
Spark vs Hadoop 
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Spark 
•  Too much typing


– programs are not concise

•  Too low level


– missing abstractions

– hard to specify a work:low


•  Not well suited to iterative operations

– E.g., E/M, k-means clustering, …

– Work:low and memory-loading issues
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Set of concise dataflow 
operations 
(“transformation”) 
 
Dataflow operations are 
embedded in an API 
together with “actions” 

Sharded files are replaced by “RDDs” – resiliant distributed datasets 
 
RDDs can be cached in cluster memory and recreated to recover from 
error 



Spark examples 
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spark is a spark 
context object 



Spark examples 
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errors is a 
transformation, and 

thus a data strucure 
that explains HOW to 

do something 
count() is an action: it 
will actually execute 
the plan for errors 
and return a value. 

errors.filter() is a 
transformation 

collect() is an action 

everything is sharded, like in 
Hadoop and GuineaPig 



Spark examples 
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# modify errors to be stored in cluster memory 

subsequent 
actions will be 
much faster 

everything is sharded … and the shards are stored in memory of 
worker machines not local disk (if possible) 

You can also persist() an RDD on disk, which 
is like marking it as opts(stored=True) in 
GuineaPig.  Spark’s not smart about persisting 
data. 



Spark examples: wordcount 
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the action 
transformation on 
(key,value) pairs , 
which are special 



Spark examples: batch logistic 
regression 
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reduce is an action – 
it produces a numpy 

vector 

p.x and w are 
vectors, from the 
numpy package 

p.x and w are vectors, 
from the numpy package.  

Python overloads 
operations like * and + 

for vectors. 



Spark examples: batch logistic 
regression 

Important note: numpy vectors/matrices are not just “syntactic 
sugar”.   
•  They are much more compact than something like a list of python 

floats. 
•  numpy operations like dot, *, + are calls to optimized C code 
•  a little python logic around a lot of numpy calls is pretty efficient 
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Spark examples: batch logistic 
regression 
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w is defined outside 
the lambda function, 

but used inside it 
So: python builds a closure – code 

including the current value of w – and 
Spark ships it off to each worker.  So 

w is copied, and must be read-only. 



Spark examples: batch logistic 
regression 
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dataset of points is 
cached in cluster 

memory to reduce i/o 



Spark logistic regression example 
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Spark 
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Spark details: broadcast 
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So: python builds a closure – code 
including the current value of w – and 
Spark ships it off to each worker.  So 

w is copied, and must be read-only. 



Spark details: broadcast 
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alternative:  create a broadcast variable, e.g.,  
•  w_broad = spark.broadcast(w) 
which is accessed by the worker via  
•  w_broad.value() 

 

what’s sent is a small 
pointer to w (e.g., the 
name of a file containing 
a serialized version of 
w) and when value is 
called, some clever all-
reduce like machinery is 
used to reduce network 
load. 

little penalty for 
distributing something 
that’s not used by all 
workers 



Spark details: mapPartitions 

15 

Common issue: 
•  map task requires loading in some small shared value 
•  more generally, map task requires some sort of initialization before 

processing a shard 
•  GuineaPig:  

•  special Augment … sideview … pattern for shared values 
•  can kludge up any initializer using Augment 

•  Raw Hadoop:  mapper.configure() and mapper.close() 
methods 



Spark details: mapPartitions 
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Spark: 
•  rdd.mapPartitions(f):  will call f(iteratorOverShard) once per 

shard, and return an iterator over the mapped values. 

•  f() can do any setup/close steps it needs 

Also: 
•  there are transformations to partition an RDD with a user-selected 

function, like in Hadoop.  Usually you partition and persist/cache.  



Other Map-Reduce (ish) 
Frameworks 

William Cohen
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MAP-REDUCE ABSTRACTIONS: 
CASCADING, PIPES, SCALDING 
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Y:Y=Hadoop+X  

•  Cascading 
– Java library for map-reduce work:lows

– Also some library operations for common 

mappers/reducers
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Cascading WordCount Example 
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Input format 

Output format: pairs 

Bind to HFS path 

Bind to HFS path 
A pipeline of map-reduce jobs 

Append a step: apply function to the “line” field 

Append step: group a (flattened) stream of “tuples” 

Replace line with bag of words 

Append step: aggregate grouped values 

Run the 
pipeline 



Cascading WordCount Example 

Is this inefficient? We 
explicitly form a group for 
each word, and then count 
the elements…? 

