

Hybrid Models for Text and Graphs

10/23/2012 Analysis of Social Media

Newswire Text

- Formal
- Primary purpose:
 - Inform "typical reader" about recent events
- Broad audience:
 - Explicitly establish shared context with reader
 - Ambiguity often avoided

Social Media Text

- Informal
- Many purposes:
 - Entertain, connect, persuade...
- Narrow audience:
 - Friends and colleagues
 - Shared context already established
 - Many statements are ambiguous out of social context

Newswire Text

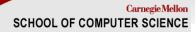
- Goals of analysis:
 - Extract information about events from text
 - "Understanding" text requires understanding "typical reader"
 - conventions for communicating with him/ her
 - Prior knowledge, background, ...

Social Media Text

- Goals of analysis:
 - Very diverse
 - Evaluation is difficult
 - And requires revisiting often as goals evolve
 - Often "understanding" social text requires understanding a *community*

Outline

- Tools for analysis of text
 - Probabilistic models for text, communities, and time
 - Mixture models and LDA models for text
 - LDA extensions to model hyperlink structure
 - LDA extensions to model time



 π

Ζ

W

Ν

Introduction to Topic Models

- Mixture model: unsupervised naïve Bayes model
 - Joint probability of words and classes:

$$\prod_{d=1}^{M} P(w_1, \cdots, w_{N_d}, z_d | \beta, \pi) = \prod_{d=1}^{M} \left\{ \pi_{z_d} \prod_{n=1}^{N_d} \beta_{z_d, w_n} \right\}$$

• But classes are not visible:

$$\prod_{d=1}^{M} P(w_1, \cdots, w_{N_d} | \pi, \beta) = \prod_{d=1}^{N_d} \left\{ \sum_{k=1}^{K} \left(\pi_k \prod_{n=1}^{N_d} \beta_{k, w_n} \right) \right\}$$

Latent Dirichlet Allocation

JMLR, 2003

David M. Blei

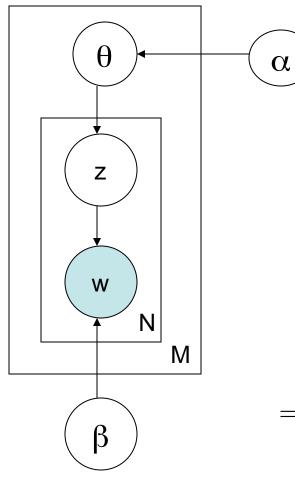
Computer Science Division University of California Berkeley, CA 94720, USA

Andrew Y. Ng Computer Science Department Stanford University Stanford, CA 94305, USA

Michael I. Jordan

Computer Science Division and Department of Statistics University of California Berkeley, CA 94720, USA

Latent Dirichlet Allocation

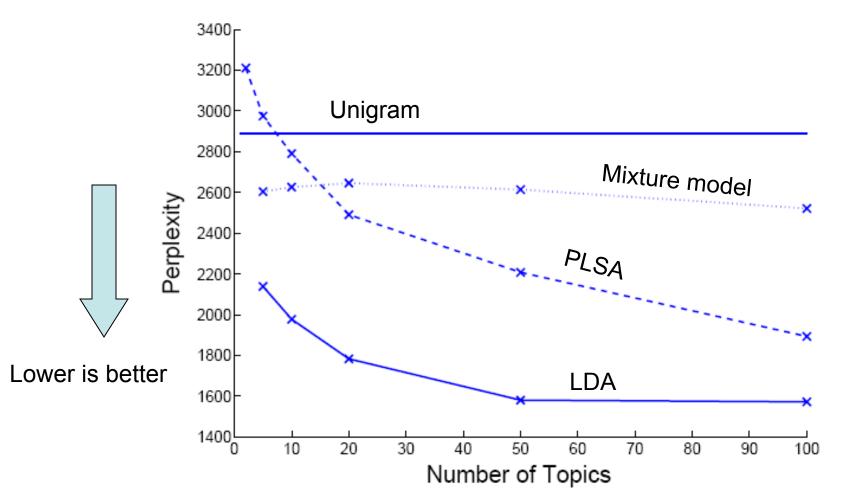


- For each document $d = 1, \dots, M$
 - Generate $\theta_d \sim \text{Dir}(.|\alpha)$
 - For each position $n = 1, \dots, N_d$
 - generate $z_n \sim Mult(. | \theta_d)$
 - generate $w_n \sim Mult(.|\beta_{z_n})$

$$\prod_{d=1}^{N_d} P(w_1, \cdots, w_{N_d} | \beta, \alpha)$$
$$\prod_{d=1}^{N_d} \int_{\theta_d} P(\theta_d | \alpha) \left\{ \prod_{n=1}^{N_d} \left(\sum_k \theta_{dk} \beta_{kw_n} \right) \right\} d\theta_d$$

- Latent Dirichlet Allocation
 - Overcomes some technical issues with PLSA
 - PLSA only estimates mixing parameters for training docs
 - Parameter learning is more complicated:
 - Gibbs Sampling: easy to program, often slow
 - Variational EM

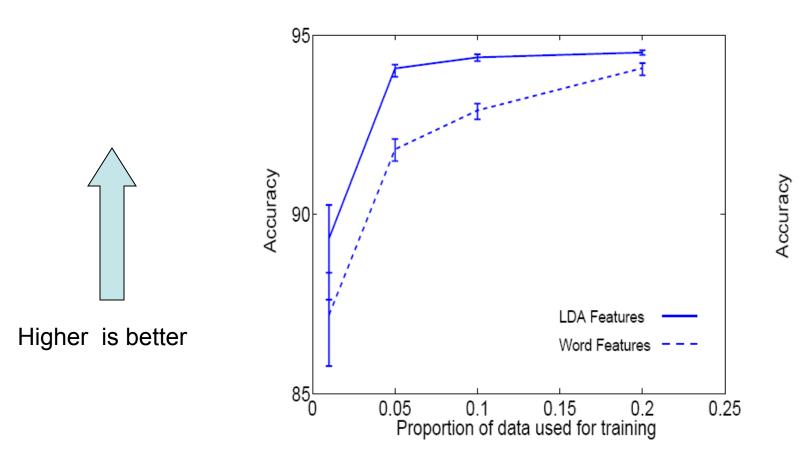
Perplexity comparison of various models



Carnegie Mellon SCHOOL OF COMPUTER SCIENCE

Introduction to Topic Models

 Prediction accuracy for classification using learning with topic-models as features



Before LDA....LSA and pLSA

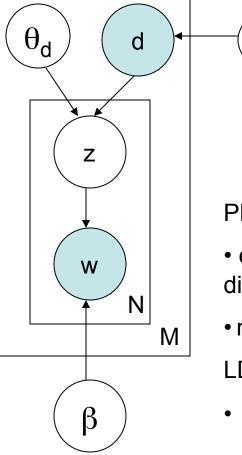
Probabilistic Latent Semantic Analysis

To appear in: Uncertainity in Artificial Intelligence, UAI'99, Stockholm

Thomas Hofmann

EECS Department, Computer Science Division, University of California, Berkeley & International Computer Science Institute, Berkeley, CA hofmann@cs.berkeley.edu

Probabilistic Latent Semantic Analysis Model



- Select document d ~ $Mult(\pi)$
 - For each *position* $n = 1, \dots, N_d$
 - generate $z_n \sim Mult(| \theta_d)$ Topic generate $w_n \sim Mult(| \beta_{z_n})$

PLSA model:

 π

- each word is generated by a single unknown multinomial distribution of words, each document is mixed by θ_{d}
- need to estimate θ_d for each d \rightarrow overfitting is easy LDA:
- integrate out θ_d and only estimate β

PLSA topics (TDT-1 corpus)

"plane"	"space shuttle"	"family"	"Hollywood"
plane	space	home	film
airport	$\mathbf{shuttle}$	family	movie
crash	mission	like	music
flight	astronauts	love	new
safety	launch	kids	\mathbf{best}
aircraft	station	mother	hollywood
air	crew	life	love
passenger	nasa	happy	actor
board	$\mathbf{satellite}$	friends	entertainment
airline	earth	$_{ m cnn}$	star

Outline

- Tools for analysis of text
 - Probabilistic models for text, communities, and time
 - Mixture models and LDA models for text
 - · LDA extensions to model hyperlink structure
 - LDA extensions to model time
 - Alternative framework based on graph analysis to model time & community
 - Preliminary results & tradeoffs
- Discussion of results & challenges

Hyperlink modeling using PLSA

The Missing Link - A Probabilistic Model of Document Content and Hypertext Connectivity

David Cohn Burning Glass Technologies 201 South Craig St, Suite 2W Pittsburgh, PA 15213 david.cohn@burning-glass.com

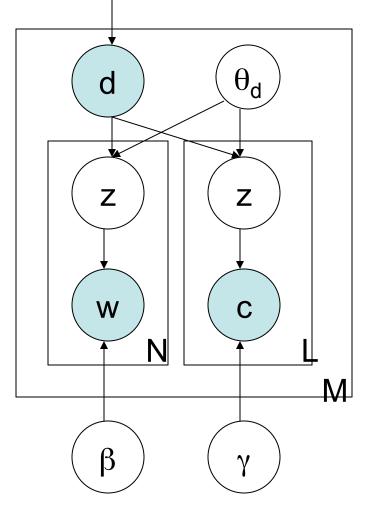
Thomas Hofmann Department of Computer Science Brown University Providence, RI 02192 th@cs.brown.edu

