Information Leaks and Suggestions:
A Case Study using Mozilla Thunderbird

Vitor R. Carvalho
Microsoft Live Labs
One Microsoft Way
Redmond, WA 98052
vitor@microsoft.com

ABSTRACT

People often make serious mistakes when addressing email
messages. One type of costly mistake is an “email leak”, i.e.,
accidentally sending a message to an unintended recipient
— a widespread problem that can severely harm individuals
and corporations. Another type of addressing error is for-
getting to add an intended collaborator as recipient, a likely
source of costly misunderstandings and communication de-
lays in large corporations.

To address these problems, various data mining tech-
niques have been proposed recently [3, 4]. In this paper
we describe the deployment of some of these techniques in
a popular email client (Mozilla Thunderbird), and report
how users responded to such data mining techniques in
their everyday lives. In spite of interface, privacy and speed
constraints, results were fairly positive. More than 15% of
the users reported that the client prevented real cases of
email leaks, and more than 47% of them accepted recom-
mendations provided by the data mining techniques. We
then conclude by presenting a few lessons learned from this
deployment, and discussing costs and benefits of making
these techniques permanent additions to email clients.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms
Delphi theory

Keywords
Privacy leaks, System deployment

1. INTRODUCTION

The network of contacts maintained via email has been
growing steadily over the years. Until relatively recently,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CEAS 2009 - Sixth Conference on Email and Anti-Spam July 16-17, 2009,
Mountain View, California USA

Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Ramnath Balasubramanyan

William W. Cohen
Language Technologies Institute
Carnegie Mellon University
{rbalasub,wcohen}@cs.cmu.edu

email was used primarily for work-related contacts by most
people. Now email is used as the primary contact point
in many overlapping social circles, including friends, col-
leagues, neighbors, relatives, as well as social circles associ-
ated with various on-line communities. Moreover, the num-
ber of people with multiple email addresses (e.g. separate
work and personal emails) has grown. All of these changes
make it harder for users to choose the right address to send
a message they have composed.

A critical issue related to message addressing is how to
prevent email information leaks, i.e., when a message is ac-
cidentally addressed to non-desired recipients. Email leaks
are an increasingly common problem that can severely harm
individuals and corporations — for instance, a single email
leak can potentially cause expensive law suits, brand rep-
utation damage, negotiation setbacks and severe financial
losses. Email leaks can be caused by typos, as well as by the
aggressive email address auto-completion in some clients,
people with similar first and/or last names, accidentally hit-
ting the reply-all button, to name a few reasons. FEven
though it is not easy to estimate the amount of loss caused
by information leaks, such incidents should be avoided at all
costs.

Another important email-related problem is forgetting to
add an important collaborator or manager as a message re-
cipient (e.g., “Sorry, I forgot to CC you”), which can poten-
tially cause costly misunderstandings, communication delays
and missed opportunities. One possible way to prevent this
problem is by means of recipient recommendation, i.e., in-
telligently recommending email addresses that are potential
recipients for a message under composition given its current
contents, its previously specified recipients or a few initial
letters of the intended recipient contact. Recommending or
suggesting recipients can be a valuable addition to email
clients, particularly in large corporations, where negotia-
tions are frequently handled via email and the cost of errors
in task management is high.

To address these problems, different machine learning and
information retrieval techniques have been advocated in re-
cent literature [3, 4]. Using language patterns extracted
from previous email exchange, these techniques create pre-
diction models able to help prevent email leaks, as well as
to perform recipient recommendation for messages under
composition. That is, for a message being composed, these
models predict which email addresses should not have been
included as recipient (i.e., addresses accidentally included)
and also which other email addresses should be included.
The intuition behind these models is that different recipients

are typically addressed using different word distributions (or
topics).

Although the proposed techniques showed promising re-
sults in static experiments on very large email collections
[3, 4], many questions are still unanswered. How can these
methods be incorporated in an integrated interface? Are the
proposed techniques accurate enough to be used in current
email clients? Can users notice any difference in quality be-
tween the different recommendation algorithms? Can these
methods really catch real email leaks? Can we estimate how
often email leaks occur? Can these techniques be adopted
and benefit a large number of email users?

To address these questions, we built an extension — Cut
Once — that adds intelligent recipient recommendation and
email leak detection capabilities to Mozilla Thunderbird!, a
popular open source email client. All aspects of the usage of
the extension are logged and periodically emailed (if express
permission is given by the user) to us, thus allowing us to
study the impact of the algorithms on users who use email
as a part of their day to day activities.

Based on Cut Once, we designed and evaluated a 4-week
long user study that led to very positive results. More than
15% of the human subjects reported that Cut Once pre-
vented real email leaks, and more than 47% of them utilized
the provided recipient recommendations. It left an over-
all positive impression in the large majority of the users,
and it was even able to change the way three of the sub-
jects compose emails — instead of the usual address-then-
compose, some users started relying on Cut Once to per-
form a compose-then-address procedure. More than 80%
of the subjects would permanently use Cut Once in their
email clients in case a few interface/optimization changes
are implemented. Overall, the study showed that both leak
prediction and recipient recommendation are welcome addi-
tions and can be potentially adopted by a very large number
of email users.

2. CUT ONCE: A MOZILLA THUNDER-
BIRD EXTENSION

Selecting an email client in which these data mining tech-
niques could be implemented depended on several factors
such as the popularity of email client, whether or not the
client is open source, operating system interoperability, the
ease with which it could be modified to incorporate new fea-
tures, and how easily these modifications can be distributed
to users. The options considered were Mozilla Thunderbird,
GMail, or a new standalone email client which we would
have to develop from scratch.