We could be saved by careful optimization: we know we don’t need the 
GroupBy intermediate result when we run the assembly…. 

Many of the Hadoop abstraction levels have a similar flavor: 
•  Define a pipeline of tasks declaratively 
•  Optimize it automatically 
•  Run the final result 

The key question: does the system successfully hide the details from you? 
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Y:Y=Hadoop+X  
•  Cascading 

–  Java library for map-reduce work:lows

•  expressed as “Pipe”s, to which you add Each, Every, 

GroupBy, …

– Also some library operations for common mappers/

reducers

•  e.g. RegexGenerator 

– Turing-complete since it’s an API for Java

•  Pipes 

– C++ library for map-reduce work:lows on Hadoop

•  Scalding


– More concise Scala library based on Cascading
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MORE DECLARATIVE LANGUAGES 
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Hive and PIG:   word count 

•  Declarative ….. Fairly stable


PIG program is a bunch of assignments 
where every LHS is a relation. 
No loops, conditionals, etc allowed. 24 



FLINK 

•  Recent Apache Project – formerly 
Stratosphere
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…. 



FLINK 

•  Apache Project – just getting started
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…. 

Java API 



FLINK 
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FLINK 

•  Like Spark, in-memory or on disk

•  Everything is a Java object

•  Unlike Spark, contains operations for iteration


– Allowing query optimization

•  Very easy to use and install in local model


– Very modular

– Only needs Java
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One more algorithm to discuss as a 
Map-reduce implementation…. 
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ACL Workshop 2003 31 
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Why phrase-finding? 

•  There are lots of phrases

•  There’s not supervised data

•  It’s hard to articulate


– What makes a phrase a phrase, vs just an n-
gram?

•  a phrase is independently meaningful (“test 

drive”, “red meat”) or not (“are interesting”, 
“are lots”)


– What makes a phrase interesting?
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The breakdown: what makes a good 
phrase 
•  Two properties:


– Phraseness: “the degree to which a given word 
sequence is considered to be a phrase”

•  Statistics: how often words co-occur together vs 

separately

–  Informativeness: “how well a phrase captures or 

illustrates the key ideas in a set of documents” – 
something novel and important relative to a domain

•  Background corpus and foreground corpus; how 

often phrases occur in each
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“Phraseness”1 – based on BLRT 
•  Binomial Ratio Likelihood Test (BLRT):


– Draw samples: 

•  n1 draws, k1 successes

•  n2 draws, k2 successes 

•  Are they from one binominal (i.e., k1/n1 and k2/n2 were 

different due to chance) or from two distinct binomials?

– De:ine


•  p1=k1 / n1, p2=k2 / n2,  p=(k1+k2)/(n1+n2),

•  L(p,k,n) = pk(1-p)n-k


BLRT (n1,k1,n2,k2 ) =
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )
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“Phraseness”1 – based on BLRT 
•  Binomial Ratio Likelihood Test (BLRT):


– Draw samples: 

•  n1 draws, k1 successes

•  n2 draws, k2 successes 

•  Are they from one binominal (i.e., k1/n1 and k2/n2 were 

different due to chance) or from two distinct binomials?

– De:ine


•  pi=ki/ni, p=(k1+k2)/(n1+n2),

•  L(p,k,n) = pk(1-p)n-k


BLRT (n1,k1,n2,k2 ) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )
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“Informativeness”1 – based on BLRT 

– De:ine

• pi=ki /ni, p=(k1+k2)/(n1+n2),

• L(p,k,n) = pk(1-p)n-k


Phrase x y: W1=x ^ W2=y and 
two corpora, C and B 

comment 

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C 

n1 C(W1=* ^ W2=*) how many bigrams in corpus C 

k2 B(W1=x^W2=y) how often x y occurs in background corpus 

n2 B(W1=* ^ W2=*) how many bigrams in background corpus 

Does x y occur at the same frequency in both corpora? 

