of the time that the discovered structure coincided
with the wrapper for that page.

The algorithm proposes two types of structures, calledsimple listsandsimple hotlists, which have the prop-
erty that only a polynomial number of possible structures can appear on any given web page; this means that
finding the best structure can be reduced to generating all simple lists or hotlists, and then ranking them. One
simple ranking scheme is to score a structure by the number of elements extracted by the the structure; on this
dataset, this heuristic ranked the correct structure highest about 20% of the time. If more information is avail-
able, then more powerful heuristics can be used. For instance, if a large list of “seed” items of the correct type
are available, then ranking lists according to the an aggregate measure of the distance from extracted items to
“seeds” (using an appropriate similarity metric) ranks the correct structure highest about 80% of the time.

This algorithm could thus be used as the basis for a wrapper “learning” algorithm that uses no explicit user
examples. Instead wrappers would be constructed as follows:

• The system generates, ranks, and presents to the user an ordered list of possible structures. For instance,
given a set of person-name seeds and the web page of Figure 1 as input, the system might produce these
candidate lists:

1. “Bullwinkle Moose”, “Boris Badinov”, “Mr. Peabody”, . . .

2. “Bullwinkle Moose, President and CEO”, “Boris Badinov VP, International Sales”, . . .

3. “Home”, “Products”, “Customers”, “Careers”, . . .

4. “President and CEO”, “VP, International Sales”, “Chief Scientist”, . . .

The ranking shown is reasonable, as structures containing words like “Mr.” and “Boris” (which are likely
to appear in some seed) should be ranked higher than structures containing only phrases like “Home” and
“Chief Scientist”.

• The user picks a candidate structure from the ranked list (say, the first one) that contains the items to be
extracted.

• The user specifies semantically how these items will be stored in the database being populated; e.g., by
specifying that they are the set of “people employed by TD-Lambada, Inc”.

4 Discovering simple structure for indirect use

We emphasize that the 80% figure reported in the section above is relative to the set of 82 wrappers used in these
experiments, all of which could actually be represented as simple lists or hotlists. Of course, many wrappers are
more complex. For appropriately simple wrappers, less user intervention is required using the method described
above than with than learning techniques like WL2; however, the user is still needed to (a) verify the correctness
of a proposed structure and (b) ascribe the appropriate semantics to the structure.
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One way to exploit structure without involving the user at all is to use discovered structure indirectly. As an
example, consider the task of classifying musical artists by genre given only their names: thus “John Williams”
would be classified as “classical” and “Lucinda Williams” as “country”. This is difficult to do accurately without
some background knowledge about the artists involved. Such background knowledge might be obtained by
manually training (and then executing) wrappers for some appropriate set of web sites—can one obtain similarly
useful background knowledge usingautomaticallydiscovered structure?

In another set of experiments [6], we used structure discovery algorithms to find features useful for learning.
One task we explored was learning to classify musical artists by genre. We took a large list of musical artists and
labeled a subset to use as training data. We then used the complete list of artists as seeds for (a variant of) the
structure-discovery algorithm described above. Applied to a large set of web pages, this produces many possible
structures. Without user filtering, many of these structures are meaningless, and other structures correspond to
sets that are completely uncorrelated with genre (like “artists with names starting with ‘A’ that have CDs on sale
at Bar.com”). However, may of the discovered structuresare correlated with genre, and hence can be exploited
by a statistical learner.

Specifically, we associated each discovered structureD with a matching subsetSD of the complete artist list.
We then introduced, for every structureD, a new binary featurefD which was true for every examplex ∈ SD
and false for every other example. Finally we applied traditional feature-based statistical learning algorithms to
the augmented examples. In our experiments, the new structure-based features improved performance on several
benchmark problems in a wide variety of situations, and performance improvements were sometimes dramatic:
on one problem, the error rate was decreased by a factor of ten. Similar features can be used for other tasks—for
instance, we also experimented with an analogous system that uses features based on discovered structure to
guide a collaborative recommendation system [8].

5 Discovering complex structure for indirect use

Using structure indirectly (rather than directly) avoids many of the problems associated with discovering (rather
than learning) structure. Meaningless structures can be filtered out by the statistical learning system—which
is, after all, designed to handle irrelevant and noisy features. Importantly, structures can be used even if their
precise semantics are unknown—meaningful structures can be exploited whenever they are correlated with the
class to be predicted. In the settings described above, discovery algorithms that consider only a few types of
structures are also less problematic; in principle, one need only run the discovery algorithm on more web pages
to compensate for limited coverage.

For other applications, however, algorithms that can only discover simple structures from a limited class are
much less useful. Consider the task of learning to identify executive biography pages (like the one shown in
Figure 1) on company sites. One approach would be to train a classifier that uses as features the words in the
page. Such a classifier might be trained by labeling pages from a number of representative company web sites,
and then used to identify executive biography pages on new sites, such as the one of Figure 1.

This approach, however, ignores possibly useful structural information. For instance, on the web site for
Figure 1, it might be that the executive biography pages areexactlythose pages linked to by the anchors in
the second column: in other words, the site might contain a structure that accurately identifies the target pages.
Unfortunately, this structure cannot be used as a feature of the classifier, since it does not appear in the training
data at all (recall the training data is taken from other web sites); it can only be used if it is somehow discovered
“on the fly” when the pages on this site are encountered by the classifier.

Notice that in this setting, a algorithm that discovers only simple structures is of limited use: since only a
few structures on a site will be informative, it is essential to be able to find all of them. This suggests adapting
wrapper-learning machinery for finding complex structures to this task. In previous work [7], we proposed the
following method for processing a web site.
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First, all pages on a site are classified using a word-based classifier, and all anchors that point to an “executive
biography” page are marked as positive. These markings are shown in Figure 1 with “’+” signs, and some errors
are likely to be made. In the figure, the link to “Customers” is mistakenly marked positive, and the link to “Boris
Badinov” is mistakenly unmarked.

Next, all sets of at mostk nearby positive anchors are generated, fork = 1, 2, 3, and each such set is passed
as input to each of the builders of WL2. This produces a large number of structuresD: some simple structures,
produced from a single positive examples, and some more complex ones, produced from two or three nearby
examples. Each discovered structureD is then used to generate new a featurefD, which is true for all pages
pointed to by some anchor in structureD. Finally, a new classifier is learned for this site, using the predictions
provided by the original word-based classifier as labels, and using the new structure-based features to represent
a page. The overall effect of this process is to smooth the predictions made by the word-based classifier toward
sets of pages that are easily described by structures on the site. In our experiments, this smoothing process
decreased the error rate of the original word-based page classifier by a factor of about half, on average.

In previous work, a number of other researchers have used hyperlink structure (hubs) to improve page
classifiers [10, 17, 27] in a similar manner. Bleiet al [1] also used the same structure-discovery algorithms
in conjunction with a more complex probabilistic scheme for combining structural features with word-based
predictions, and achieved a significant reduction in error rate on entity extraction tasks.

6 Conclusion

‘
Techniques that automatically learn and discover web-page structure are important for efforts to “under-

stand” web pages. Techniques for learning web page structure are crucial for wrapper-learning, an important
and active research area. They can also be beneficial for tasks as diverse: as classification of entities mentioned
on the web; collaborative filtering for music; web page classification, and entity extraction from web pages.
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