Developing a new email client had the disadvantage that
it would take a long time for it to be used widely, if at all.
Moreover, considerable effort would have to be put into en-
gineering efforts which were peripheral to the issue at hand.
GMail has the advantage of being widely used especially in
the academic community, however the APT offered by GMail
was inadequate for our needs. Mozilla Thunderbird, on the
other hand, is very popular?, has a well established mecha-
nism to add extensions, and is open source, which makes it
an excellent platform to incorporate new features.

Cut Once is a new extension to Mozilla Thunderbird that

! Available at http://www.mozilla.com/thunderbird
2Tt is estimated that Mozilla Thunderbird has between 5 and
10 million active users.

implements methods to perform recipient recommendation
as well as email leak prediction. The extension was primar-
ily written in Javascript, and the user interfaces are specified
using a Mozilla specific XML-based file format called XUL.
Similar to all other Thunderbird extensions, Cut Once is
distributed as an .zpi package, which can be easily installed
in any Mozilla Thunderbird client using Thunderbird’s Ex-
tension Manager. A screenshot of Thunderbird’s main win-
dow after installating Cut Once is displayed in Figure 1.
Currently Cut Once can be downloaded from its website:
http://www.cs.cmu.edu/ vitor/cutonce/cutOnce.html.

2.1 Recommendation Algorithms

In this section we describe the algorithms and baseline
models used for the proposed tasks. In all cases, we adopted
the following terminology. The symbol ca refers to candidate
email address and t refers to terms in documents or queries.
A document doc refers to documents in the training set, i.e.,
email messages previously sent by the user. A query g refers
to an email message under composition. Both documents
and queries are modeled as distributions over (lowercased)
terms found in the “body” and “subject” of the associated
email messages.

We also define other useful functions. The number of
times a term t occurs in a query g or a document doc is,
respectively, n(t,q) or n(t,doc). The recipient function
Recip(doc) returns the set of all recipients of message doc.
The association function a(doc,ca) returns 1 if and only if
ca is one of the recipients (TO, CC or BCC) of message
doc, otherwise it returns zero. D(ca) is defined as the
set of training documents in which ca is a recipient, i.e,
D(ca) = {doc|a(doc, ca) = 1}.

2.1.1 TFIDF Classifier

The email recommendation task can naturally be framed
as a multi-class classification problem, with each candidate
email ca representing a class ranked by some notion of classi-
fication confidence. The first baseline method implemented
in Cut Once was based on the TFIDF Rocchio algorithm
[6, 9]. Essentially, each email address in the address book is
represented by a TFIDF centroid vector. This vector is cal-
culated based on the word counts from messages found in the
Sent folder. When a new message is composed, the TFIDF
vector representation® of the new message is compared with
the stored TFIDF centroid vectors, thus producing a final
ranking based on language similarity.

Specifically, for each candidate, a centroid vector-based
representation is created:

LS tridf(doc) (1)

centroid(ca):wd 2
oc ca

where tfidf(doc) is the TFIDF vector representation.
The final ranking score for each candidate ca is produced
by computing the cosine similarity between the centroid
vector and the TFIDF representation of the query, i.e.,

score(ca, q) = cos <1Efidﬂf(q)7 centr;id(ca)>.

3For each term t in document doc, the value tfidf(t) =

log(n(t, doc) + 1)109(%), where DF'(t) is the docu-

ment frequency of t.

Sent Mail for vitor@cs.cmu.edu - Thunderbird

Fle Edit View Go Message Thols Help
*

= I &

Get Mail ™ wite Address Book TN ol Temhack
Al Foiders o x| subject |4 | Recipient | | Date -|=
- Gmail i Tie: Fallow ap fram Lve Labs "Leshe Cometo’ D3D6/2008 0355 AM |-

Inbox (2] fie: Hilead Hotel Intemet Booking - GNWS - 150426/3453/1455... - Hithead 03/06/2008 10:07 AM

- Drafts cutOnce Web page “Framnath Balasubramaryan®, "Willam W.C.. -+ 03052008 03:53 PM
sent Re: yahoo question *Pinar Donmez" 03/06/2008 07:37 PM
7 Tash Re: Are you still around? “fargbo Miao" - 03/06/2008 08:08 PM
“william W, Coher® 03/D6/2008 08:15 PM

cutnce nomeeting next Thursday

fe: EMAIL-2008: Wiorkshop on Enhanced Messaging

m Fusd: EMAIL-2008: Workshop on Enhanced Messaging
Al Mail Re: yahoo question
Drafts Re: cut@nce Web page
senLTEST L] Fwd: thesis template
Spam
Starred
Trash . 1
jobs Welcome to Thunderbird!

_______ ‘wven sasler o organize, securs and cuslamize your mall.

Mozllla's Thunderbird amall application is more powerful than ever. It's now

*robert kraut”
Tessa Lau", “Mark Dredze
Pinar Donmez

03/06/2008 08:21 PM
- 03/06/2008 09:51 PM
03/06/2008 11:25 P4
William Cohen 11:15 AM
“jaedy kim* 01:48 PM

A

Figure 1: Thunderbird main window after installing Cut Once

2.1.2 K-Nearest Neighbors

We also adapted another multi-class classification algo-
rithm, K-Nearest Neighbors as described by Yang & Liu [12],
to these email ranking tasks. Given a query ¢, the algorithm
finds N(q), i.e., the K most similar messages (or neighbors)
in the training set. The notion of similarity here is also
defined as the cosine distance between the TF-IDF query

vector ¢ fidf (q) and the TFIDF document vector ¢ fidf (doc).
The final ranking is computed as the weighted sum of the
query-document similarities (in which ca was a recipient):

score(ca,q) = Z a(doc, ca) cos (tfid?(q)ifidf(doc))
doceN(q)
(2)

Despite the very good results from preliminary experiments
[4], the memory and computational demands of this algo-
rithm could not be afforded by most user clients.