ϕi (n1,k1,n2,k2 ) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )
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“Phraseness”1 – based on BLRT 
– De:ine


• pi=ki /ni, p=(k1+k2)/(n1+n2),

• L(p,k,n) = pk(1-p)n-k


ϕ p(n1,k1,n2,k2 ) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )

comment 

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C 

n1 C(W1=x) how often word x occurs in corpus C 

k2 C(W1≠x^W2=y) how often y occurs in C after a non-x 

n2 C(W1≠x) how often a non-x occurs in C 

Phrase x y: W1=x ^ W2=y 
 

Does y occur at the same frequency after x as in other positions? 
38 



The breakdown: what makes a good 
phrase 
•  “Phraseness” and “informativeness” are then combined 

with a tiny classi:ier, tuned on labeled data.


•  Background corpus: 20 newsgroups dataset (20k 
messages, 7.4M words) 

•  Foreground corpus: rec.arts.movies.current-films June-
Sep 2002 (4M words)  

•  Results? 
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The breakdown: what makes a good 
phrase 
•  Two properties:


–  Phraseness: “the degree to which a given word sequence is 
considered to be a phrase”


•  Statistics: how often words co-occur together vs separately

–  Informativeness: “how well a phrase captures or illustrates the 

key ideas in a set of documents” – something novel and 
important relative to a domain


•  Background corpus and foreground corpus; how often 
phrases occur in each


– Another intuition: our goal is to compare 
distributions and see how different they are:


•  Phraseness: estimate x y with bigram model or unigram 
model


•  Informativeness: estimate with foreground vs 
background corpus
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The breakdown: what makes a good 
phrase 

–  Another intuition: our goal is to compare distributions 
and see how different they are:


•  Phraseness: estimate x y with bigram model or unigram 
model


•  Informativeness: estimate with foreground vs background 
corpus


–  To compare distributions, use KL-divergence


“Pointwise KL divergence” 
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The breakdown: what makes a good 
phrase 

– To compare distributions, use KL-divergence


“Pointwise KL divergence” 

Phraseness: difference 
between bigram and 
unigram language model in 
foreground 

Bigram model:    P(x y)=P(x)P(y|x) 
 
Unigram model: P(x y)=P(x)P(y) 
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The breakdown: what makes a good 
phrase 

– To compare distributions, use KL-divergence


“Pointwise KL divergence” 

Informativeness: difference 
between foreground and 
background models 

Bigram model:    P(x y)=P(x)P(y|x) 
 
Unigram model: P(x y)=P(x)P(y) 
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The breakdown: what makes a good 
phrase 

– To compare distributions, use KL-divergence


“Pointwise KL divergence” 

Combined: difference between 
foreground bigram model and 
background unigram model 

Bigram model:    P(x y)=P(x)P(y|x) 
 
Unigram model:  P(x y)=P(x)P(y) 
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The breakdown: what makes a good 
phrase 

– To compare distributions, use KL-divergence


Combined: difference between 
foreground bigram model and 
background unigram model 

Subtle advantages: 
•  BLRT scores “more frequent in 

foreground” and “more frequent in 
background” symmetrically, pointwise 
KL does not. 

•  Phrasiness and informativeness scores 
are more comparable – straightforward 
combination w/o a classifier is 
reasonable. 

•  Language modeling is well-studied: 
•  extensions to n-grams, smoothing 

methods, … 
•  we can build on this work in a 

modular way 
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Pointwise KL, combined 
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Why phrase-finding? 
•  Phrases are where the standard supervised “bag 

of words” representation starts to break.

•  There’s not supervised data, so it’s hard to see 

what’s “right” and why

•  It’s a nice example of using unsupervised signals 

to solve a task that could be formulated as 
supervised learning


•  It’s a nice level of complexity, if you want to do it 
in a scalable way.
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Phrase Finding in Guinea Pig 
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Phrase Finding 1 – counting words


background 
corpus 
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Phrase Finding 2 – counting phrases
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Phrase Finding 3 – collecting info


dictionary: {‘statistic name’:value} 

returns copy with a new 
key,value pair 
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Phrase Finding 3 – collecting info


join fg and bg phrase 
counts and output a dict 

join fg and bg count for 
first word “x” in “x y” 
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Phrase Finding 3 – collecting info


join fg and bg count for 
word “y” in “x y” 
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Phrase Finding 4 – totals


MAP 

REDUCE 

(‘const’,6743324) 
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Phrase Finding 4 – totals


MAP COMBINE 
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Phrase Finding 4 – totals
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Phrase Finding 4 – totals (map-side)
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Phrase Finding 5 – collect totals
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Phrase Finding 6 – compute