Carnegie Mellon SCHOOL OF COMPUTER SCIENCE

π

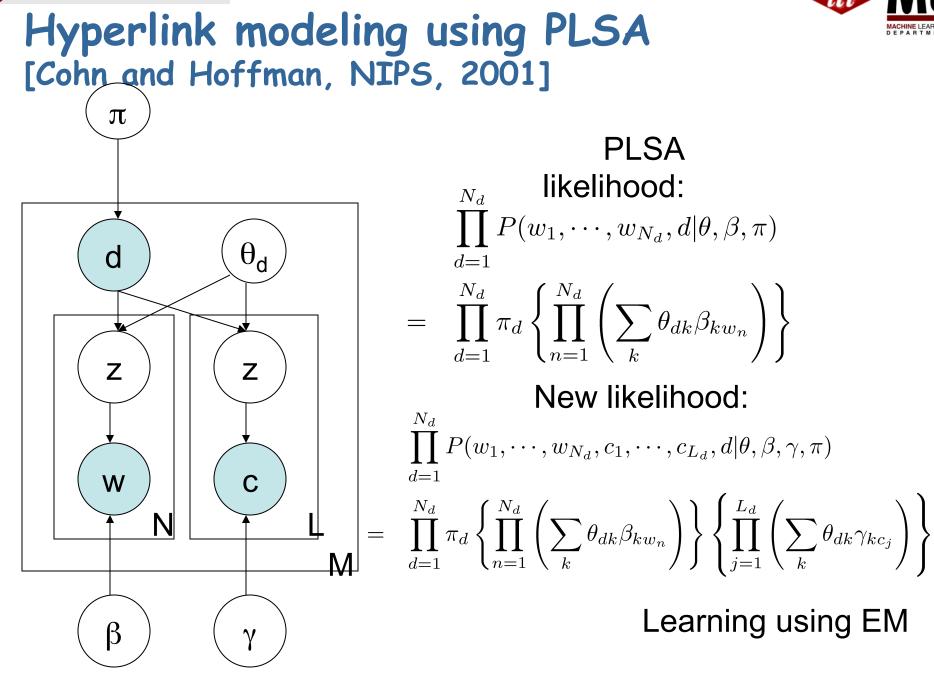
Hyperlink modeling using PLSA

[Cohn and Hoffman, NIPS, 2001]



- Select document d ~ $Mult(\pi)$
 - For each position $n = 1, \dots, N_d$
 - generate $z_n \sim Mult(. | \theta_d)$
 - generate $w_n \sim Mult(. | \beta_{z_n})$
 - For each citation $j = 1, \dots, L_d$
 - generate $z_j \sim Mult(. | \theta_d)$
 - generate $c_j \sim Mult(. | \gamma_{z_j})$

SCHOOL OF COMPUTER SCIENCE



Hyperlink modeling using PLSA [Cohn and Hoffman, NIPS, 2001]

Heuristic:

$$= \prod_{d=1}^{N_d} P(w_1, \cdots, w_{N_d}, c_1, \cdots, c_{L_d}, d | \theta, \beta, \gamma, \pi)$$

$$= \prod_{d=1}^{N_d} \pi_d \left\{ \prod_{n=1}^{N_d} \left(\sum_k \theta_{dk} \beta_{kw_n} \right) \right\}^{\alpha} \left\{ \prod_{j=1}^{L_d} \left(\sum_k \theta_{dk} \gamma_{kc_j} \right) \right\}$$
(1- α)

 $0 \cdot \alpha \cdot 1$ determines the relative importance of content and hyperlinks

Hyperlink modeling using PLSA [Cohn and Hoffman, NIPS, 2001]

- Experiments: Text Classification
- Datasets:

SCHOOL OF COMPUTER SCIENCE

- Web KB

Carnegie Mellor

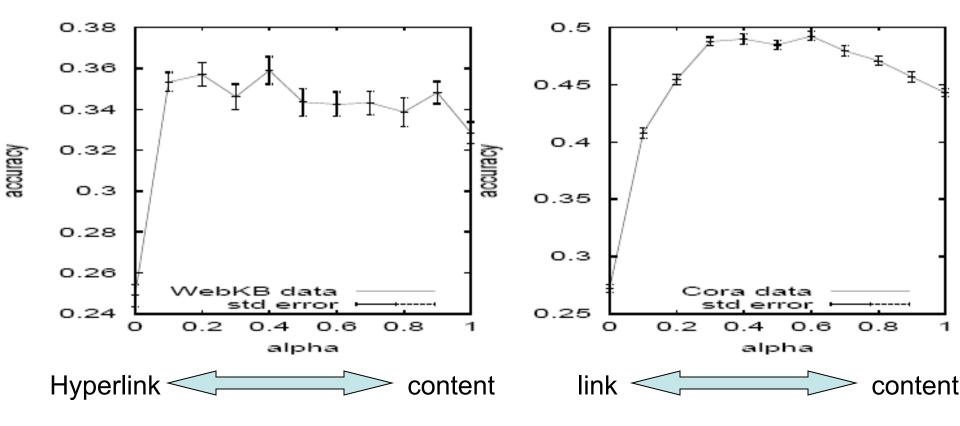
- 6000 CS dept web pages with hyperlinks
- 6 Classes: faculty, course, student, staff, etc.
- Cora
 - 2000 Machine learning abstracts with citations
 - 7 classes: sub-areas of machine learning
- Methodology:
 - Learn the model on complete data and obtain $\boldsymbol{\theta}_{d}$ for each document
 - Test documents classified into the label of the nearest neighbor in training set
 - Distance measured as cosine similarity in the $\boldsymbol{\theta}$ space
 - Measure the performance as a function of $\boldsymbol{\alpha}$

Hyperlink modeling using PLSA [Cohn and Hoffman, NIPS, 2001]

Classification performance

Carnegie Mellon

SCHOOL OF COMPUTER SCIENCE

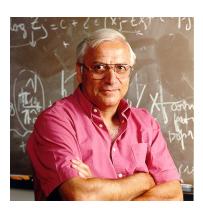


Hyperlink modeling using LDA

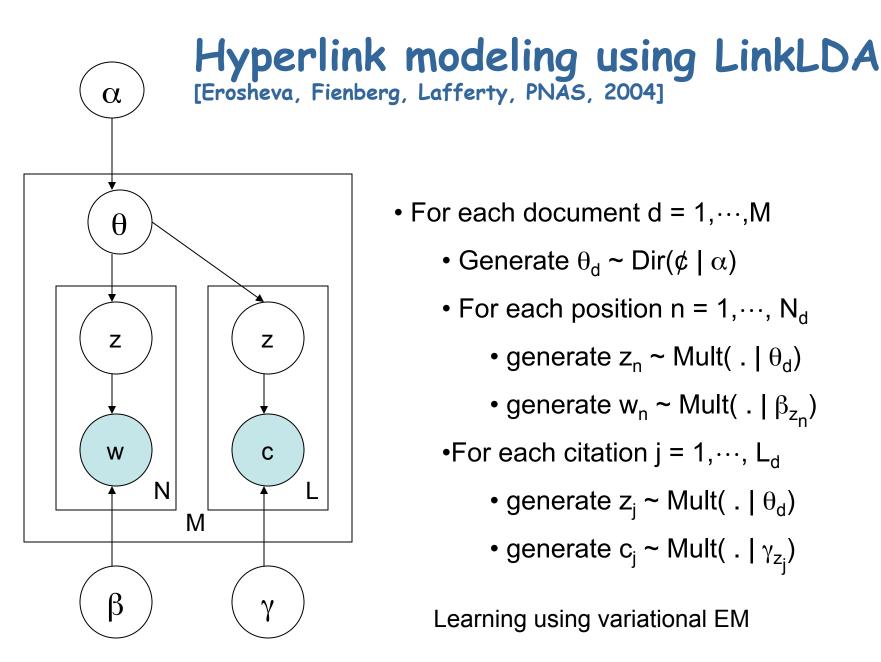
Mixed-membership models of scientific publications

Elena Erosheva*†, Stephen Fienberg‡§, and John Lafferty§¶

*Department of Statistics, School of Social Work, and Center for Statistics and the Social Sciences, University of Washington, Seattle, WA 98195; and *Department of Statistics, *Computer Science Department, and *Center for Automated Learning and Discovery, Carnegie Mellon University, Pittsburgh, PA 15213



Carnegie Mellon SCHOOL OF COMPUTER SCIENCE



Hyperlink modeling using LDA [Erosheva, Fienberg, Lafferty, PNAS, 2004]

Author HAMILL OP LAEMMLI UK HILLE B BLISS TVP	Journal, Year PFLUG ARCH EUR J PHY, 1981 Nature, 1970 IONIC CHANNELS EXCIT, 1992	72 322
LAEMMLI UK HILLE B	Nature, 1970	322
HILLE B	Nature, 1970	
	IONIC CHANNELS EXCIT, 1992	20
BLISS TVP		58
	NATURE, 1993	54
SUDHOF TC	NATURE, 1995	33
GRYNKIEWICZ G	J BIOL CHEM, 1985	31
SAMBROOK J	MOL CLONING LAB MANU, 1989	764
SHERRINGTON R	NATURE, 1995	33
ROTHMAN JE	NATURE, 1994	27
SIMONS K	NATURE, 1997	35
SOLLNER T	NATURE, 1993	25
ROTHMAN JE	SCIENCE, 1996	24
THINAKARAN G	NEURON, 1996	23
TOWBIN H	P NATL ACAD SCI USA, 1979	86
BERMAN DM	CELL, 1996	21
	SAMBROOK J SHERRINGTON R ROTHMAN JE SIMONS K SOLLNER T ROTHMAN JE THINAKARAN G TOWBIN H	SAMBROOK JMOL CLONING LAB MANU, 1989SHERRINGTON RNATURE, 1995ROTHMAN JENATURE, 1994SIMONS KNATURE, 1997SOLLNER TNATURE, 1993ROTHMAN JESCIENCE, 1996THINAKARAN GNEURON, 1996TOWBIN HP NATL ACAD SCI USA, 1979

acid

Newswire Text

- Goals of analysis:
 - Extract information about events from text
 - "Understanding" text requires understanding "typical reader"
 - conventions for communicating with him/ her
 - Prior knowledge, background, ...

