
Applying Programming by Demonstration in an

Intelligent Authoring Tool for Cognitive Tutors

Noboru Matsuda, William W. Cohen, Kenneth R. Koedinger

School of Computer Science

Carnegie Mellon University

5000 Forbes Ave. Pittsburgh, PA 15213

{mazda, wcohen, koedinger}@cs.cmu.edu

Abstract

We are building an intelligent authoring tool for Cognitive
Tutors, a highly successful form of computer-based tutoring.
The primary target users (the authors) are educators who are
not familiar with cognitive task analysis and AI program-
ming, which are essential tasks in building Cognitive Tutors.
Instead of asking authors to write a cognitive model by hand,
a Simulated Student embedded in the authoring tool lets an
author demonstrate how to perform the tasks in the subject
domain, for instance, solving an algebra equation. The
Simulated Student observes an author’s demonstration and
induces a set of production rules that replicate the demon-
strated performances. Correct production rules, as well as
production rules that are incorrect but similar to those a
human student might produce, can be directly embedded in
the Cognitive Tutor. We give a preliminary evaluation of an
implemented Simulated Students based on inductive logic
programming and path-finding.

Introduction

In the vast majority of practical settings, the “trustwor-
thiness” of a learned hypothesis is evaluated by testing it on
sample data. This sort of “test-based” evaluation is quanti-
tative, can be easily automated, and can be rigorously justi-
fied statistically under certain assumptions, e.g., a station-
ary distribution of problems.

Unfortunately, once these statistical assumptions are re-
laxed, a test-based evaluation is not sufficient to ensure
“trust.” (As a simple example, a mail filter that had good
performance over the last year might fail miserably after
one switches jobs.) In settings in which learned hypotheses
are to be exercised in novel ways, or used to make predic-
tions outside the distribution of original problems, other
schemes must be used to ensure that the output of a learn-
ing system can be “trusted.” The most common of these
other schemes is to manually inspect the syntactic form of
hypothesis output by the learner for correctness. This is
only possible, of course, if this syntactic form is easily
“comprehensible” to a human reader. An alternative reason
to “trust” a particular hypothesis is because of “trust” in the
learning system that produced that hypothesis. For instance,
a hypothesis produced by a learning system might be
trusted, in this sense, if the learner is known to produce

“good” hypotheses 90% of the time in similar circum-
stances.

In this paper we describe an application of machine
learning where a single learner is used multiple times by
the same user, where the learned hypothesis will be used in
novel ways to make predictions, and where it is critical that
the user trust the hypotheses of the learner. Interestingly, in
our setting, “trusting” a hypothesis is not the same as veri-
fying its correctness—there are some hypotheses which are
not correct, but still potentially useful, if they can be prop-
erly understood by the end user.

Specifically, we are using machine learning methods as
one component of an intelligent authoring system for Cog-
nitive Tutors. In this setting, it is desirable that the machine
learner produces generalizations similar to those that might
be produced by the human students that will ultimately be
instructed by the Cognitive Tutor. In short, we would like
to produce hypotheses that have human-like performance,
when used in a Cognitive Tutor; however, the learner that
produces these hypotheses may itself not have human-like
behavior.

In more detail, Cognitive Tutors are intelligent tutoring
systems based on a rule-based cognitive model of the sub-
ject domain being taught to students [1]. For example, for a
Cognitive Tutor that teaches algebraic equation (like the
one shown in Figure 1), the cognitive model is a set of pro-
duction rules that can solve equations in ways that students
do. Cognitive Tutors are effective in increasing student
learning rate over other alternative teaching methods, and
they are in regular use in over 1,800 high schools [2].
However, they are expensive to construct, as building a
cognitive model requires time-consuming cognitive task
analysis, as well as AI programming skills. Our goal is to
make it possible for educators (e.g., school teachers) to
build their own Cognitive Tutors without these special
skills to build a tutor, using only intuitive graphical inter-
faces, and their familiarity with the subject matter and how
human students learn. The basic idea is that instead of writ-
ing a code for the cognitive model, the educators demon-
strate how to perform the subject task on sample problems.
A machine learning agent, called a Simulated Student, ob-
serves those demonstrations and induces a cognitive model,
encoded as a set of production rules.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005 to appear). Applying Programming by Demonstration in an

Intelligent Authoring Tool for Cognitive Tutors. In AAAI Workshop on Human Comprehensible Machine Learning:

AAAI association

The machine-learned production rules generalize the
observed actions of the educator on the sample problems. If
these generalizations are correct – i.e., are correct imple-
mentations of the actual task that is being taught – then they
can be added to the cognitive model. If the generalizations
are incorrect but “plausible,” then they can be added to the
cognitive model as mal-rules. Mal-rules are plausible in a
sense that they represent generalizations that a human stu-
dent might make from the same examples. If the generaliza-
tions are implausible – i.e., not human-like generalizations
at all – then they must be discarded. Hence, the utility of
the machine-learning system is related to the number of
human-like generalizations it produces, rather than the
number of correct generalizations.