2.1.3 Frequency and Recency-based Recommenda-
tion

In addition to language-based counts, frequency and re-
cency information can be used as baselines for email pre-
diction tasks. The intuition behind it is that users tend to
write more messages to people who have been recently or
frequently addressed. The frequency method ranks candi-
dates according to the number of messages in the training
set in which they were a recipient. Likewise, the recency
method ranks candidates in a similar way, but attributes
more weight to recent messages according to the same ex-
ponential decay function.

The Frequency method ranks candidates according to the
number of messages in the training set in which they were
a recipient: in other words, for any query ¢ the Frequency
model will present the following ranking of candidates:

Frequency(ca) = Z a(doc, ca) (3)

doc

Compared to Frequency, the Recency model ranks candi-
dates in a similar way, but attributes more weight to recent
messages according to an exponential decay function. In
other words, for any query ¢ the Recency model will present
the following ranking:

—timeRank(doc)
Recency(ca) = Z a(ca, doc)e(B)

doc

(4)

where timeRank(doc) is the rank of doc in a chronologically

sorted list of messages in sent_train (the most recent message
will have rank 1).

2.1.4 Aggregating Baseline Methods with Data Fu-
sion

The ranks obtained by the recency, frequency and TFIDF
methods can be combined using data fusion techniques based
on the Mean Reciprocal Ranks (MRR) of the baseline rank-
ings [5, 8]. Previous work using the Enron email corpus
[4] showed that using MRR to combine different baselines
can provide better performance than one single baseline in
isolation.

In Cut Once we implemented an MRR-based ranking
method combining the TFIDF, Frequency and Recency
baselines described above. The MRR combination score
can be expressed as: MRR(ca) =

o
recency_rank(ca) +

frequencf,rank(ca) + tfidf,rz,nk(ca)' That 157 the final aggre-
gated ranking score of a email recipient candidate ca is a
function of the ranking of the same recipient obtained by
the base methods (TFIDF, frequency and recency). Based
on preliminary experiments from a previous reference [4],
we set v to 2.0 by default and the decay coefficient § in
the Recency baseline to 100 (thus emphasizing the last 100
messages sent).

2.1.5 Random Selection of Baseline Algorithm

One of the main questions we would like to answer is
whether the differences in overall ranking performance be-
tween the baseline recommendation methods are actually
noticeable to email users. To investigate this, we designed
Cut Once with a controlled variable affecting the ranking
method used by a particular user. That is, the extension
uses the TFIDF baseline for roughly half the users (chosen
randomly at installation time), and the MRR baseline for
the other half of the users.

From an implementation perspective, the same algorithm
can be applied to both leak prediction and recipient rec-
ommendation. For leak prediction, the algorithm ranks the
already specified recipient’s addresses (in the TO, CC or
BCC fields), where the least likely one is the one presented
as the most likely leak. For the recipient recommendation,
all addresses in the user’s address book are ranked, and the
top ones are presented to the user as a ranked list.

2.2 Training

Because the algorithms were implemented in Javascript,
scalability and computation time are significant factors. The

memory available to the extension was also limited since
computation occurs on client machines. Keeping this in
mind, steps were taken to keep the training time in check to
limit the impact on user experience.

Firstly, all words with a document frequency lower than a
fixed threshold (set at 5) were eliminated from the TFIDF
representation. Secondly, centroids for recipients to whom
the number of messages sent was below a threshold (set at
5), were not calculated. After the model is trained, the pa-
rameter values are stored in a file on the user’s computer.
When the client is restarted, this model file is read thus pre-
venting the need to retrain the system each time the client
is started. The model file created by the training process
stores the centroid vectors, the document frequencies and
the recency/frequency ranks.

From the user’s perspective, training is achieved by click-
ing on a “Sent” folder and hitting the “Train” button on
Thunderbird’s toolbar. The time taken for training depends
on the number of messages in the sent folder, the speed of
the processor, among other factors. A rough estimate is 150
messages per minute. A weekly reminder encourages users
to retrain on a regular basis.

2.3 Prediction

After training is completed, Cut Once is ready to make
predictions. The runtime predictions are triggered when the
user hits the “Send” button for a message under composition.
In this case, a dialog box pops up (see Figure 2), highlight-
ing possible email leaks, and also listing other recommended
recipients for the particular message just composed. Click-
ing on any of the predicted leak addresses will remove the
address from the recipient list of the original message. Anal-
ogously, clicking on a recommended address will automat-
ically add this address to the message recipient list. This
dialog box has a countdown timer that sends the message
after 10 seconds if the user does not take any action — thus
ensuring that no additional action is needed to send a mes-
sage. A screenshot of this dialog box can be seen in Figure
2.

2.4 Logging

CutOnce logs information about many aspects of the ex-
tension usage. This includes information such as the rank
of an address that the user clicks on, the time taken by the
user to click on that address, and the rank and prediction
score of the address clicked by the user. The complete list
of attributes logged by Cut Once are shown in Table 1.