Social Media Text

- Goals of analysis:
 - Very diverse
 - Evaluation is difficult
 - And requires revisiting often as goals evolve
 - Often "understanding" social text requires understanding a community

Science as a testbed for social text: an *open* community which we understand

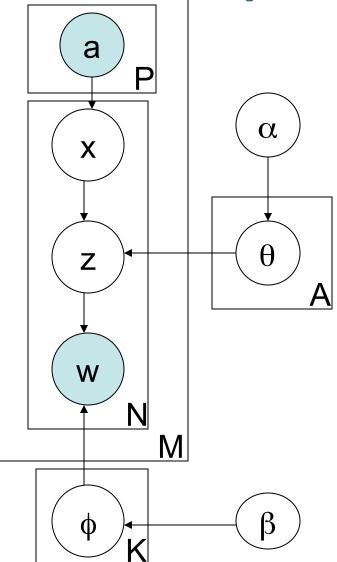
Author-Topic Model for Scientific Literature

The Author-Topic Model for Authors and Documents

Michal Rosen-Zvi Dept. of Computer Science UC Irvine Irvine, CA 92697-3425, USA Stanford, CA 94305, USA

Thomas Griffiths Dept. of Psychology Stanford University

Padhraic Smyth Mark Steyvers Dept. of Cognitive Sciences Dept. of Computer Science UC Irvine UC Irvine Irvine, CA 92697, USA Irvine, CA 92697-3425, USA

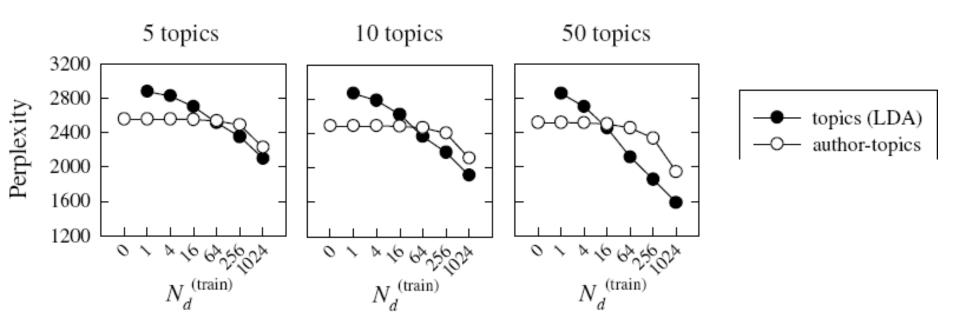


- For each author $a = 1, \dots, A$
 - Generate $\theta_a \sim \text{Dir}(. | \gamma)$
- For each topic k = 1,...,K
 - Generate $\phi_k \sim \text{Dir}(\ | \ \alpha)$
- •For each document d = 1,...,M
 - For each position $n = 1, \dots, N_d$

•Generate author x ~ Unif(. | a_d)

- generate $z_n \sim Mult(. | \theta_a)$
- generate $w_n \sim Mult(. | \phi_{z_n})$

Perplexity results



Topic-Author visualization

TOPIC 209				
WORD PRO				
PROBABILISTIC	0.0778			
BAYESIAN	0.0671			
PROBABILITY	0.0532			
CARLO	0.0309			
MONTE	0.0308			
DISTRIBUTION	0.0257			
INFERENCE	0.0253			
PROBABILITIES	0.0253			
CONDITIONAL	0.0229			
PRIOR	0.0219			
AUTHOR	PROB.			
AUTHOR Friedman_N				
	0.0094			
Friedman_N	0.0094 0.0067			
Friedman_N Heckerman_D	0.0094 0.0067			
Friedman_N Heckerman_D Ghahramani_Z	0.0094 0.0067 0.0062			
Friedman_N Heckerman_D Ghahramani_Z Koller_D	0.0094 0.0067 0.0062 0.0062			
Friedman_N Heckerman_D Ghahramani_Z Koller_D Jordan_M	0.0094 0.0067 0.0062 0.0062 0.0059			
Friedman_N Heckerman_D Ghahramani_Z Koller_D Jordan_M Neal_R Raftery_A	0.0094 0.0067 0.0062 0.0062 0.0059 0.0055			
Friedman_N Heckerman_D Ghahramani_Z Koller_D Jordan_M Neal_R Raftery_A	0.0094 0.0067 0.0062 0.0062 0.0059 0.0055 0.0054			

TOPIC 19			
WORD	PROB.		
LIKELIHOOD	0.0539		
MIXTURE	0.0509		
EM	0.0470		
DENSITY	0.0398		
GAUSSIAN	0.0349		
ESTIMATION	0.0314		
LOG	0.0263		
MAXIMUM	0.0254		
PARAMETERS	0.0209		
ESTIMATE	0.0204		
AUTHOR	PROB.		
Tresp_V	0.0333		
Singer_Y	0.0281		
Jebara_T	0.0207		
Ghahramani_Z	0.0196		
Ueda_N	0.0170		
Jordan_M	0.0150		
Roweis_S	0.0123		
Schuster_M	0.0104		
Xu_L	0.0098		
Saul_L	0.0094		

TOPIC 87				
WORD	PROB.			
KERNEL	0.0683			
SUPPORT	0.0377			
VECTOR	0.0257			
KERNELS	0.0217			
SET	0.0205			
SVM	0.0204			
SPACE	0.0188			
MACHINES	0.0168			
REGRESSION	0.0155			
MARGIN	0.0151			
AUTHOR	PROB.			
Smola_A	0.1033			
Scholkopf_B	0.0730			
Burges_C	0.0489			
Vapnik_V	0.0431			
Chapelle_O	0.0210			
Cristianini_N	0.0185			
Ratsch_G	0.0172			
Laskov_P	0.0169			
Tipping_M	0.0153			
hpping_m				

Application 1: Author similarity

Authors	n	T=400	T=200	T = 100
Bartlett_P (8)	-	2.52	1.58	0.90
Shawe-Taylor_J (8)				
Barto_A (11)	2	3.34	2.18	1.25
$Singh_S$ (17)				
Amari_S (9)	3	3.44	2.48	1.57
$Yang_H(5)$				
$Singh_S(17)$	2	3.69	2.33	1.35
Sutton_R (7)				
Moore_A (11)	-	4.25	2.89	1.87
Sutton_R (7)				
MEDIAN	-	5.52	4.01	3.33
MAXIMUM	-	16.61	14.91	13.32

Note: n is number of common papers in NIPS dataset.

Application 2: Author entropy

			1	
Author	n	T = 400	T=200	T = 100
Jordan_M	24	4.35	4.04	3.61
Fine_T	4	4.33	3.94	3.52
Roweis_S	4	4.32	4.02	3.61
Becker_S	4	4.30	4.06	3.69
Brand_M	1	4.29	4.03	3.65
MEDIAN		3.42	3.16	2.81
MINIMUM		1.23	0.78	0.58

Note: n is the number of papers by each author.

Labeled LDA:

[Ramage, Hall, Nallapati, Manning, EMNLP 2009]

For each topic $k \in \{1, \ldots, K\}$: Generate $\beta_k = (\beta_{k,1}, \dots, \beta_{k,V})^T \sim \text{Dir}(\cdot | \eta)$ For each document d: 3 For each topic $k \in \{1, \ldots, K\}$ 4 Generate $\Lambda_k^{(d)} \in \{0, 1\} \sim \text{Bernoulli}(\cdot | \Phi_k)$ Generate $\alpha^{(d)} = L^{(d)} \times \alpha$ 5 6 Generate $\theta^{(d)} = (\theta_{l_1}, \dots, \theta_{l_{M_d}})^T \sim \text{Dir}(\cdot | \alpha^{(d)})$ 7 8 For each *i* in $\{1, ..., N_d\}$: Generate $z_i \in \{\lambda_1^{(d)}, \ldots, \lambda_{M_d}^{(d)}\} \sim \text{Mult}(\cdot | \boldsymbol{\theta}^{(d)})$ 9 Generate $w_i \in \{1, \ldots, V\} \sim \operatorname{Mult}(\cdot | \boldsymbol{\beta}_{z_i})$ 10

Table 1: Generative process for Labeled LDA: β_k is a vector consisting of the parameters of the multinomial distribution corresponding to the k^{th} topic, α are the parameters of the Dirichlet topic prior and η are the parameters of the word prior, while Φ_k is the label prior for topic k. For the meaning of the projection matrix $L^{(d)}$, please refer to Eq 1.

