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Abstract 

We are building an intelligent authoring tool for Cognitive 
Tutors, a highly successful form of computer-based tutoring. 
The primary target users (the authors) are educators who are 
not familiar with cognitive task analysis and AI program-
ming, which are essential tasks in building Cognitive Tutors. 
Instead of asking authors to write a cognitive model by hand, 
a Simulated Student embedded in the authoring tool lets an 
author demonstrate how to perform the tasks in the subject 
domain, for instance, solving an algebra equation. The 
Simulated Student observes an author’s demonstration and 
induces a set of production rules that replicate the demon-
strated performances. Correct production rules, as well as 
production rules that are incorrect but similar to those a 
human student might produce, can be directly embedded in 
the Cognitive Tutor. We give a preliminary evaluation of an 
implemented Simulated Students based on inductive logic 
programming and path-finding. 

Introduction 

In the vast majority of practical settings, the “trustwor-
thiness” of a learned hypothesis is evaluated by testing it on 
sample data. This sort of “test-based” evaluation is quanti-
tative, can be easily automated, and can be rigorously justi-
fied statistically under certain assumptions, e.g., a station-
ary distribution of problems.  

Unfortunately, once these statistical assumptions are re-
laxed, a test-based evaluation is not sufficient to ensure 
“trust.” (As a simple example, a mail filter that had good 
performance over the last year might fail miserably after 
one switches jobs.) In settings in which learned hypotheses 
are to be exercised in novel ways, or used to make predic-
tions outside the distribution of original problems, other 
schemes must be used to ensure that the output of a learn-
ing system can be “trusted.” The most common of these 
other schemes is to manually inspect the syntactic form of 
hypothesis output by the learner for correctness. This is 
only possible, of course, if this syntactic form is easily 
“comprehensible” to a human reader. An alternative reason 
to “trust” a particular hypothesis is because of “trust” in the 
learning system that produced that hypothesis. For instance, 
a hypothesis produced by a learning system might be 
trusted, in this sense, if the learner is known to produce 

“good” hypotheses 90% of the time in similar circum-
stances. 

In this paper we describe an application of machine 
learning where a single learner is used multiple times by 
the same user, where the learned hypothesis will be used in 
novel ways to make predictions, and where it is critical that 
the user trust the hypotheses of the learner. Interestingly, in 
our setting, “trusting” a hypothesis is not the same as veri-
fying its correctness—there are some hypotheses which are 
not correct, but still potentially useful, if they can be prop-
erly understood by the end user. 

Specifically, we are using machine learning methods as 
one component of an intelligent authoring system for Cog-
nitive Tutors. In this setting, it is desirable that the machine 
learner produces generalizations similar to those that might 
be produced by the human students that will ultimately be 
instructed by the Cognitive Tutor. In short, we would like 
to produce hypotheses that have human-like performance, 
when used in a Cognitive Tutor; however, the learner that 
produces these hypotheses may itself not have human-like 
behavior. 

In more detail, Cognitive Tutors are intelligent tutoring 
systems based on a rule-based cognitive model of the sub-
ject domain being taught to students [1]. For example, for a 
Cognitive Tutor that teaches algebraic equation (like the 
one shown in Figure 1), the cognitive model is a set of pro-
duction rules that can solve equations in ways that students 
do. Cognitive Tutors are effective in increasing student 
learning rate over other alternative teaching methods, and 
they are in regular use in over 1,800 high schools [2]. 
However, they are expensive to construct, as building a 
cognitive model requires time-consuming cognitive task 
analysis, as well as AI programming skills. Our goal is to 
make it possible for educators (e.g., school teachers) to 
build their own Cognitive Tutors without these special 
skills to build a tutor, using only intuitive graphical inter-
faces, and their familiarity with the subject matter and how 
human students learn. The basic idea is that instead of writ-
ing a code for the cognitive model, the educators demon-
strate how to perform the subject task on sample problems. 
A machine learning agent, called a Simulated Student, ob-
serves those demonstrations and induces a cognitive model, 
encoded as a set of production rules.  
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The machine-learned production rules generalize the 
observed actions of the educator on the sample problems. If 
these generalizations are correct – i.e., are correct imple-
mentations of the actual task that is being taught – then they 
can be added to the cognitive model. If the generalizations 
are incorrect but “plausible,” then they can be added to the 
cognitive model as mal-rules. Mal-rules are plausible in a 
sense that they represent generalizations that a human stu-
dent might make from the same examples. If the generaliza-
tions are implausible – i.e., not human-like generalizations 
at all – then they must be discarded. Hence, the utility of 
the machine-learning system is related to the number of 
human-like generalizations it produces, rather than the 
number of correct generalizations.  