1 whether the use used the explicit Send button
or let the timer expire

whether the user deleted a recipient (possibly
due to a potential leak)

3 rank of the deleted recipient in the leak list

4 | confidence score of the recipient deleted

5 time elapsed before the recipient was deleted
6 rank of the added recipient in the recommendation
7

8

9

[\

list

time elapsed before recipient was added
confidence score of recipient added

number of messages in the user’s Sent folder

10 | number of recipients addressed in the Sent folder
11 | Cut Once software version

12 | baseline ranking method (TFIDF or MRR)

Table 1: Set of attributes logged by Cut Once

Every week the user is reminded to send the logged infor-
mation via email to the user study researchers. If the user
acquiesces, a new email compose window is opened up with
the log information prefilled in the content section. The
logging message does not contain any personal or private
information from the user (such as email content or recip-
ients), nor from any of the user’s contacts. Users are also
encouraged to send in comments in a designated area in this
email.

In addition to the weekly reminders, at any time the user
can also send this logging message by clicking on the “Mail
Statistics” button (Einstein button) of the main Thunder-
bird window (see Figure 1).

3. EXPERIMENTS

Several users were recruited using web forums and news-
groups messages for a four-week long user study. These par-
ticipants were told that the goal was to study how to improve
the way people address email messages based on intelligent
addressing techniques [3, 4]. Participants were required to
be Thunderbird users, to write email using Thunderbird on
a daily basis, and to be at least 18 years-old. The recruit-
ment message also indicated that the task would be simple,
with minimum or no interruptions at all.

After contacting the study researchers indicating their in-
terest, participants were instructed on how to install and
train Cut Once. After successfully installing and training
the extension using the procedures described at Cut Once’s
website?, participants received a message explaining exactly
what Cut Once could do. They were also instructed to keep
on using Thunderbird as usual, and that in one week Thun-
derbird would request them to send an initial logging mes-
sage to the user study researchers.

After this logging message was received and analyzed,
qualified participants were partially compensated (20% of
total compensation) and invited to participate in the sec-
ond phase of this user study. Qualification was based on
frequency of email use during this first week, number of
addresses in the Sent folder, and the number of message
previously sent using Thunderbird. The main purpose of
this procedure was to avoid selecting users who rarely used
Thunderbird, or users who used Thunderbird to email a few
people only — for obvious reasons, these cases would not
add value to our experiments.

In the second phase of the study, participants were com-
pensated with the remaining 80% of the total compensation
after three more weeks using Cut Once®. They also had to
complete an initial questionnaire with general questions, as
well as a final questionnaire exclusively about Cut Once.
The final questionnaire was about the general Cut Once
experience, quality of predictions, interface issues, and us-
ability, as well as suggestions for improvement. Results are
reported below.

4. RESULTS
4.1 Adoption

‘http://www.cs.cmu.edu/ vitor/cutonce/cutOnce.html.
5Due to scheduling conflicts to arrange the final question-
naire interview, many participants ended up using Cut Once
for more than than 3 weeks.

Cut Once Recipient prediction and Leak detection

Information Leak Scores
Possible Leaks
<dfelinto@caltech.edu> Daniel Felinto

(x)
€) <ramesh.nallapati@gmai. com> Ramesh Nallapati
© <weohen@cs.cmu.edu> Wiliam W. Cohen

Suggested additional Recipients
Recipient
<rbalasub@cs.cmu.edu> Ramnath Balasubramanyan
<sarahjcarvalho@gmail.com> sarah jameson carvalho
<hyifen@cs.cmu.edu> Yifen Huang
<rbalasub@andrew.cmu.edu> Ramnath Balasubramanyan
<einat@cs.cmu,edu’> einat
<maheshj+@cs.cmu.edu> Mahesh Joshi
<jelsas+@cs.cmu.edu> Jonathan Elsas
<eairoldi+@cs.cmu.edu> Edo Airoldi
<sarah_jameson_email@yahoo.com> Sarah Jameson Carvalho
<vitordecarvalho@gmail.com> Vitor Carvalho
<sahong@cs.cmu.edu’> Sue Ann Hong

Cancel

s Email Leaks
0676
e (click to remove)

25

Suggestions
(click to add)

Score
2.261 Al
1.375 |
1.038
0.736
0.731
0.519
0.518
0.423
0.393
0.385
0.357 3

Figure 2: The information leak predictions (top part) and recipient suggestions (bottom part) dialog window
displayed after the user clicks on the Send button. Clicking on any of the displayed email addresses will
either remove (leaks) or add (suggestions) it from/to the message recipient list.

A total number of 26 participants completed the study: 4
female and 22 male. Ages ranged from 18 to 49 years-old,
with an average of 31.7 and median of 28.5 years. From
the 26 subjects, 13 were graduate students, mostly from
Carnegie Mellon University or from the University of Pitts-
burgh. Other reported occupations were software engineers,
system administrators, undergraduate students, one staff
member and one faculty.

Subjects used Thunderbird on a daily basis, composing
messages largely in English. During the user study, sub-
jects composed 2315 messages using Mozilla Thunderbird,
with an average of 11 messages sent per week. According
to statistics collected from Sent directories, on average, sub-
jects had written 2399 messages to 113 different recipients
before the beginning of the user study. An average of 2.4
devices (computer, cell phone, etc.) per person were used to
compose emails.

Another 17 users started but did not finish the study.
They installed and successfully trained Cut Once, sent out
at least one logging message, but stopped sending these mes-
sages not long after that. Either these users did not qualify
to the second phase of the study, or voluntarily stopped
sending logging messages.

