
Spark vs Hadoop

1

Spark
•  Too much typing

– programs are not concise

•  Too low level

– missing abstractions

– hard to specify a work:low

•  Not well suited to iterative operations

– E.g., E/M, k-means clustering, …

– Work:low and memory-loading issues

2

Set of concise dataflow
operations
(“transformation”)

Dataflow operations are
embedded in an API
together with “actions”

Sharded files are replaced by “RDDs” – resiliant distributed datasets

RDDs can be cached in cluster memory and recreated to recover from
error

Spark examples

3

spark is a spark
context object

Spark examples

4

errors is a
transformation, and

thus a data strucure
that explains HOW to

do something
count() is an action: it
will actually execute
the plan for errors
and return a value.

errors.filter() is a
transformation

collect() is an action

everything is sharded, like in
Hadoop and GuineaPig

Spark examples

5

modify errors to be stored in cluster memory

subsequent
actions will be
much faster

everything is sharded … and the shards are stored in memory of
worker machines not local disk (if possible)

You can also persist() an RDD on disk, which
is like marking it as opts(stored=True) in
GuineaPig. Spark’s not smart about persisting
data.

Spark examples: wordcount

6

the action
transformation on
(key,value) pairs ,
which are special

Spark examples: batch logistic
regression

7

reduce is an action –
it produces a numpy

vector

p.x and w are
vectors, from the
numpy package

p.x and w are vectors,
from the numpy package.

Python overloads
operations like * and +

for vectors.

Spark examples: batch logistic
regression

Important note: numpy vectors/matrices are not just “syntactic
sugar”.
•  They are much more compact than something like a list of python

floats.
•  numpy operations like dot, *, + are calls to optimized C code
•  a little python logic around a lot of numpy calls is pretty efficient

8

Spark examples: batch logistic
regression

9

w is defined outside
the lambda function,

but used inside it
So: python builds a closure – code

including the current value of w – and
Spark ships it off to each worker. So

w is copied, and must be read-only.

Spark examples: batch logistic
regression

10

dataset of points is
cached in cluster

memory to reduce i/o

Spark logistic regression example

11

Spark

12

Spark details: broadcast

13

So: python builds a closure – code
including the current value of w – and
Spark ships it off to each worker. So

w is copied, and must be read-only.

Spark details: broadcast

14

alternative: create a broadcast variable, e.g.,
•  w_broad = spark.broadcast(w)
which is accessed by the worker via
•  w_broad.value()

what’s sent is a small
pointer to w (e.g., the
name of a file containing
a serialized version of
w) and when value is
called, some clever all-
reduce like machinery is
used to reduce network
load.

little penalty for
distributing something
that’s not used by all
workers

Spark details: mapPartitions

15

Common issue:
•  map task requires loading in some small shared value
•  more generally, map task requires some sort of initialization before

processing a shard
•  GuineaPig:

•  special Augment … sideview … pattern for shared values
•  can kludge up any initializer using Augment

•  Raw Hadoop: mapper.configure() and mapper.close()
methods

Spark details: mapPartitions

16

Spark:
•  rdd.mapPartitions(f): will call f(iteratorOverShard) once per

shard, and return an iterator over the mapped values.

•  f() can do any setup/close steps it needs

Also:
•  there are transformations to partition an RDD with a user-selected

function, like in Hadoop. Usually you partition and persist/cache.

Other Map-Reduce (ish)
Frameworks

William Cohen

17

MAP-REDUCE ABSTRACTIONS:
CASCADING, PIPES, SCALDING

18

Y:Y=Hadoop+X

•  Cascading
– Java library for map-reduce work:lows

– Also some library operations for common

mappers/reducers

19

Cascading WordCount Example

20

Input format

Output format: pairs

Bind to HFS path

Bind to HFS path
A pipeline of map-reduce jobs

Append a step: apply function to the “line” field

Append step: group a (flattened) stream of “tuples”

Replace line with bag of words

Append step: aggregate grouped values

Run the
pipeline

Cascading WordCount Example

Is this inefficient? We
explicitly form a group for
each word, and then count
the elements…?

We could be saved by careful optimization: we know we don’t need the
GroupBy intermediate result when we run the assembly….