For such a system to work, it is necessary that the out-
put of the machine-learning system be comprehensible to
the authors (i.e., users), in the usual sense, so that they can
determine its correctness. To accomplish this goal, we inte-
grate the Simulates Students to an existing authoring tool
for Cognitive Tutors, called CTAT [3] so that the authors
can easily demonstrate tasks and test hypothesis generated
by letting Simulated Students to solve novel problems. To
build the inference engine of the Simulated Students, we
use a combination of techniques including inductive logic
programming methods to generalize the educator's actions.
The output is encoded in Jess, a well-known production
rule description language [4]. This allows advanced users
to manually modify the output if desired.

In this paper, we first explain basic framework of Cog-
nitive Tutors. We then introduce Simulated Student and
show how they observe authors demonstration and induces
a set of production rules. We also discuss a structure of an
intelligent authoring tool as a product of integrating Simu-
lated Students to CTAT. Finally, we show results from pre-
liminary experiments in an algebra equation solving do-
main. Given 8 feature predicates and 13 operators as back-
ground knowledge, and providing demonstrations of 10
problems with 44 problem-solving steps, the Simulated
Students correctly induces 7 production rules. Two of other
3 production rules were overly general but plausible.

Cognitive Tutors

This section provides a brief overview on Cognitive Tu-
tors, especially the model-tracing technique. It then de-
scribes the structure of a production rule, the target lan-
guage for Simulated Students’ learning.

Overview of the Cognitive Tutor Architecture

The effectiveness of Cognitive Tutors has been reported
in a number of places (for example, [2]). The most unique
feature of the Cognitive Tutors is model tracing, which
requires a cognitive model that represents every single
cognitive skills involved in the target subject task. A unit of
such skill is represented as a production rule, which gener-
ates a determinate performance for a specific problem state
(e.g., to enter a particular value into a particular place).

Hence, the quality of instruction provided by Cognitive
Tutors heavily relies on the quality of the production rules.

Students are supposed to learn each of those production
rules. Namely, for a student to be considered that one has
mastered a particular cognitive skill, he/she must show the
same performance as the corresponding production rule
does whenever that rule should be applied.

To assess students’ skills, the Cognitive Tutor compares
(i.e., model traces) student’s performance against the
model. When the student shows a performance that does
not match any of the production rules, the tutor provides a
negative feedback to the student. The cognitive model
might involve not only correct production rules, but also
incorrect or “buggy” production rules that represent stu-
dents’ typical errors. If student’s performance matches with
one of those buggy rules, then the tutor provides feedback
specific to the error.

When the student gets stuck or does not know what to
do, then the student can ask a hint. The tutor provides a
hint message associated with a production rule that should
be fired under the given state.

In sum, for model tracing to function properly, it is cru-
cial that the cognitive model, which is represented as a set
of production rules, is correct. The model might not only
hold correct production rules, but also incorrect production
rules.

Example of Cognitive Tutor: The Equation Tutor

As an example of the task domain, we use algebra equa-
tion solving. As shown in Figure 1, an interface of the
Equation Tutor is as simple as just having one table with
two columns each corresponds to the left- and right-hand
side of equations. Here, an equation is supposed to be
solved by filling a cell on the left- and right-hand side al-
ternatively, one at a time, from top to bottom without skip-
ping any cells. At the moment shown in Figure 1, the term
“4x” on the left-hand side has been just entered. The next
desirable action is then to enter the term “2x+5+2” in the
empty cell on the right hand side immediately below
“2x+5.” These two steps, entering “4x” and “2x+5+2,”
together complete a transposition of the term “-2” from one
side of the equation to the other. In the following sections,
the first step is refereed to as “trans-lr-lhs,” (an abbre-
viation for “transposition left to right on the left-hand side,”
see Table 2 for details) and the second step “trans-lr-

Figure 1: The Equation Tutor

rhs.” A cell in the table where a new value is entered is
called “Selection” and the value entered is called “Input.”
In the example shown in Figure 1, “4x” is the “Input,” and
the cell in the 2nd row on the left-hand side is the “Selec-
tion.”