In addition to these, 11 users showed initial interest and
contacted the researchers, but were never able to send a
single logging message. In these cases it is hard to know
exactly the reasons for the discontinuation. Perhaps these
users found Cut Once uninteresting or annoying after instal-
lation, or became unmotivated by the low compensation and
lengthy nature of the study. We speculate that one of the
main reasons is the slow training process.

Installation of Cut Once was smooth for all participants,
but training frequently was not. Many users complained
that training took too long or got “stuck” in a few messages.
It was indeed a problem — Javascript is a slow interpreted
language, not suited to large amounts of textual data pro-

cessing. As expected, this issue affected more severely users
with large number of messages, or users having a few very
large messages.

Mozilla provides a portal for developers and practitioners
of their open source softwares. We submitted Cut Once to
Mozilla Thunderbird Sandbox, and it is currently available
at https://addons.mozilla.org/en-US/thunderbird/
statistics/addon/6392. According to their statistics,
there has been 116 downloads of Cut Once from their site
so far. Mozilla may have helped advertise the extension and
the associated user study.

4.2 Usage and Predictions

As previously explained, Cut Once provided an interface
in which the predicted email leaks could be automatically re-
moved from the addressee list with a click. Eighteen out of
the 26 subjects used it at least once. Overall, these 18 sub-
jects used the leak deletion functionality in approximately
2.75% of their sent messages.

The final interviews revealed two main reasons why sub-
jects utilized the leak deletion interface. First, some subjects
clicked on these suggested leaks to play with the extension,
particularly right after installation and training. Other sub-
jects, as revealed in their final interviews, utilized the leak
deletion button to “clean up” the addressee list — to remove
unwanted people after hitting the reply-all button, or to re-
move themselves as recipients (some clients are configured
to automatically include the sender as a CC’ed recipient).

Unfortunately, none of the subjects reported using the
delete leak functionality to actually remove a real case of
email leak. However, it does not mean that they did not
occur among the 2315 messages sent throughout the user
study. In fact, four different subjects reported that Cut
Once correctly caught real email leaks. After noticing the
mistake, all four subjects rushed to click on the cancel but-
ton, immediately closing Cut Once’s dialog window and con-

sequently not reporting the real leak case in next logging
message. Instead of deleting the leaks using Cut Once’s in-
terface, the reasons why these users canceled the dialog win-
dow were because subjects were uncomfortable or unfamiliar
with the interface features, or because subjects were feeling
under pressure due to 10-second timer, or a combination of
both.

The first of these subjects was a network administrator,
who addresses several users everyday by their aliases (user
IDs). He reported that he confused two students with very
similar alias, and Cut Once alerted him to the mistake. A
similar case happened to a systems administrator, who fre-
quently uses auto-completion to select recipients. He re-
ported that in two or three different messages, one of the ad-
dresses selected by auto-completion was wrong, and that Cut
Once correctly warned him of the potential email leak. An
undergraduate student reported that he confused the email
addresses of two acquaintances with very similar names, and
Cut Once helped prevent that email leak. A graduate stu-
dent reported that he used the reply-all button when he
should not have, and Cut Once caught one of the unintended
addresses as a leak.

Since one of the subjects reported Cut Once catching leaks
in “6wo or three” different messages, henceforth we assume
that five leaks were caught by the extension during the user
study. This is a likely lower bound on the real number of
leaks for that population, given that in some cases users
do not even realize their addressing mistakes. Three out of
these five real leaks came from subjects using the TFIDF
baseline ranking method, and the remaining two leaks had
subjects using the MRR baseline. Data from these four sub-
jects did not reveal any strong correlation with the number
of sent messages, nor with the number of observed leak dele-
tions using Cut Once. Likewise, no correlation was observed
with the number of entries in the subject’s address book.

Overall there were five real email leaks in 2315 sent mes-
sages. A sample average of approximately 0.00215982 email
leaks per sent message, or one email leak occurrence per 463
sent messages. Assuming email leak occurrences follow a
binomial distribution with probability of success p = ﬁ,
it would be necessary at least 321 messages for having a
50% chance to experience at least one email leak, and 1066
messages for a 90% chance.

Three out of the five leaks caught by Cut Once came from
subjects whose occupations require a lot of email message
handling (a systems administrator and a network adminis-
trator), even though only 5 out of the 26 subjects had pro-
fessions demanding substantial email handling. A binomial
test on this data indicates that, with approximately 95%
confidence, users whose professions require lots of message
handling have a higher probability of generating leaks than
other professions. Indeed, this agrees with subject’s final
questionnaire answers, where it was reported that the most
likely users to benefit from the functionalities provided by
Cut Once are persons who work with many different people,
send a lot of messages or manage several different projects
(e.g., secretaries, administrators, executives).

The other functionality provided by Cut Once was recip-
ient recommendation. With a click on the suggested ad-
dresses, users could add recipients to messages under com-
position. A total of seventeen of the subjects used the func-
tionality at least once. Overall, these 17 subjects utilized
the email suggestions functionality in approximately 5.28%

of their sent messages.

Considering all subjects in the study, there were 95 ac-
cepted suggestions in 2315 sent messages. A sample aver-
age of approximately 0.041036 accepted suggestions per sent
message, or one accepted suggestion occurrence per 24.37
sent messages. There are a few reasons behind these low
numbers. Some users did not seem interested in the func-
tionality, others claimed that they simply “did not need it”,
while others did not even know that recipients could be
added by clicking on the suggested email addresses. An-
other issue was the fact that the pop-up window with rec-
ommendations was triggered on all sent messages, regard-
less whether it was a new composition or a reply, and many
subjects claimed that the proposed functionalities were not
necessary in case of replies, particularly to a single recipient
only®. Another consequence of triggering predictions on all
sent messages is that the leak detection false positive rate
(or false alarm rate) was high: 2%5=5 = 0.99784.