For such a system to work, it is necessary that the out-
put of the machine-learning system be comprehensible to 
the authors (i.e., users), in the usual sense, so that they can 
determine its correctness. To accomplish this goal, we inte-
grate the Simulates Students to an existing authoring tool 
for Cognitive Tutors, called CTAT [3] so that the authors 
can easily demonstrate tasks and test hypothesis generated 
by letting Simulated Students to solve novel problems. To 
build the inference engine of the Simulated Students, we 
use a combination of techniques including inductive logic 
programming methods to generalize the educator's actions. 
The output is encoded in Jess, a well-known production 
rule description language [4]. This allows advanced users 
to manually modify the output if desired.  

In this paper, we first explain basic framework of Cog-
nitive Tutors. We then introduce Simulated Student and 
show how they observe authors demonstration and induces 
a set of production rules. We also discuss a structure of an 
intelligent authoring tool as a product of integrating Simu-
lated Students to CTAT. Finally, we show results from pre-
liminary experiments in an algebra equation solving do-
main. Given 8 feature predicates and 13 operators as back-
ground knowledge, and providing demonstrations of 10 
problems with 44 problem-solving steps, the Simulated 
Students correctly induces 7 production rules. Two of other 
3 production rules were overly general but plausible.  

Cognitive Tutors 

This section provides a brief overview on Cognitive Tu-
tors, especially the model-tracing technique. It then de-
scribes the structure of a production rule, the target lan-
guage for Simulated Students’ learning.  

Overview of the Cognitive Tutor Architecture 

The effectiveness of Cognitive Tutors has been reported 
in a number of places (for example, [2]). The most unique 
feature of the Cognitive Tutors is model tracing, which 
requires a cognitive model that represents every single 
cognitive skills involved in the target subject task. A unit of 
such skill is represented as a production rule, which gener-
ates a determinate performance for a specific problem state 
(e.g., to enter a particular value into a particular place). 

Hence, the quality of instruction provided by Cognitive 
Tutors heavily relies on the quality of the production rules. 

Students are supposed to learn each of those production 
rules. Namely, for a student to be considered that one has 
mastered a particular cognitive skill, he/she must show the 
same performance as the corresponding production rule 
does whenever that rule should be applied.  

To assess students’ skills, the Cognitive Tutor compares 
(i.e., model traces) student’s performance against the 
model. When the student shows a performance that does 
not match any of the production rules, the tutor provides a 
negative feedback to the student. The cognitive model 
might involve not only correct production rules, but also 
incorrect or “buggy” production rules that represent stu-
dents’ typical errors. If student’s performance matches with 
one of those buggy rules, then the tutor provides feedback 
specific to the error.  

When the student gets stuck or does not know what to 
do, then the student can ask a hint. The tutor provides a 
hint message associated with a production rule that should 
be fired under the given state.  

In sum, for model tracing to function properly, it is cru-
cial that the cognitive model, which is represented as a set 
of production rules, is correct. The model might not only 
hold correct production rules, but also incorrect production 
rules.  

Example of Cognitive Tutor: The Equation Tutor 

As an example of the task domain, we use algebra equa-
tion solving. As shown in Figure 1, an interface of the 
Equation Tutor is as simple as just having one table with 
two columns each corresponds to the left- and right-hand 
side of equations. Here, an equation is supposed to be 
solved by filling a cell on the left- and right-hand side al-
ternatively, one at a time, from top to bottom without skip-
ping any cells. At the moment shown in Figure 1, the term 
“4x” on the left-hand side has been just entered. The next 
desirable action is then to enter the term “2x+5+2” in the 
empty cell on the right hand side immediately below 
“2x+5.” These two steps, entering “4x” and “2x+5+2,” 
together complete a transposition of the term “-2” from one 
side of the equation to the other. In the following sections, 
the first step is refereed to as “trans-lr-lhs,” (an abbre-
viation for “transposition left to right on the left-hand side,” 
see Table 2 for details) and the second step “trans-lr-

Figure 1: The Equation Tutor 



rhs.” A cell in the table where a new value is entered is 
called “Selection” and the value entered is called “Input.” 
In the example shown in Figure 1, “4x” is the “Input,” and 
the cell in the 2nd row on the left-hand side is the “Selec-
tion.”  