Production Rules

Figure 2 shows an example of a production rule. The
lines from 2 to 16 compose a condition part (the left hand
side, or LHS) and from 18 to 28 compose an action part
(the right hand side, RHS).

There are two unique features in LHS in our produc-
tion-rule description language that must be explained:
WME-path and feature tests. The explanations follow.

A feature test specifies a condition in LHS as a relation
that must be held among one or more working-memory
elements (WME). There are two different types of feature
tests: (1) a test for topological relation among WMEs (e.g.,
two table cells in the same column), and (2) a test for a
semantic context specified by the WME values (e.g., a term
shown in one cell is the sum of the terms in another cell).
The former is called a topological constraint and the latter
a contents constraint. In Figure 2, lines 11 through 13 show
topological constraints whereas the lines 14 and 15 show
contents constraints.

A WME-path is a chain of WMEs from the problem
WME to a certain WME. For example, in Figure 2, the

problem WME is shown on the line 2, and bound to the
variable ?problem. The first element in the interface-
elements slot of the problem WME is a table that is
bound to a variable ?table. The first column of the table
is a “column” WME. Finally, a cell in the column WME is
bound to the variable ?cell-1, which corresponds to any
cell in the left hand side in the tutor interface shown in
Figure 1. More precisely speaking, variables with a ‘$’
mark at the beginning is a multivariable, which can be
bound to a list of variables. Thus, the variable ?cell-2 on
the line 7 can be any element in the cells slot.

There are two assumptions in our implementation of
Cognitive Tutors: (1) all of the WMEs that are subject for
feature tests must be represented in the graphical user inter-
face of the tutor, and (2) all of the WMEs can be reached
from the “problem” WME by following a slot value. The
former ensures that all WMEs in the feature tests can be
directly mentioned in the demonstration by the authors. The
latter assumption guarantees that all WMEs in the feature
tests can be uniquely identified as the terminal node of a
WME-path.

Another unique feature in our production rule is the se-
lection-action-input tuple (SAI tuple) appeared in RHS
(lines 21, 22, and 23 in Figure 2). The SAI tuple represents
an observable change in GUI made when the production
rule is applied. An example of such change involves enter-
ing a text in a table cell, pressing a button, selecting a list,
etc. When the tutor attempts to model trace students’ per-
formances, a problem-solving step made by a student is
considered to be correct if the SAI tuple matches the stu-
dent’s performance.

Simulated Students

This section describes the overall architecture of Simu-
lated Students and its integration to an existing authoring
tool for Cognitive Tutors.

Next Generation Authoring: CTAT & Simulated

Students

The Cognitive Tutor Authoring Tool (CTAT) [3] is an
integrated development environment to facilitate authoring
with Simulated Students. CTAT offers, among other fea-
tures, a GUI builder that helps authors to build a GUI by
basically dragging and dropping GUI elements such as but-
tons, tables, text fields, and so forth. As the first step of
authoring, the authors build a graphical user interface
(GUI) for their desired tutor using CTAT. An example in-
terface shown in Figure 1 is indeed built with CTAT.

Once authors finish building a tutor’s GUI, they then
specify predicate symbols and operator symbols appearing
in LHS and RHS of the production rules. Those symbols
might be common in several closely related task domains
(e.g., coefficient(X,Y) in algebra) hence defined a
priori by the developers of Simulated Students. The authors
can also define new symbols that are novel for a particular
subject domain.

Figure 2: Example of production rule

1 (defrule trans-lr-lhs

2 ?problem <- (MAIN::problem (interface-elements ?table ? ?))

3 ?table <- (MAIN::table (columns ?column-1 ?))

4 ?column-1 <- (MAIN::column (cells $?m208 ?cell-1 $?))

5 ?cell-1 <- (MAIN::cell (value ?lhs))

6 ?table <- (MAIN::table (columns ? ?column-2))

7 ?column-2 <- (MAIN::column (cells $?m220 ?cell-2 $?))

8 ?cell-2 <- (MAIN::cell (value ?val1))

9 ?column-1 <- (MAIN::column (cells $?m232 ?cell-3 $?))