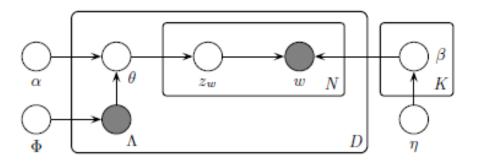


Figure 1: Graphical model of Labeled LDA: unlike standard LDA, both the label set Λ as well as the topic prior α influence the topic mixture θ .

Labeled LDA

Del.icio.us tags as labels for documents

Та	; (Labeled LDA)		(LDA) Topic	: ID
web	web search site blog css content google list page posted great work		comments read nice post great april blog march june wordpress	8
books	book image pdf review library posted read copyright books title]/	news information service web on- line project site free search home	13
science	works water map human life work science time world years sleep]	web images design content java css website articles page learning	19
comp uter	windows file version linux comp- uter free system software mac	-	jun quote pro views added check anonymous card core power ghz	4
religion	comment god jesus people gospel bible reply lord religion written	-	life written jesus words made man called mark john person fact name	3
java	applications spring open web java pattern eclipse development ajax]	house light radio media photo- graphy news music travel cover	2
culture	people day link posted time com- ments back music jane permalink	-	game review street public art health food city history science	12

Carnegie Mellon SCHOOL OF COMPUTER SCIENCE

Labeled LDA

books

- L-LDA this classic reference book is a must-have for any student and conscientious writer. Intended for
- SVM the rules of usage and principles of composition most commonly violated. Search: CONTENTS Bibliographic

language

- L-LDA the beginning of a sentence must refer to the grammatical subject 8. Divide words at
- SVM combined with the study of literature, it gives in brief space the principal requirements of

grammar

- L-LDA requirements of plain English style and concentrates attention on the rules of usage and principles of
- SVM them, this classic reference book is a must-have for any student and conscientious writer.

Figure 4: Representative snippets extracted by L-LDA and tag-specific SVMs for the web page shown in Figure 3.

Model	Best Snippet	Unanimous
L-LDA	72/149	24/51
SVM	21/149	2/51

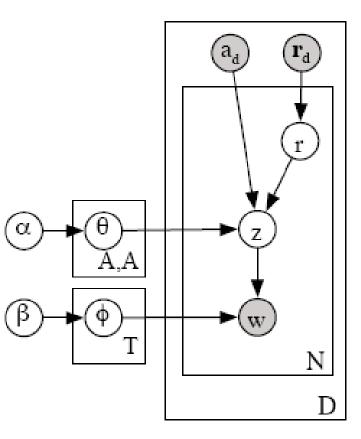
Table 2: Human judgments of tag-specific snippet quality as extracted by L-LDA and SVM. The center column is the number of document-tag pairs for which a system's snippet was judged superior. The right column is the number of snippets for which all three annotators were in complete agreement (numerator) in the subset of document scored by all three annotators (denominator).

Author-Topic-Recipient model for email data [McCallum, Corrada-Emmanuel, Wang, ICJAI'05]

The Author-Recipient-Topic Model for Topic and Role Discovery in Social Networks: Experiments with Enron and Academic Email

Andrew McCallum, Andrés Corrada-Emmanuel, Xuerui Wang Department of Computer Science University of Massachusetts Amherst Amherst, MA 01003 USA {mccallum, corrada, xuerui}@cs.umass.edu

Author-Topic-Recipient model for email data [McCallum, Corrada-Emmanuel, Wang, ICJAI'05]



$$P(z_i | \mathbf{z}_{-i}, \mathbf{x}, \mathbf{w}) \propto \frac{n_{z_i}^{w_v} + \beta_v}{\sum_v n_{z_i}^{w_v} + \beta_v} \frac{n_{x_i}^{z_i} + \alpha_{z_i}}{\sum_{z'} n_{x_i}^{z'} + \alpha_{z'}}$$

$$P(x_i | \mathbf{z}, \mathbf{x}_{-i}, \mathbf{w}) \propto \frac{n_{x_i}^{z_i} + \alpha_{z_i}}{\sum_{z'} n_{x_i}^{z'} + \alpha_{z'}}$$

Author-Topic-Recipient model for email

data [McCallum, Corrada-Emmanuel, Wang, ICJAI'05]

- Datasets
 - Enron email data
 - 23,488 messages between 147 users
 - McCallum's personal email
 - 23,488(?) messages with 128 authors

Author-Topic-Recipient model for email

data [McCallum, Corrada-Emmanuel, Wang, ICJAI'05]

Topic Visualization: Enron set

Торіс	Topic 5		Topic 17		27	Торіс	45
"Legal Con	"Legal Contracts"		"Document Review"		duling"	"Sports l	Pool"
section	0.0299	attached	0.0742	day	0.0419	game	0.0170
party	0.0265	agreement	0.0493	friday	0.0418	draft	0.0156
language	0.0226	review	0.0340	morning	0.0369	week	0.0135
contract	0.0203	questions	0.0257	monday	0.0282	team	0.0135
date	0.0155	draft	0.0245	office	0.0282	eric	0.0130
enron	0.0151	letter	0.0239	wednesday	0.0267	make	0.0125
parties	0.0149	comments	0.0207	tuesday	0.0261	free	0.0107
notice	0.0126	сору	0.0165	time	0.0218	year	0.0106
days	0.0112	revised	0.0161	good	0.0214	pick	0.0097
include	0.0111	document	0.0156	thursday	0.0191	phillip	0.0095
M.Hain	0.0549	G.Nemec	0.0737	J.Dasovich	0.0340	E.Bass	0.3050
J.Steffes		B.Tycholiz		R.Shapiro		M.Lenhart	
J.Dasovich	0.0377	G.Nemec	0.0551	J.Dasovich	0.0289	E.Bass	0.0780
R.Shapiro		M.Whitt		J.Steffes		P.Love	
D.Hyvl	0.0362	B.Tycholiz	0.0325	C.Clair	0.0175	M.Motley	0.0522
K.Ward		G.Nemec		M.Taylor		M.Grigsby	

Author-Topic-Recipient model for email

data [McCallum, Corrada-Emmanuel, Wang, ICJAI'05]

• Topic Visualization: McCallum's data

Topic 5		Topic 31		Topic 38		Topic 41	
"Grant Pr	oposals"	"Meeting Setup"		"ML Models	s"	"Friendly Di	scourse"
proposal	0.0397	today	0.0512	model	0.0479	great	0.0516
data	0.0310	tomorrow	0.0454	models	0.0444	good	0.0393
budget	0.0289	time	0.0413	inference	0.0191	don	0.0223
work	0.0245	11	0.0391	conditional	0.0181	sounds	0.0219
year	0.0238	meeting	0.0339	methods	0.0144	work	0.0196
glenn	0.0225	week	0.0255	number	0.0136	wishes	0.0182
nsf	0.0209	talk	0.0246	sequence	0.0126	talk	0.0175
project	0.0188	meet	0.0233	learning	0.0126	interesting	0.0168
sets	0.0157	morning	0.0228	graphical	0.0121	time	0.0162
support	0.0156	monday	0.0208	random	0.0121	hear	0.0132
smyth	0.1290	ronb	0.0339	casutton	0.0498	mccallum	0.0558
mccallum		mccallum		mccallum		culotta	
mccallum	0.0746	wellner	0.0314	icml04-webadmin	0.0366	mccallum	0.0530
stowell		mccallum		icml04-chairs		casutton	
mccallum	0.0739	casutton	0.0217	mccallum	0.0343	mccallum	0.0274
lafferty		mccallum		casutton		ronb	
mccallum	0.0532	mccallum	0.0200	nips04workflow	0.0322	mccallum	0.0255
smyth		casutton		mccallum		saunders	
pereira	0.0339	mccallum	0.0200	weinman	0.0250	mccallum	0.0181
lafferty		wellner		mccallum		pereira	

Author-Topic-Recipient model for email

data [McCallum, Corrada-Emmanuel, Wang, ICJAI'05]