Production Rules 

Figure 2 shows an example of a production rule. The 
lines from 2 to 16 compose a condition part (the left hand 
side, or LHS) and from 18 to 28 compose an action part 
(the right hand side, RHS).  

There are two unique features in LHS in our produc-
tion-rule description language that must be explained: 
WME-path and feature tests. The explanations follow.  

A feature test specifies a condition in LHS as a relation 
that must be held among one or more working-memory 
elements (WME). There are two different types of feature 
tests: (1) a test for topological relation among WMEs (e.g., 
two table cells in the same column), and (2) a test for a 
semantic context specified by the WME values (e.g., a term 
shown in one cell is the sum of the terms in another cell). 
The former is called a topological constraint and the latter 
a contents constraint. In Figure 2, lines 11 through 13 show 
topological constraints whereas the lines 14 and 15 show 
contents constraints.  

A WME-path is a chain of WMEs from the problem 
WME to a certain WME. For example, in Figure 2, the 

problem WME is shown on the line 2, and bound to the 
variable ?problem. The first element in the interface-
elements slot of the problem WME is a table that is 
bound to a variable ?table. The first column of the table 
is a “column” WME. Finally, a cell in the column WME is 
bound to the variable ?cell-1, which corresponds to any 
cell in the left hand side in the tutor interface shown in 
Figure 1. More precisely speaking, variables with a ‘$’ 
mark at the beginning is a multivariable, which can be 
bound to a list of variables. Thus, the variable ?cell-2 on 
the line 7 can be any element in the cells slot.  

There are two assumptions in our implementation of 
Cognitive Tutors: (1) all of the WMEs that are subject for 
feature tests must be represented in the graphical user inter-
face of the tutor, and (2) all of the WMEs can be reached 
from the “problem” WME by following a slot value. The 
former ensures that all WMEs in the feature tests can be 
directly mentioned in the demonstration by the authors. The 
latter assumption guarantees that all WMEs in the feature 
tests can be uniquely identified as the terminal node of a 
WME-path.  

Another unique feature in our production rule is the se-
lection-action-input tuple (SAI tuple) appeared in RHS 
(lines 21, 22, and 23 in Figure 2). The SAI tuple represents 
an observable change in GUI made when the production 
rule is applied. An example of such change involves enter-
ing a text in a table cell, pressing a button, selecting a list, 
etc. When the tutor attempts to model trace students’ per-
formances, a problem-solving step made by a student is 
considered to be correct if the SAI tuple matches the stu-
dent’s performance.  

Simulated Students 

This section describes the overall architecture of Simu-
lated Students and its integration to an existing authoring 
tool for Cognitive Tutors.  

Next Generation Authoring: CTAT & Simulated 

Students 

The Cognitive Tutor Authoring Tool (CTAT) [3] is an 
integrated development environment to facilitate authoring 
with Simulated Students. CTAT offers, among other fea-
tures, a GUI builder that helps authors to build a GUI by 
basically dragging and dropping GUI elements such as but-
tons, tables, text fields, and so forth. As the first step of 
authoring, the authors build a graphical user interface 
(GUI) for their desired tutor using CTAT. An example in-
terface shown in Figure 1 is indeed built with CTAT.  

Once authors finish building a tutor’s GUI, they then 
specify predicate symbols and operator symbols appearing 
in LHS and RHS of the production rules. Those symbols 
might be common in several closely related task domains 
(e.g., coefficient(X,Y) in algebra) hence defined a 
priori by the developers of Simulated Students. The authors 
can also define new symbols that are novel for a particular 
subject domain.  