10 ?cell-3 <- (MAIN::cell (name ?name198) (value ?new-lhs))

11 (test (consecutive-row ?cell-1 ?cell-3))

12 (test (same-column ?cell-1 ?cell-3))

13 (test (consecutive-row ?cell-2 ?cell-3))

14 (test (not (polynomial ?lhs))

15 (test (not (has-var-term ?rhs))

16 ?special-tutor-fact-correct <- (special-tutor-fact-correct)

17 =>

18 (bind ?new-lhs (remove-last-const-term ?lhs))

19 (modify ?cell-3 (value ?new-lhs))

20 (modify ?special-tutor-fact-correct

21 (selection ?name198)

22 (action UpdateTable)

23 (input ?new-lhs)

24 (hint-message

25 (construct-message

26 [Try to translate a constant trem from ?lhs to ?rhs]

27 [What is the last constant term in ?lhs]

28 [Write ?new-lhs into the blank cell under ?lhs])))

29)

Given a GUI and a set of predicate and operator sym-
bols, the authors now demonstrate the task. That is, they
solve a number of problems through the GUI in a way that
the human students are supposed to perform. A problem-
solving step is segmented when the selection-action-input
(SAI) tuple is observed.

For each problem-solving step, the authors must spec-
ify the following: (1) focus of attention that is a set of ele-
ments in GUI that has contributed to the step performed,
and (2) a unique name of the step, which corresponds to
the name of a production rule to be induced for the step.
Individual problem-solving steps are recorded along with
the SAI tuple, focus of attention, and the name of the step.

Each time a problem-solving step is demonstrated,
Simulated Student attempts to model trace the step. The
result of this attempt is visualized in CTAT so that the
author can immediately know the correctness of produc-
tion rules induced by Simulated Student by the current
point. If a demonstrated step can not be model traced, then
the Simulated Student attempts to “refine” the production
rules by reading all demonstrations performed so far and
re-compiling a whole set of production rules. The author is
then asked to solve another problem.

That all of the problem-solving steps are successfully
model traced and the author agrees with the result of the
model trace implies that the current set of production rules
are correctly generalized with respect to demonstrations
performed so far, hence it is reasonable to stop demon-
strating on new problems. At this point, the authors can
either test the production rules, or modify them manually.
To test the production rules, authors provide a new prob-
lem, and let the Simulated Students solve it. If any steps
turned to be wrong (even if the model says it is correct),
then the author provides a negative feedback (i.e., signals
that it is wrong and provides a correct SAI tuple). The
Simulated Students then re-induce production rules by
merging the feedback to the previous demonstrations.

To modify production rules, which are represented in
Jess language, the authors can use the Production Rule
Editor embedded in CTAT.

Learning Techniques

As mentioned in a previous section, we have decom-
posed the task of learning production rules into three com-
ponents: WME-paths, feature tests, and operators. The first
two components are in LHS and the last one is in RHS. The
Simulated Students induce each of these parts separately
from authors’ demonstrations.

Search for WME-paths. An algorithm for a search for
working-memory elements (WMEs) thoroughly depends on
the structure of the working memory. The current imple-
mentation of Cognitive Tutor assumes that all WMEs can
be reached by following a path from the problem WME,
and there must be no multiple paths for any of the WMEs.
Given these restrictions, a search for WMEs appearing in a
production rule is indeed a search for WME paths for each
of those WMEs. Since there is no multiple paths in the tree,

and there are at most finitely many WMEs, this search
should be straightforward given that binding a list to a mul-
tivariable is taken care of. An example might best explain
this issue.

The step trans-lr-lhs shown in Figure 2 can be
used not only for an equation at the first row, but for any
equations at any row. Hence, in general terms, the rule
trans-lr-lhs should be read something like “given any
non-empty cell in the first column (i.e., the column repre-
senting the left-hand side) and a non-empty cell on the
same row in the second column (i.e., the right-hand side),
drop the last term of the polynomial expression in the first
cell, and enter the result in a cell immediately below the
first cell.” Notice that the first cell can be any cell on the
left-hand side; this is where the multivariable takes place.
In Figure 2, the “any non-empty cell in the first column”
corresponds to the variable ?cell-1 bound at the line 4 as
a value of the cells slot. Since the variable ?cell-1 can be
any member in the list in the cells slot, it is preceded by a
multivariable $?m208, which would be bound to a list of
arbitrary number of elements.