Ideally Cut Once should only provide predictions if mod-
els are reasonably confident of a leak or a missing recipient.
However, learning a user-based confidence threshold can be
challenging, particularly for users with a small number of
messages. Also, if it adopted a fixed arbitrary threshold,
not all real leaks would be displayed to the user, potentially
causing the number of reported leaks (a very rare event) to
be even lower. Because of these issues, we left the imple-
mentation of confidence-based triggered predictions as fu-
ture work.

Cut Once presented recipient recommendations in a scrol-
lable window that could fit up to 9 addresses in a ranked list.
The distribution of the ranks of the accepted recommenda-
tions (or clicked ranks) can be found in Figure 3. Figure
Figure 3(a) shows the data in a histogram, Figure 3(b) dis-
plays the same data in a boxplot. The median clicked rank
was 2, and first and third quartiles were, respectively, 1 and
7. This plot indicates that users typically clicked on the
first 7 recommended addresses, and only rarely had to scroll
down to higher positions of the ranked list.

The boxplots in Figure 4 show distributions of likert scores
from the answers to the many questions in the final question-
naire. Final questionnaire’s results were reported in such a
way that higher scores corresponded to more positive an-
swers. The usual likert scale used was 5(excellent), 4(good),
3(neutral), 2(bad) and 1(very bad).

As previously explained, Figure 3 can be seen as an in-
dication of the reasonably good quality of Cut Once’s sug-
gestions. In fact, one of the questions in the final question-
naire was exactly about the quality of the suggested rank
(“In your opinion, what was the quality of the suggested
rank?”). The reported mean of this distribution was 3.46.
The other likert questions were about the interface of Cut
Once, how annoying the extension was, how helpful the ex-
tension was, how often the user used the suggestions, the
overall experience of the user, and the user’s general im-
pression of Cut Once. All questions were supposed to be
answered in a likert scale, although some subjects insisted
in providing non-integer scores. Higher values reflect better
impressions of Cut Once for all questions.

Overall, subjects were not annoyed by Cut Once interrup-
tions — mean value was 4.18, between “never” and “rarely”
annoying, and all reported scores were positive. Figure 4 also

SUnfortunately Cut Once could not distinguish between a
reply and a compose action.

Clicked Ranks

40
g 30
c
S 20
[0
L 10
=Y
0 [T T T 1
0 10 20 30 40
Rank
(a)

}|]:|» 77777 1 oo o o

0 10 20 30 40

Rank

(b)

Figure 3: (a) Histogram with ranks of the recom-
mendations clicked by the users. (b) The same data
in a boxplot: median of distribution is 2.00, first
quartile is 1.00 and 3rd quartile is 7.00. Whiskers
mark the most extreme data point within a distance
of 1.5 of the Interquartile range. Empty points in-
dicate outliers.

indicates that Cut Once’s interface was also well received,
with mean value of 3.63 and median of 4.

Responses to question “How often did you use the sugges-
tions”, were largely negative, with a median of 2 and mean
of 1.75 (between “never” and “rarely”). This reflects the fact
that most of the time users were replying to messages, and
not composing new messages. As previously noted, users
accepted Cut Once’s suggestions in approximately 6.17% of
their sent messages. This fact is also linked to slightly neg-
ative responses on the question “Were the suggestions help-
ful?”), with median of 3 and mean 2.5 (between “kind of”
and “marginally” helpful). The overall impression of the ex-
tension was positive — with median value of 4 and mean
value of 3.6 (between “good” and “neutral”). A slightly pos-
itive judgment was seen on the overall experience using the
extension — with a mean value of 3.36 and median of 3
(between “good” and “neutral”).

Results from the binary questions in the final question-
naire are summarized in Table 2. The 15.38% affirmative
answers to question 3 are exactly the four cases of success-
ful leak detection described above. Three subjects reported
changing the way they compose emails, as in question 8 of
the questionnaire. They reported sometimes performing a
compose-then-address procedure to send messages (i.e., writ-
ing the text of the message first, and then selecting recip-
ients), instead of the traditional address-then-compose. In

Interface —| b------- :I ***** i
Annoying
Suggestions | (A :I 7777777 1
Helpful
Rank Quality — I D: ******* 1
How often use | l:l ,,,,,,,]
suggestions?
e I
experience
o | SR
impression

Figure 4: Distributions of likert scores (1 to 5) given
as answers to the “yes or no” questions in the final
user study questionnaire (higher=better)

other words, these subjects became used to the the extension
to a point that they were often relying on Cut Once to sug-
gest the right recipients for the message they just composed.
In fact, because clicking is faster than using auto-completion
or typing complete addresses, users reported that this pro-
cedure was typically faster than the usual compose-then-
address.

Also supporting the overall positive impression of the ex-
tension, question 11 revealed that 50% of the subjects would
recommend Cut Once to their friends. The second part of
question 11 was “who do you think would consider this ex-
tension helpful?”. The most frequent answers were: peo-
ple who work with many different persons, people who send
a lot of messages or people who manage several different
projects. Typical examples were secretaries, managers, ex-
ecutives and lawyers. Subjects also stressed that Cut Once
should be much more helpful in the workplace than in han-
dling personal messages.