Figure 2: Example of production rule 

1 (defrule trans-lr-lhs

2 ?problem <- (MAIN::problem (interface-elements ?table ? ?))

3 ?table <- (MAIN::table (columns ?column-1 ?))

4 ?column-1 <- (MAIN::column (cells $?m208 ?cell-1 $?))

5 ?cell-1 <- (MAIN::cell (value ?lhs))

6 ?table <- (MAIN::table (columns ? ?column-2))

7 ?column-2 <- (MAIN::column (cells $?m220 ?cell-2 $?))

8 ?cell-2 <- (MAIN::cell (value ?val1))

9 ?column-1 <- (MAIN::column (cells $?m232 ?cell-3 $?))

10 ?cell-3 <- (MAIN::cell (name ?name198) (value ?new-lhs))

11 (test (consecutive-row ?cell-1 ?cell-3))

12 (test (same-column ?cell-1 ?cell-3))

13 (test (consecutive-row ?cell-2 ?cell-3))

14 (test (not (polynomial ?lhs))

15 (test (not (has-var-term ?rhs))

16 ?special-tutor-fact-correct <- (special-tutor-fact-correct)

17 =>

18 (bind ?new-lhs (remove-last-const-term ?lhs))

19 (modify ?cell-3 (value ?new-lhs))

20 (modify ?special-tutor-fact-correct

21 (selection ?name198)

22 (action UpdateTable)

23 (input ?new-lhs)

24 (hint-message

25 (construct-message

26 [ Try to translate a constant trem from ?lhs to ?rhs ]

27 [ What is the last constant term in ?lhs ]

28 [ Write ?new-lhs into the blank cell under ?lhs ] ) ) )

29 )



Given a GUI and a set of predicate and operator sym-
bols, the authors now demonstrate the task. That is, they 
solve a number of problems through the GUI in a way that 
the human students are supposed to perform. A problem-
solving step is segmented when the selection-action-input 
(SAI) tuple is observed.  

For each problem-solving step, the authors must spec-
ify the following: (1) focus of attention that is a set of ele-
ments in GUI that has contributed to the step performed, 
and (2) a unique name of the step, which corresponds to 
the name of a production rule to be induced for the step. 
Individual problem-solving steps are recorded along with 
the SAI tuple, focus of attention, and the name of the step.  

Each time a problem-solving step is demonstrated, 
Simulated Student attempts to model trace the step. The 
result of this attempt is visualized in CTAT so that the 
author can immediately know the correctness of produc-
tion rules induced by Simulated Student by the current 
point. If a demonstrated step can not be model traced, then 
the Simulated Student attempts to “refine” the production 
rules by reading all demonstrations performed so far and 
re-compiling a whole set of production rules. The author is 
then asked to solve another problem.  

That all of the problem-solving steps are successfully 
model traced and the author agrees with the result of the 
model trace implies that the current set of production rules 
are correctly generalized with respect to demonstrations 
performed so far, hence it is reasonable to stop demon-
strating on new problems. At this point, the authors can 
either test the production rules, or modify them manually. 
To test the production rules, authors provide a new prob-
lem, and let the Simulated Students solve it. If any steps 
turned to be wrong (even if the model says it is correct), 
then the author provides a negative feedback (i.e., signals 
that it is wrong and provides a correct SAI tuple). The 
Simulated Students then re-induce production rules by 
merging the feedback to the previous demonstrations.  

To modify production rules, which are represented in 
Jess language, the authors can use the Production Rule 
Editor embedded in CTAT.  

Learning Techniques 

As mentioned in a previous section, we have decom-
posed the task of learning production rules into three com-
ponents: WME-paths, feature tests, and operators. The first 
two components are in LHS and the last one is in RHS. The 
Simulated Students induce each of these parts separately 
from authors’ demonstrations.  

Search for WME-paths. An algorithm for a search for 
working-memory elements (WMEs) thoroughly depends on 
the structure of the working memory. The current imple-
mentation of Cognitive Tutor assumes that all WMEs can 
be reached by following a path from the problem WME, 
and there must be no multiple paths for any of the WMEs. 
Given these restrictions, a search for WMEs appearing in a 
production rule is indeed a search for WME paths for each 
of those WMEs. Since there is no multiple paths in the tree, 

and there are at most finitely many WMEs, this search 
should be straightforward given that binding a list to a mul-
tivariable is taken care of. An example might best explain 
this issue.  