In sum, there are two patterns to bind elements in a list:
(1) Binding an element at its absolute location with a (non-
multi) variable following absolute number of non-
multivariables. An example of this pattern can be found at
the first line in Figure 2 where the variable ?table is
bound as the first element in a list with three elements. (2)
Binding an element as an arbitrary element in the list with a
(non-multi) variable following a multivariable. An example
of this pattern can be found at the third line in Figure 2
where the variable ?cell-1 can be any element (a cell) in
the cells slot. In terms of the “generality” of the representa-
tion that defines a version space for the search for working
memory elements, the latter is more general than the former.

Since Authors specifies all WMEs appearing in each
production rule, the task of searching WMEs for a particu-
lar production rule is really a search for the least general
WME paths for each of those specified WMEs. This can be
done by a brute-force depth-first search given that search
space is structured as a version space where the least gen-
eral state contains no multivariables to bind a list element
whereas the most general state uses multivariables for all
list bindings.

Search for feature tests. Simulated Students utilize
FOIL [5] to induce feature tests. They generate an input
data to FOIL for each of the production rule, which con-
sists of the specification of types, a target relation, and
supporting relations.

1
 Figure 3 shows an example of a

FOIL input data where these three categories of informa-
tion are shown as “Types,” “Training data,” and “Back-
ground knowledge.”

The figure shows a FOIL input for the production rule
trans-lr-lhs. The target relation is specified as a literal

1
 In the original literature [5], both the target relation and

supporting relations are simply called “relations.” However,
for the sake of explanation, we call relations that are not a

target relation the supporting relations.

trans-lr-lhs with two arguments. The number of focus
of attention for this production rule is three, but that in-
cludes the WME where the new value is entered. Since the
third WME (i.e., the “Selection” WME) is empty at the
time when LHS is evaluated, it has no information for a
search for distinctive features. Thus, it is eliminated from
the target relation.

To compile an input data for a particular production
rule, Simulated Student performs the following procedure
each time a problem-solving step is demonstrated:

1. Let I be the demonstration. Let R be a name of the

problem-solving step annotated for I. Let V be a set

of values specified as a focus of attention for I except

the “Input,” that is, the value to be entered in the se-

lection WME. Let D be a partial input data that has

been compiled for R so far (if any). If such D does

not exist, then create an empty D for R.

2. For each feature predicate p, do following steps.

2.1. Let n be the number of arguments of p. Let C

be all possible n-permutations of values speci-

fied as focus of attention; C = {(v1, …, vn) | vi ∈

V}.

2.2. For each c in C, if p(c) holds, then add c to a

positive tuple of p for D. Otherwise add c to a

negative tuple.

3. Add all elements in V as a positive tuple of the target

relation for D.

4. For each production rule R’ that is not R, add all ele-

ments in V as a negative tuple of the target relation

for D’, an input data for R’, iff the number of argu-

ments for the target relation agrees with the number

of elements in V.

Search for operators. Recall that Authors specify the
value of “Input” and other values that were involved in the
problem-solving step (i.e., the focus of attention) as a man-
datory part of demonstration.

Given these, the operators in the right-hand side can be
searched as a sequence of operator applications that yields
the “Input” value from the other values. The current ver-
sion of Simulated Student simply applies the iterative-
deepening depth-first search to find a shortest operator se-
quence. Starting from no operator, the search space is ex-
plored by adding one operator at the time until either it
reaches a depth limit or the combination of the operator
generates the desired “Input” value. A similar technique is
applied in Richards et al [6], but their search is bidirec-
tional whereas the proposed search is more straightforward.

Related Studies

FOIL is one of the most efficient and robust learning
tools that has been widely used in very many studies. Lau
et al, for example, used FOIL as their earlier work [7].
There are several variations of FOIL and improvement (see,
for example, [8]).

Programming by Demonstration (PbyD) has been
proven to be effective for novice programmers to improve
their productivities. Lau et al, for example, applied PbyD
technique for editing macros used in a text editor [9]. It has
been claimed that PbyD learns target language with a small
number of examples.

 There has been a number of studies reported so far to
integrate PbyD into authoring tool to build intelligent tutors.
Jarvis et al built a machine learning agent for Cognitive
Tutor [10]. They have successfully identified WME paths
and a sequence of operators, but they have not addressed
the issue of feature extraction on the condition part hence
their production rules tended to be overly generalized.
Blessing also applied a PbyD technique to authoring tool
for Cognitive Tutors, called Demonstr8 [11]. Demonstr8
can induce WME paths and the action part from authors’
demonstrations. It also has a tool for authors to manually
specify feature tests that must be embedded into the condi-
tion part. Such kinds of feature tests were apparently pre-
defined and hard coded into Demonstr8 hence the flexibil-
ity for authors to add new features were unclear.