Pairs considered most alike by ART					
User Pair	Description				
editor reviews	Both journal review management				
mike mikem	Same person! (manual coref error)				
aepshtey smucker	Both students in McCallum's class				
coe laurie	Both UMass admin assistants				
mcollins tom.mitchell	Both ML researchers on SRI project				
mcollins gervasio	Both ML researchers on SRI project				
davitz freeman	Both ML researchers on SRI project				
mahadeva pal	Both ML researchers, discussing hiring				
kate laurie	Both UMass admin assistants				
ang joshuago	Both on org committee for a conference				
Pairs considered most alike by SNA					
1 an 5 cc	historico most anke by britk				
User Pair	Description				
User Pair aepshtey rasmith donna editor	Description				
User Pair aepshtey rasmith	Description Both students in McCallum's class				
User Pair aepshtey rasmith donna editor	Description Both students in McCallum's class Spouse is unrelated to journal editor				
<i>User Pair</i> aepshtey rasmith donna editor donna krishna	Description Both students in McCallum's class Spouse is unrelated to journal editor Spouse is unrelated to conference organizer				
User Pair aepshtey rasmith donna editor donna krishna donna ramshaw	Description Both students in McCallum's class Spouse is unrelated to journal editor Spouse is unrelated to conference organizer Spouse is unrelated to researcher at BBN				
User Pair aepshtey rasmith donna editor donna krishna donna ramshaw donna reviews	Description Both students in McCallum's class Spouse is unrelated to journal editor Spouse is unrelated to conference organizer Spouse is unrelated to researcher at BBN Spouse is unrelated to journal editor				
User Pair aepshtey rasmith donna editor donna krishna donna ramshaw donna reviews donna stromsten	Description Both students in McCallum's class Spouse is unrelated to journal editor Spouse is unrelated to conference organizer Spouse is unrelated to researcher at BBN Spouse is unrelated to journal editor Spouse is unrelated to visiting researcher				
User Pair aepshtey rasmith donna editor donna krishna donna ramshaw donna reviews donna stromsten donna yugu	Description Both students in McCallum's class Spouse is unrelated to journal editor Spouse is unrelated to conference organizer Spouse is unrelated to researcher at BBN Spouse is unrelated to journal editor Spouse is unrelated to visiting researcher Spouse is unrelated grad student				

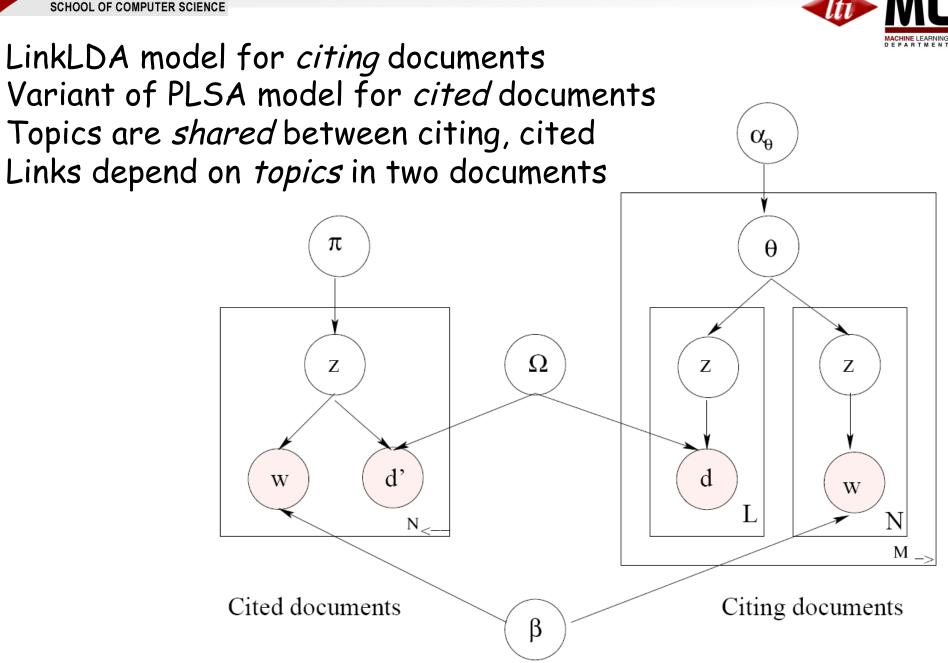
Models of hypertext for blogs [ICWSM 2008]

Ramesh Nallapati

Amr Ahmed

Eric Xing

me



Link-PLSA-LDA

Carnegie Mellon

Experiments

- 8.4M blog postings in Nielsen/Buzzmetrics corpus
 - Collected over three weeks summer 2005
- Selected all postings with >=2 inlinks or >=2 outlinks
 - 2248 citing (2+ outlinks), 1777 cited documents (2+ inlinks)
 - Only 68 in both sets, which are duplicated
- Fit model using variational EM

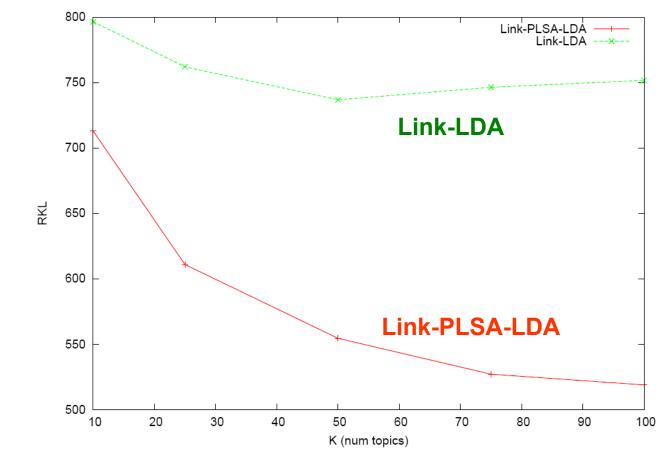
Topics in blogs

Model can
answer
questions
like: which
blogs are
most likely to
be cited when
discussing
topic z?

Topic 21	Topic 7	Topic 16	Topic 20
"CIA LEAK"	"IRAQ WAR"	"SUPREME COURT	"SEARCH ENGINE
		NOMINATIONS"	MARKET"
0.067	0.062	0.06	0.04
	TOP TO	OPICAL TERMS	
rove	will	robert	will
his	war	court	search
who	attack	bush	new
time	iraq	his	market
cooper	terrorist	supreme	post
karl	who	john	product
cia	world	nominate	brand
bush	terror	judge	permalink
know	muslim	will	time
report	america	conservative	yahoo
story	one	right	you
source	people	president	year
house	think	justice	comment
leak	bomb	nominee	company
plame	against	senate	business
	TOP BLOC	G POSTS ON TOPIC	
billmon.org	willisms.com	themoderatevoice.com	edgeperspectives.
			typepad.com
Whiskey Bar	Iraq what might	The Moderate Voice	John Hagel
qando.net	instapunk.com	blogsforbush.com	.comparisonengines.com
Free Markets & People	InstaPun***K	Blogs for Bush	Comparison of Engines
captainsquartersblog	jihadwatch.org	michellemalkin.com	blogs.forrester.com
.com, Captain's Quarters	Jihad Watch	Michelle Malkin	Charlene Li's Blog
coldfury.com	thesharpener.net	captainsquartersblog.com	longtail.typepad.com
The Light Of Reason	The Sharpener	Captain's Quarters	The Long Tail
thismodernworld.com	thedonovan.com	wizbangblog.com	.searchenginejournal.com
Tom Tomorrow	Jonah's Military	Wizbang	Search Engine Journal

Topics in blogs

Model can be evaluated by predicting which links an author will include in a an article



Lower is better

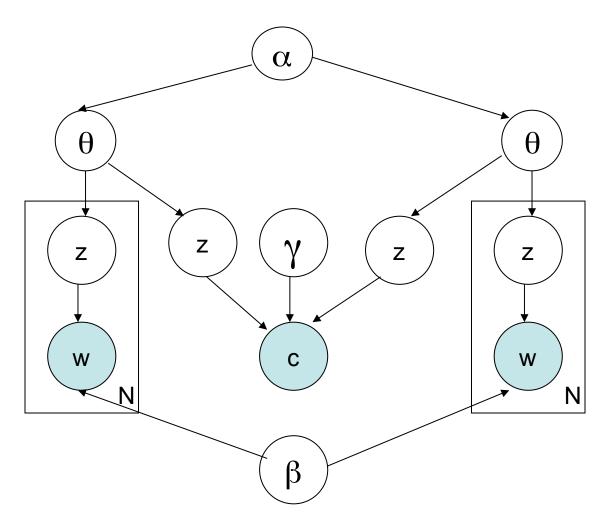
Another model: Pairwise Link-LDA

LDA for both cited and citing documents
Generate an *indicator* for *every pair* of docs

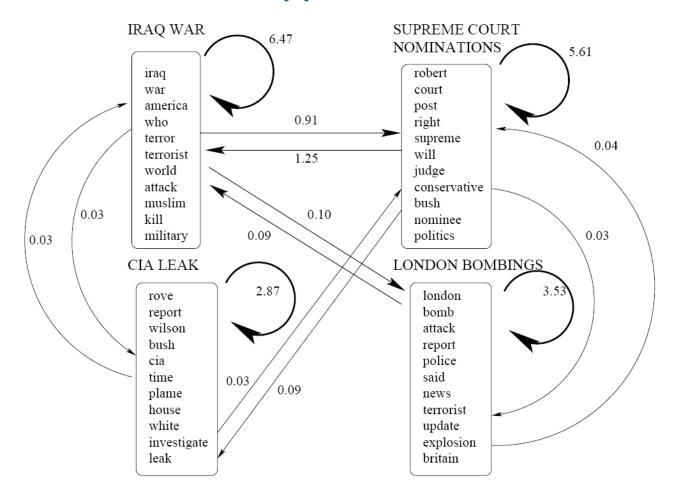
Carnegie Mellon

SCHOOL OF COMPUTER SCIENCE

- *Vs.* generating pairs of docs
 Link depends on the mixing components (θ's)
 - stochastic block model



Pairwise Link-LDA supports new inferences...