The step trans-lr-lhs shown in Figure 2 can be 
used not only for an equation at the first row, but for any 
equations at any row. Hence, in general terms, the rule 
trans-lr-lhs should be read something like “given any 
non-empty cell in the first column (i.e., the column repre-
senting the left-hand side) and a non-empty cell on the 
same row in the second column (i.e., the right-hand side), 
drop the last term of the polynomial expression in the first 
cell, and enter the result in a cell immediately below the 
first cell.” Notice that the first cell can be any cell on the 
left-hand side; this is where the multivariable takes place. 
In Figure 2, the “any non-empty cell in the first column” 
corresponds to the variable ?cell-1 bound at the line 4 as 
a value of the cells slot. Since the variable ?cell-1 can be 
any member in the list in the cells slot, it is preceded by a 
multivariable $?m208, which would be bound to a list of 
arbitrary number of elements.  

In sum, there are two patterns to bind elements in a list: 
(1) Binding an element at its absolute location with a (non-
multi) variable following absolute number of non-
multivariables. An example of this pattern can be found at 
the first line in Figure 2 where the variable ?table is 
bound as the first element in a list with three elements. (2) 
Binding an element as an arbitrary element in the list with a 
(non-multi) variable following a multivariable. An example 
of this pattern can be found at the third line in Figure 2 
where the variable ?cell-1 can be any element (a cell) in 
the cells slot. In terms of the “generality” of the representa-
tion that defines a version space for the search for working 
memory elements, the latter is more general than the former. 

Since Authors specifies all WMEs appearing in each 
production rule, the task of searching WMEs for a particu-
lar production rule is really a search for the least general 
WME paths for each of those specified WMEs. This can be 
done by a brute-force depth-first search given that search 
space is structured as a version space where the least gen-
eral state contains no multivariables to bind a list element 
whereas the most general state uses multivariables for all 
list bindings. 

Search for feature tests. Simulated Students utilize 
FOIL [5] to induce feature tests. They generate an input 
data to FOIL for each of the production rule, which con-
sists of the specification of types, a target relation, and 
supporting relations.

1
 Figure 3 shows an example of a 

FOIL input data where these three categories of informa-
tion are shown as “Types,” “Training data,” and “Back-
ground knowledge.”  

The figure shows a FOIL input for the production rule 
trans-lr-lhs. The target relation is specified as a literal 
                                                           
1
 In the original literature [5], both the target relation and 

supporting relations are simply called “relations.” However, 
for the sake of explanation, we call relations that are not a 

target relation the supporting relations.  



trans-lr-lhs with two arguments. The number of focus 
of attention for this production rule is three, but that in-
cludes the WME where the new value is entered. Since the 
third WME (i.e., the “Selection” WME) is empty at the 
time when LHS is evaluated, it has no information for a 
search for distinctive features. Thus, it is eliminated from 
the target relation.  

To compile an input data for a particular production 
rule, Simulated Student performs the following procedure 
each time a problem-solving step is demonstrated: 

1. Let I be the demonstration. Let R be a name of the 

problem-solving step annotated for I. Let V be a set 

of values specified as a focus of attention for I except 

the “Input,” that is, the value to be entered in the se-

lection WME. Let D be a partial input data that has 

been compiled for R so far (if any). If such D does 

not exist, then create an empty D for R.  

2. For each feature predicate p, do following steps. 

2.1. Let n be the number of arguments of p. Let C 

be all possible n-permutations of values speci-

fied as focus of attention; C = {(v1, …, vn) | vi ∈ 

V}.  

2.2. For each c in C, if p(c) holds, then add c to a 

positive tuple of p for D. Otherwise add c to a 

negative tuple.  

3. Add all elements in V as a positive tuple of the target 

relation for D.  

4. For each production rule R’ that is not R, add all ele-

ments in V as a negative tuple of the target relation 

for D’, an input data for R’, iff the number of argu-

ments for the target relation agrees with the number 

of elements in V.  

Search for operators. Recall that Authors specify the 
value of “Input” and other values that were involved in the 
problem-solving step (i.e., the focus of attention) as a man-
datory part of demonstration.  