In the current study all necessary feature tests are auto-
matically identified and embedded into production rules.
Simulated Students are modular in both feature tests and
RHS operators hence new predicate and operator symbols
can be added and deleted easily.

Evaluation

To evaluate efficiency and usefulness of the Simulated
Students, we have conducted an evaluation with algebra
equation as an example subject domain.

Since we have yet to integrate the Simulated Student
into CTAT, the evaluation was done within a quasi-
authoring environment where we first built an interface for
the Equation Tutor and then provide demonstrations with a
text file. The output (i.e., a set of production rules) from the
Simulated Student was manually verified, instead of load-

 Types:

V2: x-5, x+2, 3x+2.
V1: x, x-5, x+2, 3x, 3x+2.
V0: x, 3, 6, 3x, 11.
T1: 3, 6, 11, -3x+11, 4, 12, 9, 3+5, 6-2, 11-2.
V4: 1, 3.
T0: x-5, x+2, 3x+2, 2, 3x, 2x, 4x, x.

V3: x, 3x.

Training data: Background knowledge:

+trans-lr-lhs(x-5, 3)
+trans-lr-lhs(x+2, 6)
+trans-lr-lhs(3x+2, 11)
-trans-lr-lhs(2, -3x+11)
-trans-lr-lhs(3x, 6)
-trans-lr-lhs(2x, 4)
-trans-lr-lhs(4x, 12)
-trans-lr-lhs(3x, 9)
-trans-lr-lhs(x, 3+5)
-trans-lr-lhs(x, 6-2)
-trans-lr-lhs(3x, 11-2)

+Monomial(x)
+Monomial(3)

+Monomial(6)
+Monomial(3x)
+Monomial(11)

… … …

+VarTerm(x)
+VarTerm(x-5)
+VarTerm(x+2)

+VarTerm(3x)
+VarTerm(3x+2)
… … …

Figure 3: An example of the input to FOIL

ing it to Equation Tutor and getting model traced on new
problems.

The evaluation was run on a PC with Pentium IV
3.4GHz processor with 1GB RAM. The Simulated Student
was written in Java. So far, we have finished implementing
the main inference engine for the Simulated Students. Cur-
rently, they do not output induced production rules in the
target language (i.e., Jess), but they do indeed induce all
information to compile production rules, that is, WME
paths, feature tests, and RHS operators. Thus, in the fol-
lowing sections, the evaluation of the quality of “produc-
tion rule” was done manually. FOIL was invoked as an
external process with a file based communication.

Methods and Materials

We used 8 feature predicates and 13 operators as back-
ground knowledge. Total of 44 steps were demonstrated to
solve 10 problems shown in Table 1. Those problems were
solved by 10 different rules (shown in Table 2). In other
words, the Simulated Students were supposed to induce 10
production rules from 44 demonstrated steps.

Results and Discussions

7 out of 10 production rules were correctly induced af-
ter 10 problems were demonstrated. Two of 3 overly gen-
eralized rules were plausible.

To have better understanding on how the learning oc-
curred, we conducted an item analysis. Each time a prob-
lem is solved by an author, we let the Simulated Student
induce production rules with all demonstrations performed
by that point. We then examine, for each production rule,
how each part of the production rule (i.e., WME-path, fea-
ture test, and operators) was induced.

Surprisingly, Simulated Students always induced cor-
rect WME-path. That is, in the current experiment, only a
single demonstration is enough to correctly identify WME-
path.

What makes learning so complicated was acquisition of
feature tests and operators. Figure 4 shows a chronological

improvement in learning each production rule. The figure
shows problems in the order that they were demonstrated.
The top row in the remaining columns shows names of the
production rules.

A shaded cell shows that a corresponding production
rule appeared in the demonstration. It must be emphasized
that, as described in a previous section, a demonstration on
a particular problem-solving step is not only used as a posi-
tive example for the specified production rule, but it also
served as a negative example for the other production rules.
Thus, a quality of production rule might improve on a
demonstration that does not involve that rule. See, for ex-
ample, the rule div-lhs. Its first feature tests were cap-
tured (though they were overly generalized) on the 4th
problem that does not involve div-lhs. It must be also
emphasized that blank cells do contribute for learning by
serving as negative examples. Thus, do-arith[metic]-
lhs, for example, had 3 positive examples (shaded ones)
and 7 negative examples (the first 7 blank cells in the same
column).