Question 9 of final questionnaire asked if subjects would
continue using the extension after the user study. Approx-
imately 42% of them responded affirmatively. After this
question, subjects were asked about problems, annoyances,
software bugs, and how Cut Once could be improved. A
summary with the most frequent limitations reported by
the user subjects can be seen in Table 3.

After collecting user’s complaints and ideas for improve-
ment, Question 14 then asked “if your suggestions and ideas
were implemented, would you consider using Cut Once per-
manently?”. More than 80% of the subjects reported that
they would — a clear indication that recipient prediction
and leak detection were considered welcome additions to the
subject’s email clients, in spite of Cut Once’s limitations.

4.3 Baseline Comparison

Previously we described Cut Once as having a mechanism
to randomly assign a different ranking baseline (either MRR,

Affirmative
response

Question

Q.3) “Did Cut Once catch any leak?” 15.38% (4 users)

Q.8) “Did Cut Once change the way
you compose emails?’

11.53% (3 users)

Q.9) “Would you keep on using 42.30% (11 users)

Cut Once after this study?”

Q.11) “Would you recommend
Cut Once to your friends?”

50.00% (13 users)

Q.14) “If your suggestions and ideas
were implemented, would you consider
using Cut Once permanently?”

80.77% (21 users)

Table 2: Percentage of the 26 subjects giving affir-
mative answers on four questions of final question-
naire.

Slow training procedure

It needs incremental training (instead of batch training)
The reminder to retrain every week was annoying
Cannot use (train) multiple email accounts

Dialog box pops up even when message is being replied
It should prompt a leak only if highly confident

Place suggestions on the side, not in a separate pop-up
It needs more configuration parameters

Timer countdown made people nervous. Remove it.
Unclear indications of what happens when we click
Confusing confidence scores

Table 3: Frequent issues and complaints about Cut
Once reported by the subjects. Most frequent one
are placed on the top.

or TFIDF) to different users. From the 26 subjects, sixteen
were assigned TFIDF ranking, while the remaining ten used
MRR-based ranking.

Table 4 compares results from these two populations. Av-
erage values and standard variations of several metrics are
compared, and larger values are indicated in bold. The first
three variables were extracted from the logging messages:
the user-averaged number of clicked address suggestion per
sent message, the user averaged number of removed leaks
per message, and the average rank clicked by the user. The
other variables in Table 4 were extracted from the final ques-
tionnaire.

A non-paired t-test applied to these populations indi-
cated that none of the metric differences observed in Table
4 are statistically significant. The same observation was
confirmed by a non-parametric Mann-Whitney U Test, as
well as by a Heckman Sample Selection test, indicating that
there was no perceived difference between the two baseline
ranking methods.

A closer look in the ranks of clicked suggestions can be
seen in Figure 5. This figure shows two boxplots with dis-
tributions of the ranks of the suggestions accepted (clicked)
by the study subjects. On the top it shows the distribu-
tion of clicked ranks for subjects having MRR as baseline
method, while in the bottom for subjects having TFIDF as
baseline method. After removing outliers, the average ranks
are 3.69 and 3.147 for, respectively, TFIDF and MRR. Al-
though MRR shows better average ranking than the TFIDF
baseline, the difference is not a statistically significant (p-
value=0.394 in a non-parametric Mann-Whitney U Test).

The observation that these two baseline ranking methods
did not produce statistically significant differences, although

MRR | U]{ o

TFIDF | }D ————— | oo °

Figure 5: Distributions of ranks of clicked sugges-
tions for both baseline methods.

somewhat limited because of the small number of subjects
in the study, was not entirely surprising. There have been
a few studies in the Information Retrieval (IR) literature
also suggesting that users often cannot perceive much dif-
ference in the results provided by ranking systems having
different performance levels. For instance, [11] described a
web search task in which controlled levels of ranking perfor-
mance (Mean Average Precision, or MAP, from 55% to 95%)
were presented to subjects. They found that different MAP
levels had no significant correlation with a precision-based
user performance metric, while there was a weak correlation
with a recall-based user performance metric. More recently,
Scholer et at. [10] investigated how web search clickthrough
data was related to the quality of search results. Their ex-
periments showed that user click behavior did not vary sig-
nificantly for different levels of MAP in displayed results,
although there was a significant variation among different
users.

However, email recommendation and web search are fairly
different tasks, and further investigation will be necessary
to adequately address to which extent traditional IR per-
formance metrics correlate with user evaluation on the pro-
posed email-based tasks. Another interesting question for
future research is how to derive new automated evaluation
metrics that can closely approximate user satisfaction.

5. DISCUSSION AND LESSONS LEARNED

Ideally this study would have benefited from a larger pool
of user subjects, but unfortunately recruiting more people
was not possible due to financial constraints. As previously
explained, many subjects showed initial interest but discon-
tinued using Cut Once in a short period of time. Among the
reasons for this discontinuation, one can list the slow train-
ing process, the relatively small compensation (25 dollars)
for a 4-week long study and the annoyance of the interrup-
tions.