Given these, the operators in the right-hand side can be 
searched as a sequence of operator applications that yields 
the “Input” value from the other values. The current ver-
sion of Simulated Student simply applies the iterative-
deepening depth-first search to find a shortest operator se-
quence. Starting from no operator, the search space is ex-
plored by adding one operator at the time until either it 
reaches a depth limit or the combination of the operator 
generates the desired “Input” value. A similar technique is 
applied in Richards et al [6], but their search is bidirec-
tional whereas the proposed search is more straightforward.  

Related Studies 

FOIL is one of the most efficient and robust learning 
tools that has been widely used in very many studies. Lau 
et al, for example, used FOIL as their earlier work [7]. 
There are several variations of FOIL and improvement (see, 
for example, [8]).  

Programming by Demonstration (PbyD) has been 
proven to be effective for novice programmers to improve 
their productivities. Lau et al, for example, applied PbyD 
technique for editing macros used in a text editor [9]. It has 
been claimed that PbyD learns target language with a small 
number of examples.  

 There has been a number of studies reported so far to 
integrate PbyD into authoring tool to build intelligent tutors. 
Jarvis et al built a machine learning agent for Cognitive 
Tutor [10]. They have successfully identified WME paths 
and a sequence of operators, but they have not addressed 
the issue of feature extraction on the condition part hence 
their production rules tended to be overly generalized. 
Blessing also applied a PbyD technique to authoring tool 
for Cognitive Tutors, called Demonstr8 [11]. Demonstr8 
can induce WME paths and the action part from authors’ 
demonstrations. It also has a tool for authors to manually 
specify feature tests that must be embedded into the condi-
tion part. Such kinds of feature tests were apparently pre-
defined and hard coded into Demonstr8 hence the flexibil-
ity for authors to add new features were unclear.  

In the current study all necessary feature tests are auto-
matically identified and embedded into production rules. 
Simulated Students are modular in both feature tests and 
RHS operators hence new predicate and operator symbols 
can be added and deleted easily.  

Evaluation 

To evaluate efficiency and usefulness of the Simulated 
Students, we have conducted an evaluation with algebra 
equation as an example subject domain.  

Since we have yet to integrate the Simulated Student 
into CTAT, the evaluation was done within a quasi-
authoring environment where we first built an interface for 
the Equation Tutor and then provide demonstrations with a 
text file. The output (i.e., a set of production rules) from the 
Simulated Student was manually verified, instead of load-

 Types:

V2: x-5, x+2, 3x+2.
V1: x, x-5, x+2, 3x, 3x+2.
V0: x, 3, 6, 3x, 11.
T1: 3, 6, 11, -3x+11, 4, 12, 9, 3+5, 6-2, 11-2.
V4: 1, 3.
T0: x-5, x+2, 3x+2, 2, 3x, 2x, 4x, x.

V3: x, 3x.

Training data: Background knowledge:

+trans-lr-lhs(x-5, 3)
+trans-lr-lhs(x+2, 6)
+trans-lr-lhs(3x+2, 11)
-trans-lr-lhs(2, -3x+11)
-trans-lr-lhs(3x, 6)
-trans-lr-lhs(2x, 4)
-trans-lr-lhs(4x, 12)
-trans-lr-lhs(3x, 9)
-trans-lr-lhs(x, 3+5)
-trans-lr-lhs(x, 6-2)
-trans-lr-lhs(3x, 11-2)

+Monomial(x)
+Monomial(3)

+Monomial(6)
+Monomial(3x)
+Monomial(11)

… … …

+VarTerm(x)
+VarTerm(x-5)
+VarTerm(x+2)

+VarTerm(3x)
+VarTerm(3x+2)
… … …

Figure 3: An example of the input to FOIL 



ing it to Equation Tutor and getting model traced on new 
problems.  

The evaluation was run on a PC with Pentium IV 
3.4GHz processor with 1GB RAM. The Simulated Student 
was written in Java. So far, we have finished implementing 
the main inference engine for the Simulated Students. Cur-
rently, they do not output induced production rules in the 
target language (i.e., Jess), but they do indeed induce all 
information to compile production rules, that is, WME 
paths, feature tests, and RHS operators. Thus, in the fol-
lowing sections, the evaluation of the quality of “produc-
tion rule” was done manually. FOIL was invoked as an 
external process with a file based communication.  