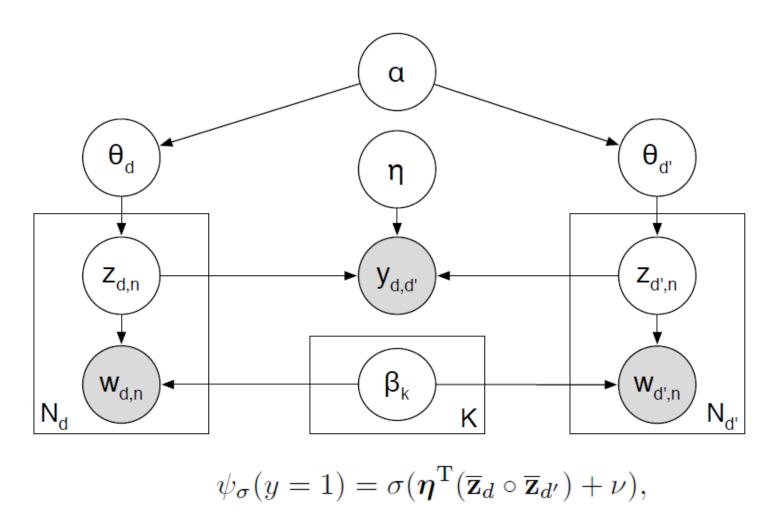
...but doesn't perform better on link prediction

Outline

- Tools for analysis of text
 - Probabilistic models for text, communities, and time
 - Mixture models and LDA models for text
 - · LDA extensions to model hyperlink structure
 - Observation: these models can be used for many purposes...
 - LDA extensions to model time
 - Alternative framework based on graph analysis to model time & community
- Discussion of results & challenges

Relational Topic Models for Document Networks

Jonathan Chang Department of Electrical Engineering Princeton University Princeton, NJ 08544 jcone@princeton.edu David M. Blei Department of Computer Science Princeton University 35 Olden St. Princeton, NJ 08544 blei@cs.princeton.edu



Authors are using a number of clever tricks for inference....

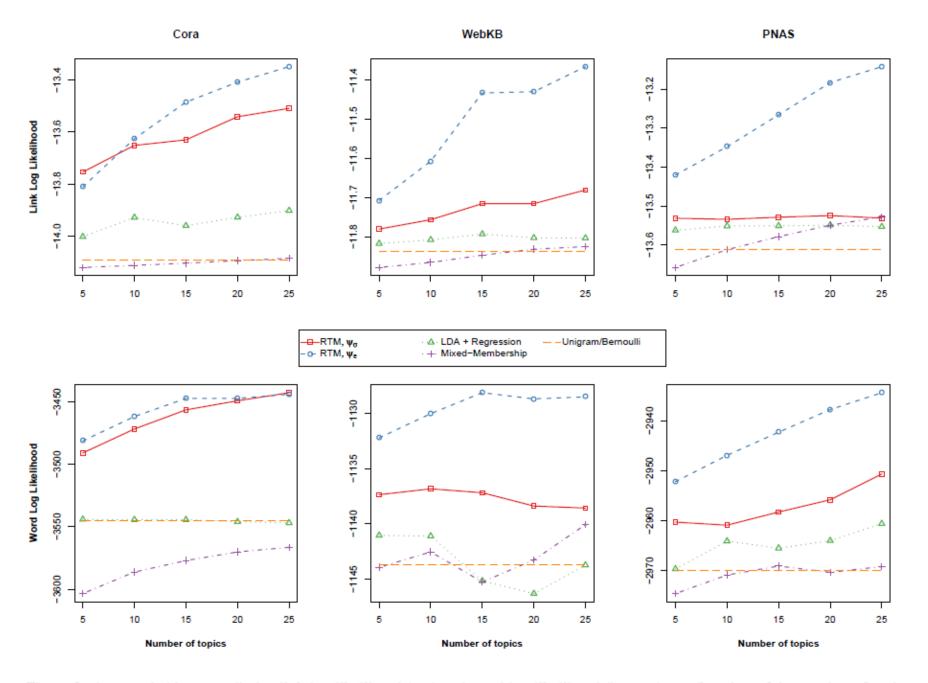


Figure 3: Average held-out predictive link log likelihood (top) and word log likelihood (bottom) as a function of the number of topics. For all three corpora, RTMs outperform baseline unigram, LDA, and "Mixed-Membership," which is the model of Nallapati et al. (2008).

Competitive environments evolve better solutions for complex tasks	
Coevolving High Level Representations	
A Survey of Evolutionary Strategies	
Genetic Algorithms in Search, Optimization and Machine Learning	R
Strongly typed genetic programming in evolving cooperation strategies	M
Solving combinatorial problems using evolutionary algorithms	RTM (ψ_e
A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems	్
Evolutionary Module Acquisition	
An Empirical Investigation of Multi-Parent Recombination Operators in Evolution Strategies	
A New Algorithm for DNA Sequence Assembly	
Identification of protein coding regions in genomic DNA	LDA
Solving combinatorial problems using evolutionary algorithms	+
A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems	Re
A genetic algorithm for passive management	gres
The Performance of a Genetic Algorithm on a Chaotic Objective Function	Regression
Adaptive global optimization with local search	
Mutation rates as adaptations	

Table 1: Top eight link predictions made by RTM (ψ_e) and LDA + Regression for two documents (italicized) from *Cora*. The models were trained with 10 topics. Boldfaced titles indicate actual documents cited by or citing each document. Over the whole corpus, RTM improves precision over LDA + Regression by 80% when evaluated on the first 20 documents retrieved.

Markov chain Monte Carlo convergence diagnostics: A comparative review	
Minorization conditions and convergence rates for Markov chain Monte Carlo	
Rates of convergence of the Hastings and Metropolis algorithms	
Possible biases induced by MCMC convergence diagnostics	R
Bounding convergence time of the Gibbs sampler in Bayesian image restoration	RTM (ψ_e)
Self regenerative Markov chain Monte Carlo	ê
Auxiliary variable methods for Markov chain Monte Carlo with applications	۲
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation	
Diagnosing convergence of Markov chain Monte Carlo algorithms	
Exact Bound for the Convergence of Metropolis Chains	
Self regenerative Markov chain Monte Carlo	LDA
Minorization conditions and convergence rates for Markov chain Monte Carlo	
Gibbs-markov models	+
Auxiliary variable methods for Markov chain Monte Carlo with applications	g
Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models	+ Regression
Mediating instrumental variables	° II
A qualitative framework for probabilistic inference	
Adaptation for Self Regenerative MCMC	

Predicting Response to Political Blog Posts with Topic Models [NAACL'09]

Tae Yano

Noah Smith

Political blogs and and comments



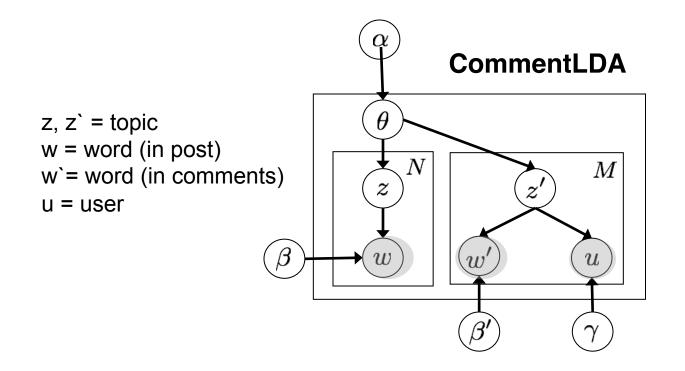
by DefendOurConstitution on Sat Aug 09, 2008 at 10:43:52 AM PDT [Parent]

Political blogs and comments

- Most of the text associated with large "Alist" community blogs is comments
 - 5-20x as many words in comments as in text for the
 5 sites considered in Yano et al.
- A large part of socially-created commentary in the blogosphere is comments.
 - Not blog \rightarrow blog hyperlinks
- Comments do not just echo the post

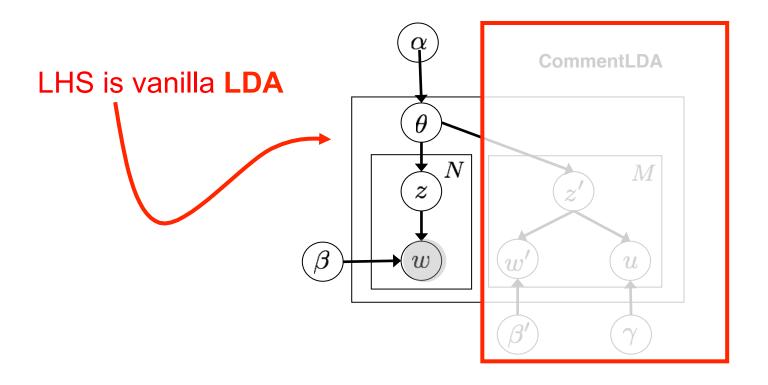
Modeling political blogs

Our political blog model:

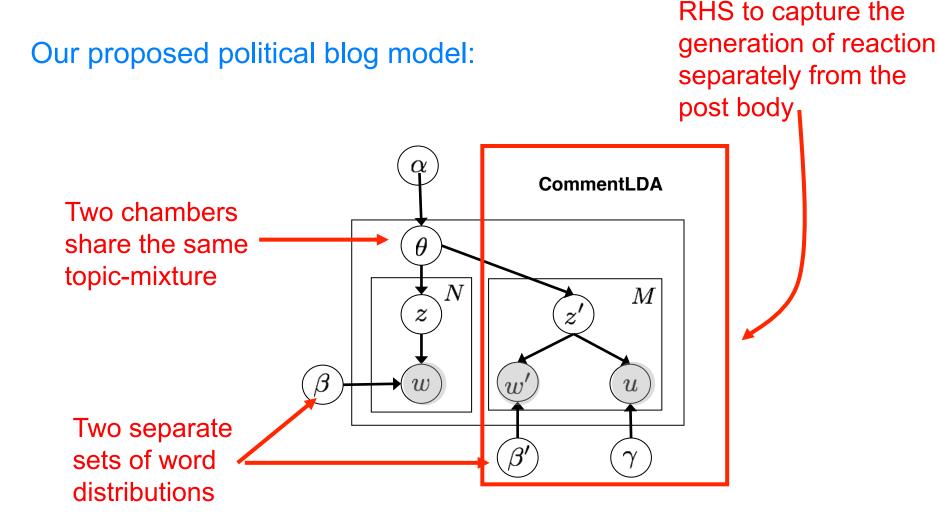


Modeling political blogs

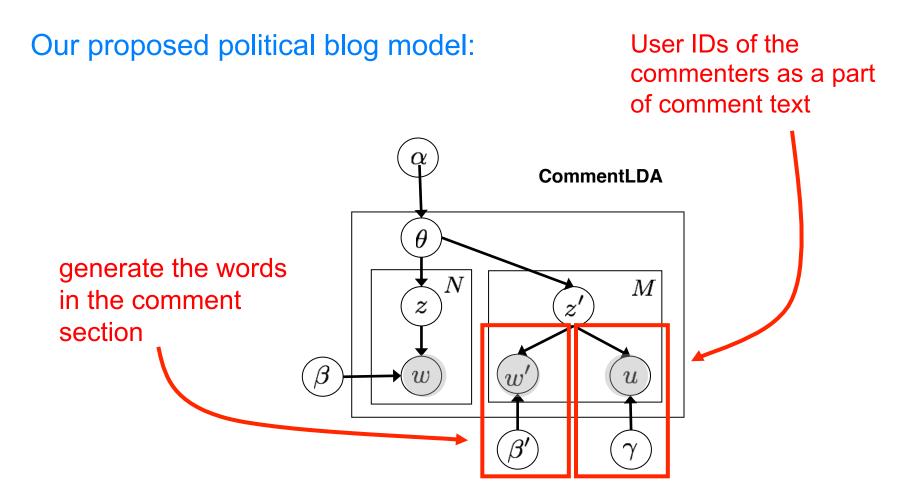
Our proposed political blog model:



Modeling political blogs

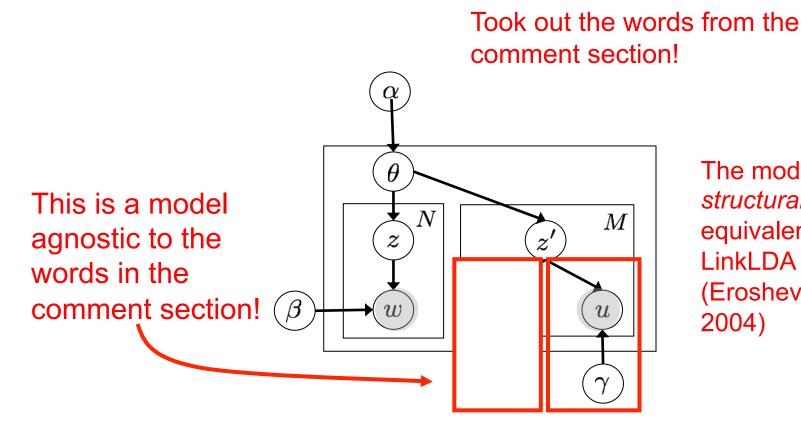


Modeling political blogs



Modeling political blogs

Another model we tried:



The model is structurally equivalent to the LinkLDA from (Erosheva et al., 2004)

Topic discovery - Matthew Yglesias (MY) site

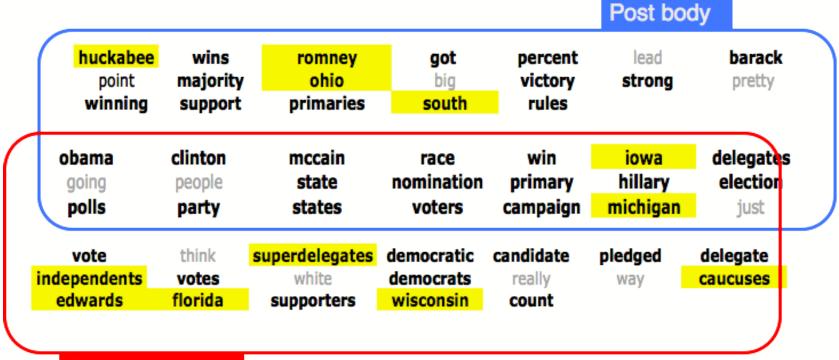
Topic : "Religion"

omney h onsider real hardly	iuckabee true. speech going	muslim anti moral christianity	political problem answer	hagee course jobs	cabinet views difference	mitt life muslims	
noonly	o iuct	Americ	can chu i	ch beli	eve god	d blac	k
people jesus say	-	n faith					
jesus	s mormo	n faith					
jesus	s mormo mormor	n faith ns	h jev	ıs rig	ht religio	ous poin	t

Deet bedu

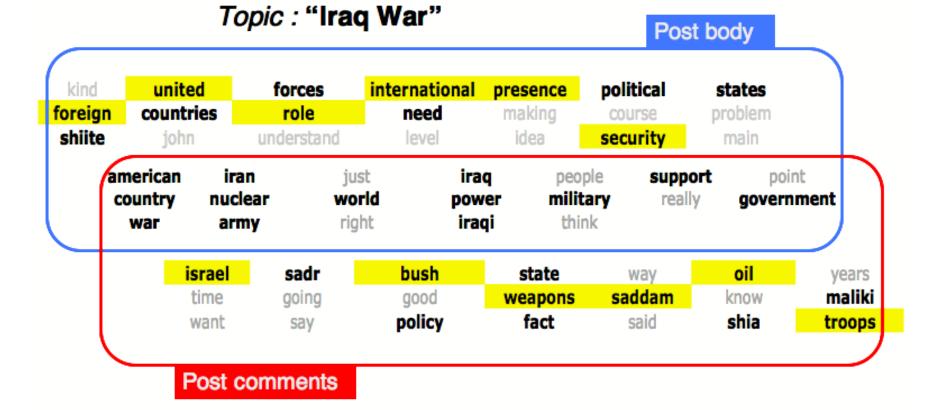
Topic discovery - Matthew Yglesias (MY) site

Topic : "Primary"



Post comments

Topic discovery - Matthew Yglesias (MY) site



Comment prediction

31.15

NB

Link-v

Link-r

Link-c

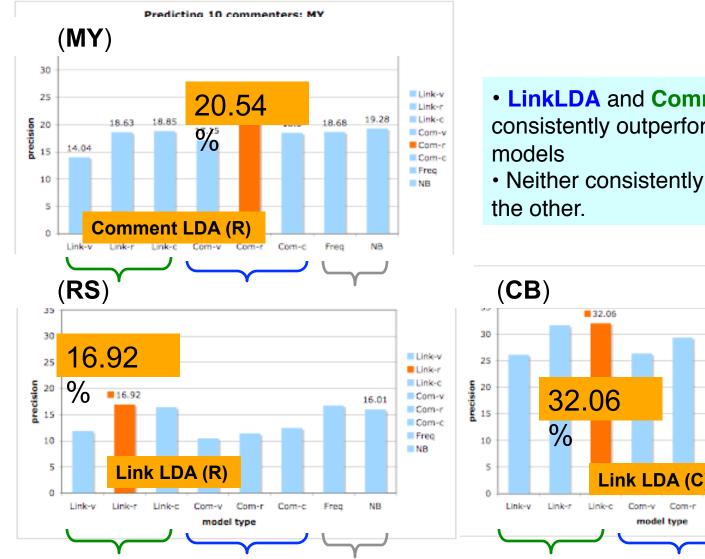
Com-v

Com-r

om-c

req

в



user prediction: Precision at top 10 From left to right: Link LDA(-v, -r,-c) Cmnt LDA (-v, -r, -c), Baseline (Freq, NB)

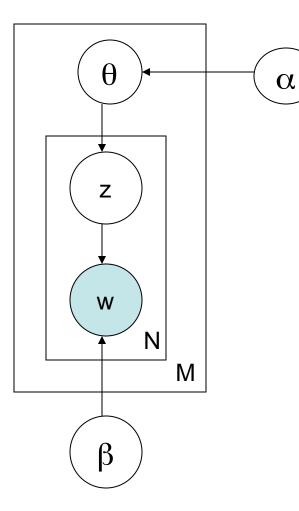
- LinkLDA and CommentLDA consistently outperform baseline
- Neither consistently outperforms