Many of the Hadoop abstraction levels have a similar flavor:
•  Define a pipeline of tasks declaratively
•  Optimize it automatically
•  Run the final result

The key question: does the system successfully hide the details from you?

21

Y:Y=Hadoop+X
•  Cascading

–  Java library for map-reduce work:lows

•  expressed as “Pipe”s, to which you add Each, Every,

GroupBy, …

– Also some library operations for common mappers/

reducers

•  e.g. RegexGenerator

– Turing-complete since it’s an API for Java

•  Pipes

– C++ library for map-reduce work:lows on Hadoop

•  Scalding

– More concise Scala library based on Cascading

22

MORE DECLARATIVE LANGUAGES

23

Hive and PIG: word count

•  Declarative ….. Fairly stable

PIG program is a bunch of assignments
where every LHS is a relation.
No loops, conditionals, etc allowed. 24

FLINK

•  Recent Apache Project – formerly
Stratosphere

25

….

FLINK

•  Apache Project – just getting started

26

….

Java API

FLINK

27

FLINK

•  Like Spark, in-memory or on disk

•  Everything is a Java object

•  Unlike Spark, contains operations for iteration

– Allowing query optimization

•  Very easy to use and install in local model

– Very modular

– Only needs Java

28

One more algorithm to discuss as a
Map-reduce implementation….

29

30

ACL Workshop 2003 31

32

Why phrase-finding?

•  There are lots of phrases

•  There’s not supervised data

•  It’s hard to articulate

– What makes a phrase a phrase, vs just an n-
gram?

•  a phrase is independently meaningful (“test

drive”, “red meat”) or not (“are interesting”,
“are lots”)

– What makes a phrase interesting?

33

The breakdown: what makes a good
phrase
•  Two properties:

– Phraseness: “the degree to which a given word
sequence is considered to be a phrase”

•  Statistics: how often words co-occur together vs

separately

–  Informativeness: “how well a phrase captures or

illustrates the key ideas in a set of documents” –
something novel and important relative to a domain

•  Background corpus and foreground corpus; how

often phrases occur in each

34

“Phraseness”1 – based on BLRT
•  Binomial Ratio Likelihood Test (BLRT):

– Draw samples:

•  n1 draws, k1 successes

•  n2 draws, k2 successes

•  Are they from one binominal (i.e., k1/n1 and k2/n2 were

different due to chance) or from two distinct binomials?

– De:ine

•  p1=k1 / n1, p2=k2 / n2, p=(k1+k2)/(n1+n2),

•  L(p,k,n) = pk(1-p)n-k

BLRT (n1,k1,n2,k2) =
L(p1,k1 ,n1)L(p2,k2,n2)
L(p,k1 ,n1)L(p,k2,n2)

35

“Phraseness”1 – based on BLRT
•  Binomial Ratio Likelihood Test (BLRT):

– Draw samples:

•  n1 draws, k1 successes

•  n2 draws, k2 successes

•  Are they from one binominal (i.e., k1/n1 and k2/n2 were

different due to chance) or from two distinct binomials?

– De:ine

•  pi=ki/ni, p=(k1+k2)/(n1+n2),

•  L(p,k,n) = pk(1-p)n-k

BLRT (n1,k1,n2,k2) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2)
L(p,k1 ,n1)L(p,k2,n2)

36

“Informativeness”1 – based on BLRT

– De:ine

• pi=ki /ni, p=(k1+k2)/(n1+n2),

• L(p,k,n) = pk(1-p)n-k

Phrase x y: W1=x ^ W2=y and
two corpora, C and B

comment

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C

n1 C(W1=* ^ W2=*) how many bigrams in corpus C

k2 B(W1=x^W2=y) how often x y occurs in background corpus

n2 B(W1=* ^ W2=*) how many bigrams in background corpus

Does x y occur at the same frequency in both corpora?