A cell with “C” shows that the corresponding produc-
tion rule was a correct generalization of the demonstrations.
The cells with “P” and “W” both shows that the Simulated
Students induced a production rule, but it was overly gen-
eralized. The difference between “P” and “W” is that the
application of the former (plausible) production rule yields
a correct performance, but such application is strategically
not optimal (i.e., yielding redundant steps), whereas the
application of latter (wrong) production rule might lead to a
wrong result.

No Problem div-lhs div-rhs trans-lr-lhs trans-lr-rhs copy-lhs do-arith-rhs trans-rl-lhs trans-rl-rhs do-arith-lhs copy-rhs

1 3x = 6 P P

2 2x = 4 P P

3 4x = 12 P P

4 x - 5 = 3 P P W W P C

5 x + 2 = 6 P P W W P C

6 2 = -3x + 11 C P W W P C P W

7 3x - 4 = 2 C P W W P C P W

8 2x + 3x = 3 + 7 C P W W P C P W P P

9 3x = 2x + 4 C C W W C C C W P P

10 3x - 3 = 2x + 5 C C C C C C C W P P

Figure 4: Results over sequential learning from demonstration. W: The application of the rule might generate
a wrong result. P: The rule is overly generalized hence the application of the rule might not be strategically optimal

but a result of the rule application is correct. C: The rule is correct. A shaded cell shows that the corresponding

production rule appears in the demonstration.

Table 1: Problems used for the evaluation

3x = 6, 2x = 4, 4x = 12,
x – 5 = 3, x + 2 = 6,
2 = –3x + 11,
3x – 4 = 2,
2x + 3x = 3 + 7,
3x = 2x + 4,
3x – 3 = 2x + 5

An example of incorrectly generalized rule (a “W” in
Figure 4) is trans-lr-lhs learned from problem #4
through #9 where the RHS operator says “write the first
variable term into the target (“Selection”) cell.” While this
rule correctly produces “3x=4–2” from “3x+2=4,” given
that trans-lr-rhs is correctly induced, it incorrectly produces
“3x=4–2” from “3x + 2x + 2 = 4.”

An example of plausible over-generalization (“P”) is a
rule div-rhs learned from problem #4 through #5 where
the feature tests in LHS say “apply this rule when LHS is a
monomial and has a coefficient.” The RHS operators of
this rule was correct hence the application of this rule al-
ways generates correct result, but since the conditions in
LHS is still weak (i.e., overly generalized) this rule could
apply to “3x = 2x + 5,” which is not a recommended strat-
egy.

There are several interesting observations read from
Figure 4:

1. All but one (do-arith[metic]-rhs) production
rules required a few (3 to 8) examples to make a cor-
rect generalization.

2. All but one (do-arith[metic]-rhs) production
rules required both positive and negative examples
for appropriate generalization.

3. Learning was monotonic, that is, once a correct gen-
eralization is made, it is never incorrectly modified.
Figure 5 shows ratio of correct and plausible gener-
alizations to the number of production rules to be
learned for each demonstration.

4. There were a few incorrect generalizations observed
that could have been learned by human students as
well (plausibly incorrect generalizations).

These results show that the Simulated Students learn
cognitive skills by observing teachers demonstrations in a
similar way human students do, namely, they make overly
generalized rules that are sometimes wrong and sometimes
plausible.

A potentially interesting issue is to explore the impact
of curriculum on learning. Namely, what if we change the
order of problems to demonstrate? In the current experi-
ment, we started to demonstrate very simple problems that
can be solved in a single line (i.e., the solution that imme-
diately follows the initial equation). We then gradually
increased a level of complexity of the problem by introduc-
ing a few new production rules. The learning results may
well be affected by the choice and sequencing of prob-
lems [12] and we plan future experiments to test alternative
curriculum sequences and whether they lead to or prevent
errors observed by students.

Conclusion

Although the size of experiment was rather small (10
production rules on 10 problems), the experiment showed a
potential usefulness of the Simulated Students. That most
production rules were correctly generalized in at most 8
demonstrations was rather surprising result. The simulated
Students also showed a wrong but plausible generalization
that human students might have learned as well. The major
goal of the current study – learning human comprehensible
cognitive models in a human-like way – has been tested
affirmatively.