…. 
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Phrase Finding results

Overall Phrasiness Only Top 100 phraseiness, 

lo informativeness 
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Phrase Finding results

Overall 

Top 100 
informativeness, 
lo phraseiness 
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The full phrase-finding pipeline 
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The full phrase-finding pipeline 
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The full phrase-finding pipeline 
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Phrase Finding in PIG 
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Phrase Finding 1 - loading the input 
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… 
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PIG Features 

•  comments -- like this /* or like this */

•  ‘shell-like’ commands:


– fs -ls … -- any hadoop fs … command

– some shorter cuts: ls, cp, …

– sh ls -al -- escape to shell


69 



… 
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PIG Features 
•  comments -- like this /* or like this */

•  ‘shell-like’ commands:


–  fs -ls … -- any hadoop fs … command

–  some shorter cuts: ls, cp, …

–  sh ls -al -- escape to shell


•  LOAD ‘hdfs-path’ AS (schema)

–  schemas can include int, double, …

–  schemas can include complex types: bag, map, tuple, …


•  FOREACH alias GENERATE … AS …, …

–  transforms each row of a relation

–  operators include +, -, and, or, … 

–  can extend this set easily (more later)


•  DESCRIBE alias -- shows the schema

•  ILLUSTRATE alias -- derives a sample tuple
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Phrase Finding 1 - word counts 
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PIG Features 
•  LOAD ‘hdfs-path’ AS (schema)


– schemas can include int, double, bag, map, 
tuple, …


•  FOREACH alias GENERATE … AS …, …

– transforms each row of a relation


•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP r BY x


– like a shufHle-sort: produces relation with Hields 
group and r, where r is a bag 
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PIG parses and optimizes a sequence of commands before it executes them 
It’s smart enough to turn GROUP … FOREACH… SUM … into a map-reduce 
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PIG Features 
•  LOAD ‘hdfs-path’ AS (schema)


–  schemas can include int, double, bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …


–  transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP alias BY …

•  FOREACH alias GENERATE group, SUM(….)


–  GROUP/GENERATE … aggregate op together act like a 
map-reduce


–  aggregates: COUNT, SUM, AVERAGE, MAX, MIN, … 

–  you can write your own
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PIG parses and optimizes a sequence of commands before it executes them 
It’s smart enough to turn GROUP … FOREACH… SUM … into a map-reduce 
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Phrase Finding 3 - assembling phrase- 
and word-level statistics 
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PIG Features 
•  LOAD ‘hdfs-path’ AS (schema)


–  schemas can include int, double, bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …


–  transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP alias BY …

•  FOREACH alias GENERATE group, SUM(….)


–  GROUP/GENERATE … aggregate op together act like a 
map-reduce


•  JOIN r BY Hield, s BY Hield, …

–  inner join to produce rows: r::f1, r::f2, … s::f1, s::f2, …
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Phrase Finding 4 - adding total 
frequencies 
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How do we add the totals to the phraseStats relation? 

STORE triggers execution of the query plan…. 

it also limits optimization 
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Comment: schema is lost when you store…. 
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PIG Features 
•  LOAD ‘hdfs-path’ AS (schema)


–  schemas can include int, double, bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …


–  transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP alias BY …

•  FOREACH alias GENERATE group, SUM(….)


–  GROUP/GENERATE … aggregate op together act like a map-
reduce


•  JOIN r BY Hield, s BY Hield, …

–  inner join to produce rows: r::f1, r::f2, … s::f1, s::f2, …


•  CROSS r, s, …

–  use with care unless all but one of the relations are singleton

–  newer pigs allow singleton relation to be cast to a scalar
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Phrase Finding 5 - phrasiness and 
informativeness 
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How do we compute some 
complicated function? 
 
With a “UDF” 
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PIG Features 
•  LOAD ‘hdfs-path’ AS (schema)


–  schemas can include int, double, bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …


–  transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP alias BY …

•  FOREACH alias GENERATE group, SUM(….)


–  GROUP/GENERATE … aggregate op together act like a map-
reduce


•  JOIN r BY Hield, s BY Hield, …

–  inner join to produce rows: r::f1, r::f2, … s::f1, s::f2, …


•  CROSS r, s, …

–  use with care unless all but one of the relations are singleton


•  User de:ined functions as operators

–  also for loading, aggregates, …
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The full phrase-finding pipeline in PIG 
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