Methods and Materials 

We used 8 feature predicates and 13 operators as back-
ground knowledge. Total of 44 steps were demonstrated to 
solve 10 problems shown in Table 1. Those problems were 
solved by 10 different rules (shown in Table 2). In other 
words, the Simulated Students were supposed to induce 10 
production rules from 44 demonstrated steps.  

Results and Discussions 

7 out of 10 production rules were correctly induced af-
ter 10 problems were demonstrated. Two of 3 overly gen-
eralized rules were plausible.  

To have better understanding on how the learning oc-
curred, we conducted an item analysis. Each time a prob-
lem is solved by an author, we let the Simulated Student 
induce production rules with all demonstrations performed 
by that point. We then examine, for each production rule, 
how each part of the production rule (i.e., WME-path, fea-
ture test, and operators) was induced.  

Surprisingly, Simulated Students always induced cor-
rect WME-path. That is, in the current experiment, only a 
single demonstration is enough to correctly identify WME-
path.  

What makes learning so complicated was acquisition of 
feature tests and operators. Figure 4 shows a chronological 

improvement in learning each production rule. The figure 
shows problems in the order that they were demonstrated. 
The top row in the remaining columns shows names of the 
production rules.  

A shaded cell shows that a corresponding production 
rule appeared in the demonstration. It must be emphasized 
that, as described in a previous section, a demonstration on 
a particular problem-solving step is not only used as a posi-
tive example for the specified production rule, but it also 
served as a negative example for the other production rules. 
Thus, a quality of production rule might improve on a 
demonstration that does not involve that rule. See, for ex-
ample, the rule div-lhs. Its first feature tests were cap-
tured (though they were overly generalized) on the 4th 
problem that does not involve div-lhs. It must be also 
emphasized that blank cells do contribute for learning by 
serving as negative examples. Thus, do-arith[metic]-
lhs, for example, had 3 positive examples (shaded ones) 
and 7 negative examples (the first 7 blank cells in the same 
column).  

A cell with “C” shows that the corresponding produc-
tion rule was a correct generalization of the demonstrations. 
The cells with “P” and “W” both shows that the Simulated 
Students induced a production rule, but it was overly gen-
eralized. The difference between “P” and “W” is that the 
application of the former (plausible) production rule yields 
a correct performance, but such application is strategically 
not optimal (i.e., yielding redundant steps), whereas the 
application of latter (wrong) production rule might lead to a 
wrong result.  

No Problem div-lhs div-rhs trans-lr-lhs trans-lr-rhs copy-lhs do-arith-rhs trans-rl-lhs trans-rl-rhs do-arith-lhs copy-rhs

1 3x = 6 P P

2 2x = 4 P P

3 4x = 12 P P

4 x - 5 = 3 P P W W P C

5 x + 2 = 6 P P W W P C

6 2 = -3x + 11 C P W W P C P W

7 3x - 4 = 2 C P W W P C P W

8 2x + 3x = 3 + 7 C P W W P C P W P P

9 3x = 2x + 4 C C W W C C C W P P

10 3x - 3 = 2x + 5 C C C C C C C W P P

Figure 4: Results over sequential learning from demonstration.  W: The application of the rule might generate 
a wrong result. P: The rule is overly generalized hence the application of the rule might not be strategically optimal 

but a result of the rule application is correct. C: The rule is correct. A shaded cell shows that the corresponding 

production rule appears in the demonstration.  

Table 1: Problems used for the evaluation 

3x = 6, 2x = 4, 4x = 12,  
x – 5 = 3, x + 2 = 6,  
2 = –3x + 11,  
3x – 4 = 2,  
2x + 3x = 3 + 7,  
3x = 2x + 4,  
3x – 3 = 2x + 5 

 



An example of incorrectly generalized rule (a “W” in 
Figure 4) is trans-lr-lhs learned from problem #4 
through #9 where the RHS operator says “write the first 
variable term into the target (“Selection”) cell.” While this 
rule correctly produces “3x=4–2” from “3x+2=4,” given 
that trans-lr-rhs is correctly induced, it incorrectly produces 
“3x=4–2” from “3x + 2x + 2 = 4.”  