The current study has potential benefits not only of de-
veloping an intelligent authoring tool to educators, but also
a test bed to explore principle in human learning from wor-
ked-out examples and problem solving (see, for exam-
ple, [13]). Observing how incorrect but plausible generali-
zations would be made might be one of the most interesting
issues.

We have yet to complete the integration of Simulated
Students into CTAT so that an evaluation of the overall
authoring environment can be done in an authentic situation
with real human educators.

Acknowledgement

This research was supported by the Pittsburgh Science
of Learning Center funded by National Science Foundation
award No. SBE-0354420.

References

1. Anderson, J.R., et al., Cognitive modeling and intelli-

gent tutoring. Artificial Intelligence, 1990. 42(1): p. 7-

49.

2. Anderson, J.R., et al., Cognitive tutors: Lessons learned.

Journal of the Learning Sciences, 1995. 4(2): p. 167-

207.

3. Koedinger, K.R., V.A.W.M.M. Aleven, and N. Heffer-

nan, Toward a Rapid Development Environment for

Cognitive Tutors, in Proceedigns of the International

Conference on Artificial Intelligence in Education, U.

Figure 5: % correct and plausible generalizations

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10

Problem No.

P

C

Hoppe, F. Verdejo, and J. Kay, Editors. 2003, IOS

Press: Amsterdam. p. 455-457.

4. Friedman-Hill, E., Jess in Action: Java Rule-based Sys-

tems. 2003, Greenwich, CT: Manning.

5. Quinlan, J.R., Learning Logical Definitions from Rela-

tions. Machine Learning, 1990. 5(3): p. 239-266.

6. Richards, B.L. and R.J. Mooney, Learning Relations by

Pathfinding, in Proceedings of the Tenth National Con-

ference on Artificial Intelligence. 1992, AAAI Press:

Menlo Park, CA. p. 50-55.

7. Lau, T.A. and D.S. Weld, Programming by demonstra-

tion: an inductive learning formulation, in Proceedings

of the 4th international conference on Intelligent user

interfaces. 1998, ACM Press: New York, NY. p. 145-

152.

8. Cohen, W.W., Grammatically biased learning: Learn-

ing logic programs using an explicit antecedent de-

scription language. Artificial Intelligence, 1994. 68(2):

p. 303-366.

9. Lau, T., et al., Programming by Demonstration Using

Version Space Algebra. Machine Learning, 2003. 53(1-

2): p. 111-156.

10. Jarvis, M.P., G. Nuzzo-Jones, and N.T. Heffernan, Ap-

plying Machine Learning Techniques to Rule Genera-

tion in Intelligent Tutoring Systems, in Proceedings of

the International Conference on Intelligent Tutoring

Systems, J.C. Lester, Editor. 2004, Springer: Heidelberg,

Berlin. p. 541-553.

11. Blessing, S.B., A Programming by Demonstration Au-

thoring Tool for Model-Tracing Tutors. International

Journal of Artificial Intelligence in Education, 1997. 8:

p. 233-261.

12. Zhu, X. and H.A. Simon, Learning mathematics from

examples and by doing. Cognition and Instruction,

1987. 4(3): p. 137-166.

13. Renkl, A., Learning from worked-out examples: A study

on individual differences. Cognitive Science, 1997.

21(1): p. 1-29.

Table 2: Problem-solving steps demonstrated

Name Description

copy-lhs Copy an expression in an immedi-

ately above line on the left-hand
side (LHS)

copy-rhs Copy an expression in an immedi-

ately above line on the right-hand
side (RHS)

trans-lr-lhs Given a polynomial expression on

the LHS with a constant term(s),

remove the constant term and
enter the resulting expression into

the LHS on the following line

trans-lr-rhs Given that trans-lr-lhs has

been taken place in the previous

step, add the term removed to the

expression on the RHS

trans-rl-lhs Similar to trans-lr-lhs, but

transfer a variable term from the

RHS to LHS

trans-rl-rhs Similar to trans-lr-rhs, but

transfer a variable term from the

RHS to LHS

div-lhs Given a variable term on the LHS,
and a constant term on the RHS,

divide the term on the LHS with

its coefficient

div-rhs Given that div-lhs has been

taken place in the previous step,

divide the constant term on the

RHS with the same coefficient

do-arithmetic-lhs Given a polynomial expression on

the LHS that does not contain any

variable terms, simplify it by add-

ing all terms

do-arithmetic-rhs Given a polynomial expression on

the RHS that does not contain any

variable terms, simplify it by add-
ing all terms