However, in case Cut Once’s functionalities are imple-
mented in a real large-scale email server (such as Gmail
or Hotmail), adoption would be primarily decided by two
factors: the cost of the interruptions versus the benefit of
the provided predictions. In principle, interruption costs

METRIC

Mean St.Dev.
TFIDF | MRR | TFIDF | MRR

Num. Clicked Suggestions per Sent Message

0.089 0.037 | 0.142 0.066

Num. Clicked Leaks per Sent Message

0.033 0.033 | 0.035 0.044

Average Rank Clicked by User (lower=better) | 4.928 4.505 | 5.289 4.587

Overall Impression (1 to 5)

3.468 3.850 | 0.531 0.579

Overall Experience (1 to 5)

3.406 3.350 | 0.612 0.818

How Often Used Suggestions (1 to 5)

1.843 1.600 | 0.569 0.699

Rank Quality (1 to 5)

3.437 3.510 | 0.928 0.966

Suggestions Helpful (1 to 5)

2.437 2.600 | 1.014 1.074

Suggestions Annoying (1 to 5)

4.031 4.430 | 0.784 0.748

Interface (1 to 5)

3.718 3.500 | 0.657 1.054

Table 4: Comparison of different metrics for the two baseline methods (higher = better).

can be lowered with carefully designed interfaces and well-
tuned confidence-based decisions, and prediction models can
be made more accurate as more data is collected. As long
as users perceive the system as having a good cost/benefit,
widespread adoption of these functionalities can be reached.

To help design these functionalities in large systems, be-
low we present a few guidelines based on the results of this
user study and final questionnaires. First, training should
not be noticeable by the user. Also, training should also
be incremental, that is, prediction models should be imme-
diately updated as new messages are sent. Second, leak
detection and recipient recommendation should be indepen-
dent functionalities, potentially with independent models
and interfaces. Third, interfaces should be as unobtrusive
as possible. They should also, if possible, provide leak de-
tection alarms and recipient recommendations in the same
window in which messages are composed. Fourth, inter-
ruptions should be triggered by confidence-based decisions.
Fifth, ideally, predictions should be available anytime dur-
ing the message composition process, and not only after the
user hits the “send” button. Predictions could be provided,
for instance, at the end of each composed sentence. Addi-
tionally, prediction models should account for different user
“send” actions (reply, reply-all or compose). And finally,
users should be allowed to control a few parameters, such
as timer period, number of suggested addresses displayed to
the user, interruption confidence threshold, etc.

6. CONCLUSIONS AND RELATED WORK

In this paper we presented the deployment of data min-
ing algorithms for email leak and suggestion predictions
in Thunderbird, a popular open-source email client. The
project was written in Javascript, thus requiring careful de-
sign decisions to optimize memory and processing resources
on client machines.

We then presented results from a 4-week long study of
this deployment that led to very encouraging results. Cut
Once prevented five real cases of email leaks, and provided
predictions with reasonable rank quality and little user an-
noyance. It was able to change the way three subjects send
email, and left an overall positive impression in the large
majority of the users. More than 80% of the subjects would
permanently use Cut Once in their email clients if a few in-
terface/optimization improvements are implemented. The
most likely users to benefit from these functionalities are
persons who work with many different people, send a lot of
messages or manage several different projects (e.g., secre-
taries, managers, executives). In fact, three out of the five

leaks caught by Cut Once came from subjects whose occu-
pations require a lot of email message handling (a systems
administrator and a network administrator).

Regarding related work, previous researchers [1, 2] de-
scribed a privacy enforcement system in which information
extraction techniques and domain knowledge were combined
to monitor specific privacy breaches via email. They were
particularly concerned with entity breaches in a university
environment, such as student names, student grades or stu-
dent IDs. Although related, this system had a different goal
and can only be applied to the situations in which domain
knowledge is available. The most related reference to Cut
Once’s deployment is Facemail [7], an extension to a webmail
system developed to prevent misdirected email by showing
faces of recipients in a peripheral display while the message
is under composition. Preliminary results from this user
study suggested that showing faces could significantly im-
prove users’ ability to detect misdirected emails with only
a brief glance. In principle, many of the ideas in Facemail
can be combined with the algorithms provided by Cut Once,
potentially leading to a much better leak detection mail sys-
tem.

7['1] NI @Eﬁ!ﬁ%ﬁgih Y. Ma, S. Matwin, N. El-Kadri, and

N. Japkowicz. Peep— an information extraction base approach
for privacy protection in email. In CEAS, 2005.

[2] N. Boufaden, W. Elazmeh, Y. Ma, S. Matwin, N. El-Kadri, and
N. Japkowicz. Privacy enforcement in email project. In Proc.
Of the Privacy, Security and Trust Conference, 2005.

[3] V. R. Carvalho and W. W. Cohen. Preventing information
leaks in email. In SDM, Minneapolis, MN, 2007.

[4] V. R. Carvalho and W. W. Cohen. Ranking users for intelligent
message addressing. In ECIR, 2008.

[5] I. O. Craig Macdonald. Voting for candidates: Adapting data
fusion techniques for an expert search task. In CIKM,
Arlington, USA, 2006.

[6] T. Joachims. A probabilistic analysis of the rocchio algorithm
with TFIDF for text categorization. In Proceedings of the
ICML-97, 1997.

[7] E. Lieberman and R. C. Miller. Facemail: Showing faces of
recipients to prevent misdirected email. In SOUPS, 2007.

[8] P. Ogilvie and J. P. Callan. Combining document
representation for known item search. In ACM SIGIR, 2003.

[9] G. Salton and C. Buckley. Term weighting approaches in
automatic text retrieval. Information Processing and
Management, 24(5):513-523, 1988.

[10] F. Scholer, M. Shokouhi, B. Billerbeck, and A. Turpin. Using
clicks as implicit judgments: Expectations versus observations.
In ECIR, 2008.

[11] A. Turpin and F. Scholer. User performance versus precision
measures for simple search tasks. In SIGIR, 2006.

[12] Y. Yang and X. Liu. A re-examination of text categorization
methods. In 22nd Annual International SIGIR, pages 42-49,
August 1999.