Com-r

Com-c

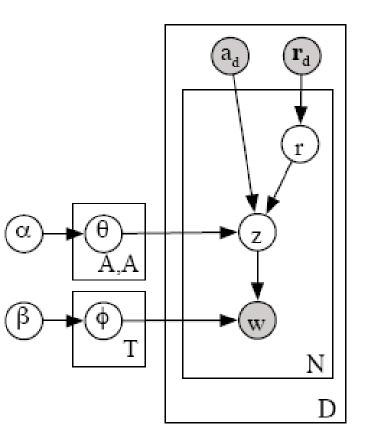
Freq

Document modeling with Latent Dirichlet Allocation (LDA)



- For each document $d = 1, \dots, M$
 - Generate $\theta_d \sim \text{Dir}(. | \alpha)$
 - For each position $n = 1, \dots, N_d$
 - generate $z_n \sim Mult(. | \theta_d)$
 - generate $w_n \sim Mult(. | \beta_{z_n})$

Author-Topic-Recipient model for email data [McCallum, Corrada-Emmanuel,Wang, ICJAI'05]



Author-Topic-Recipient model for email

data [McCallum, Corrada-Emmanuel, Wang, ICJAI'05]

aara [meedindii, eoridad Enindidei, Wang, red Are						
	Pairs co	nsidered most alike by ART				
	User Pair	Description				
	editor reviews	Both journal review management				
	mike mikem	Same person! (manual coref error)				
"SNA" = Jensen-Shannon		oth students in McCallum's class				
		oth UMass admin assistants				
divergence for recipients of		oth ML researchers on SRI project				
v		oth ML researchers on SRI project				
messages		oth ML researchers on SRI project				
	mahadeva pal	Both ML researchers, discussing hiring				
	kate laurie	Both UMass admin assistants				
	ang joshuago	Both on org committee for a conference				
	Pairs co	onsidered most alike by SNA				
	User Pair	Description				
	aepshtey rasmith	Both students in McCallum's class				
	donna editor	Spouse is unrelated to journal editor				
	donna krishna	Spouse is unrelated to conference organizer				
	donna ramshaw	Spouse is unrelated to researcher at BBN				
	donna reviews	Spouse is unrelated to journal editor				
	donna stromsten	Spouse is unrelated to visiting researcher				
	donna yugu	Spouse is unrelated grad student				
	aepshtey smucker	Both students in McCallum's class				
	rasmith smucker	Both students in McCallum's class				
	editor elm	Journal editor and its Production Editor				

Modeling Citation Influences

Unsupervised Prediction of Citation Influences

Tobias Scheffer

Max Planck Institute for Computer Science, Saarbrücken, Germany

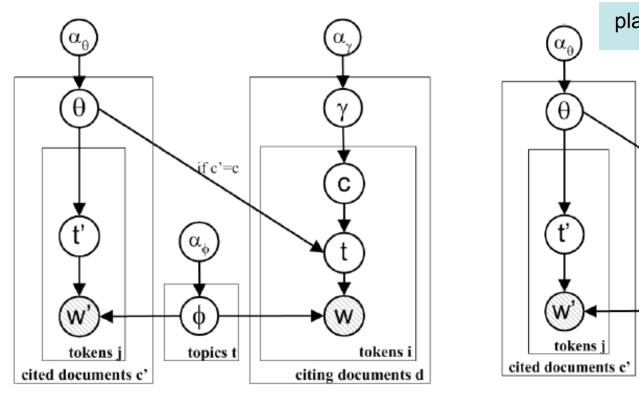
Laura Dietz

Steffen Bickel

innovation

Modeling Citation Influences [Dietz, Bickel, Scheffer, ICML 2007]

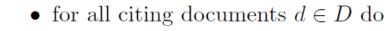
Copycat model of citation influence



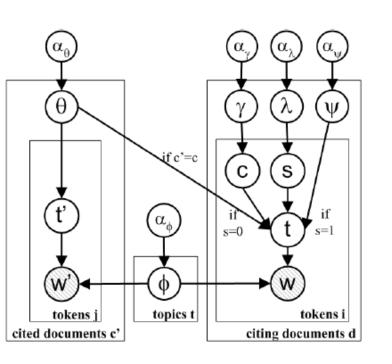


s is a coin toss to mix γ and ψ

c is a cited document



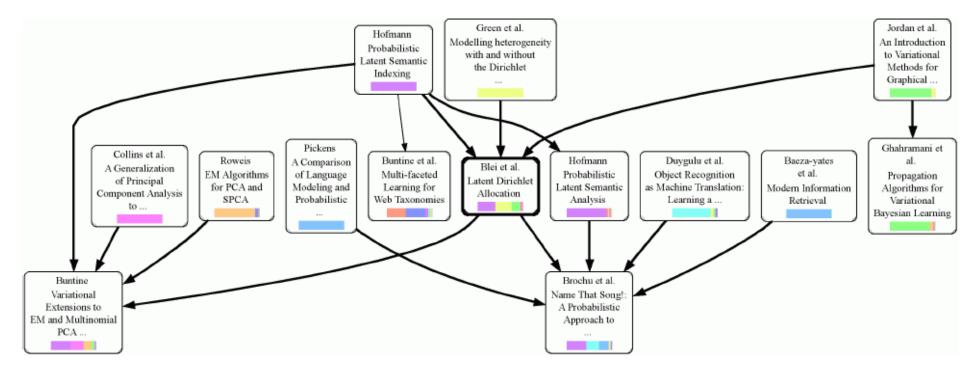
- draw a citation mixture $\gamma_d = p(c|d)|_{L(d)} \sim dirichlet(\vec{\alpha}_{\gamma})^1$ restricted to the publications c cited by this publication d
- draw an innovation topic mixture $\psi_d = p(t|d) \sim dirichlet(\vec{\alpha}_{\psi})$
- draw the proportion between tokens associated with citations and those associated with the innovation topic mixture $\lambda_d = p(s = 0|d) \sim beta(\alpha_{\lambda_{\theta}}, \alpha_{\lambda_{\psi}})$
- for all tokens i do
 - toss a coin $s_{d,i} \sim bernoulli(\lambda_d)$
 - if $s_{d,i} = 0$
 - draw a cited document $c_{d,i} \sim multi(\gamma_d)$
 - draw a topic $t_{d,i} \sim multi(\theta_{c_{d,i}})$ from the cited document's topic mixture
 - else $(s_{d,i} = 1)$
 - draw the topic $t_{d,i} \sim multi(\psi_d)$ from the innovation topic mixture
 - draw a word $w_{d,i} \sim multi(\phi_{t_{d,i}})$ from the topic specific word distribution



s is a coin toss to mix γ and ψ

Modeling Citation Influences [Dietz, Bickel, Scheffer, ICML 2007]

Citation influence graph for LDA paper



Modeling Citation Influences

Table 3. Words in the abstract of the research paper "Latent Dirichlet Allocation" are assigned to citations. The probabilities in parentheses indicate $p(w, c|d, \cdot)$.

Cited Title	Associated Words	γ
Probabilistic	text(0.04), latent(0.04),	0.49
Latent Semantic	modeling(0.02), model(0.02),	
Indexing	indexing(0.01), $semantic(0.01)$,	
	document(0.01), collections(0.01)	
Modelling	dirichlet(0.02), mixture(0.02),	0.25
heterogeneity	allocation(0.01), context(0.01),	
with and	variable(0.0135), bayes(0.01),	
without the	continuous(0.01), improves(0.01),	
Dirichlet process	model(0.01), proportions(0.01)	
Introduction to	variational (0.01) , inference (0.01) ,	0.22
Variational	algorithms(0.01), including(0.01),	
Methods for	each(0.01), we(0.01), via(0.01)	
Graphical		
Methods		

Modeling Citation Influences

User study: selfreported citation influence on Likert scale

LDA-post is Prob(cited doc| paper)

LDA-js is Jensen-Shannon dist in topic space

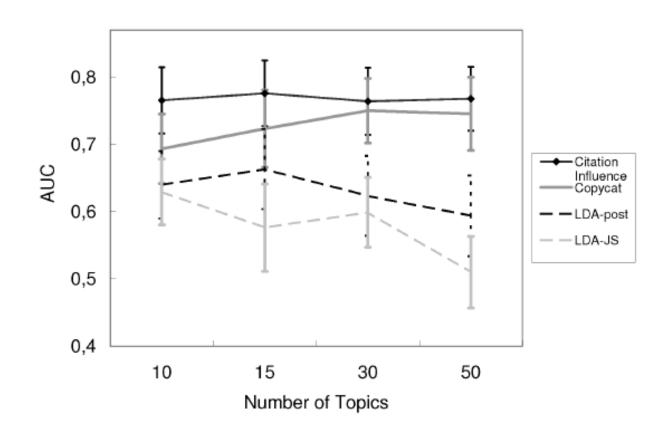


Figure 4. Predictive performance of the models. The error bars indicate the standard error of the AUC values averaged over the citing publications.