An example of plausible over-generalization (“P”) is a 
rule div-rhs learned from problem #4 through #5 where 
the feature tests in LHS say “apply this rule when LHS is a 
monomial and has a coefficient.” The RHS operators of 
this rule was correct hence the application of this rule al-
ways generates correct result, but since the conditions in 
LHS is still weak (i.e., overly generalized) this rule could 
apply to “3x = 2x + 5,” which is not a recommended strat-
egy.  

There are several interesting observations read from 
Figure 4:  

1. All but one (do-arith[metic]-rhs) production 
rules required a few (3 to 8) examples to make a cor-
rect generalization.  

2. All but one (do-arith[metic]-rhs) production 
rules required both positive and negative examples 
for appropriate generalization. 

3. Learning was monotonic, that is, once a correct gen-
eralization is made, it is never incorrectly modified. 
Figure 5 shows ratio of correct and plausible gener-
alizations to the number of production rules to be 
learned for each demonstration.  

4. There were a few incorrect generalizations observed 
that could have been learned by human students as 
well (plausibly incorrect generalizations). 

These results show that the Simulated Students learn 
cognitive skills by observing teachers demonstrations in a 
similar way human students do, namely, they make overly 
generalized rules that are sometimes wrong and sometimes 
plausible.  

A potentially interesting issue is to explore the impact 
of curriculum on learning. Namely, what if we change the 
order of problems to demonstrate? In the current experi-
ment, we started to demonstrate very simple problems that 
can be solved in a single line (i.e., the solution that imme-
diately follows the initial equation). We then gradually 
increased a level of complexity of the problem by introduc-
ing a few new production rules. The learning results may 
well be affected by the choice and sequencing of prob-
lems [12] and we plan future experiments to test alternative 
curriculum sequences and whether they lead to or prevent 
errors observed by students.  

Conclusion 

Although the size of experiment was rather small (10 
production rules on 10 problems), the experiment showed a 
potential usefulness of the Simulated Students. That most 
production rules were correctly generalized in at most 8 
demonstrations was rather surprising result. The simulated 
Students also showed a wrong but plausible generalization 
that human students might have learned as well. The major 
goal of the current study – learning human comprehensible 
cognitive models in a human-like way – has been tested 
affirmatively.  

The current study has potential benefits not only of de-
veloping an intelligent authoring tool to educators, but also 
a test bed to explore principle in human learning from wor-
ked-out examples and problem solving (see, for exam-
ple, [13]). Observing how incorrect but plausible generali-
zations would be made might be one of the most interesting 
issues.  

We have yet to complete the integration of Simulated 
Students into CTAT so that an evaluation of the overall 
authoring environment can be done in an authentic situation 
with real human educators.  
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Table 2: Problem-solving steps demonstrated 

Name Description 

copy-lhs Copy an expression in an immedi-

ately above line on the left-hand 
side (LHS) 

copy-rhs Copy an expression in an immedi-

ately above line on the right-hand 
side (RHS) 

trans-lr-lhs Given a polynomial expression on 

the LHS with a constant term(s), 

remove the constant term and 
enter the resulting expression into 

the LHS on the following line 

trans-lr-rhs Given that trans-lr-lhs has 

been taken place in the previous 

step, add the term removed to the 

expression on the RHS 

trans-rl-lhs Similar to trans-lr-lhs, but 

transfer a variable term from the 

RHS to LHS  

trans-rl-rhs Similar to trans-lr-rhs, but 

transfer a variable term from the 

RHS to LHS  

div-lhs Given a variable term on the LHS, 
and a constant term on the RHS, 

divide the term on the LHS with 

its coefficient 

div-rhs Given that div-lhs has been 

taken place in the previous step, 

divide the constant term on the 

RHS with the same coefficient 

do-arithmetic-lhs Given a polynomial expression on 

the LHS that does not contain any 

variable terms, simplify it by add-

ing all terms 

do-arithmetic-rhs Given a polynomial expression on 

the RHS that does not contain any 

variable terms, simplify it by add-
ing all terms 

 
 