ϕi (n1,k1,n2,k2) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2)
L(p,k1 ,n1)L(p,k2,n2)

37

“Phraseness”1 – based on BLRT
– De:ine

• pi=ki /ni, p=(k1+k2)/(n1+n2),

• L(p,k,n) = pk(1-p)n-k

ϕ p(n1,k1,n2,k2) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2)
L(p,k1 ,n1)L(p,k2,n2)

comment

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C

n1 C(W1=x) how often word x occurs in corpus C

k2 C(W1≠x^W2=y) how often y occurs in C after a non-x

n2 C(W1≠x) how often a non-x occurs in C

Phrase x y: W1=x ^ W2=y

Does y occur at the same frequency after x as in other positions?
38

The breakdown: what makes a good
phrase
•  “Phraseness” and “informativeness” are then combined

with a tiny classi:ier, tuned on labeled data.

•  Background corpus: 20 newsgroups dataset (20k
messages, 7.4M words)

•  Foreground corpus: rec.arts.movies.current-films June-
Sep 2002 (4M words)

•  Results?

€

log
p

1− p
= s

$
%

&

'
(⇔ p =

1
1+ es

$
%

&

'
(

39

40

The breakdown: what makes a good
phrase
•  Two properties:

–  Phraseness: “the degree to which a given word sequence is
considered to be a phrase”

•  Statistics: how often words co-occur together vs separately

–  Informativeness: “how well a phrase captures or illustrates the

key ideas in a set of documents” – something novel and
important relative to a domain

•  Background corpus and foreground corpus; how often
phrases occur in each

– Another intuition: our goal is to compare
distributions and see how different they are:

•  Phraseness: estimate x y with bigram model or unigram
model

•  Informativeness: estimate with foreground vs
background corpus

41

The breakdown: what makes a good
phrase

–  Another intuition: our goal is to compare distributions
and see how different they are:

•  Phraseness: estimate x y with bigram model or unigram
model

•  Informativeness: estimate with foreground vs background
corpus

–  To compare distributions, use KL-divergence

“Pointwise KL divergence”

42

The breakdown: what makes a good
phrase

– To compare distributions, use KL-divergence

“Pointwise KL divergence”

Phraseness: difference
between bigram and
unigram language model in
foreground

Bigram model: P(x y)=P(x)P(y|x)

Unigram model: P(x y)=P(x)P(y)

43

The breakdown: what makes a good
phrase

– To compare distributions, use KL-divergence

“Pointwise KL divergence”

Informativeness: difference
between foreground and
background models

Bigram model: P(x y)=P(x)P(y|x)

Unigram model: P(x y)=P(x)P(y)

44

The breakdown: what makes a good
phrase

– To compare distributions, use KL-divergence

“Pointwise KL divergence”

Combined: difference between
foreground bigram model and
background unigram model

Bigram model: P(x y)=P(x)P(y|x)

Unigram model: P(x y)=P(x)P(y)

45

The breakdown: what makes a good
phrase

– To compare distributions, use KL-divergence

Combined: difference between
foreground bigram model and
background unigram model

Subtle advantages:
•  BLRT scores “more frequent in

foreground” and “more frequent in
background” symmetrically, pointwise
KL does not.

•  Phrasiness and informativeness scores
are more comparable – straightforward
combination w/o a classifier is
reasonable.

•  Language modeling is well-studied:
•  extensions to n-grams, smoothing

methods, …
•  we can build on this work in a

modular way
46

Pointwise KL, combined

47

Why phrase-finding?
•  Phrases are where the standard supervised “bag

of words” representation starts to break.

•  There’s not supervised data, so it’s hard to see

what’s “right” and why

•  It’s a nice example of using unsupervised signals

to solve a task that could be formulated as
supervised learning

•  It’s a nice level of complexity, if you want to do it
in a scalable way.

48

Phrase Finding in Guinea Pig

49

Phrase Finding 1 – counting words

background
corpus

50

Phrase Finding 2 – counting phrases

51

Phrase Finding 3 – collecting info

dictionary: {‘statistic name’:value}

returns copy with a new
key,value pair

52

Phrase Finding 3 – collecting info

join fg and bg phrase
counts and output a dict

join fg and bg count for
first word “x” in “x y”

53

Phrase Finding 3 – collecting info

join fg and bg count for
word “y” in “x y”

54

Phrase Finding 4 – totals

MAP

REDUCE

(‘const’,6743324)

55

Phrase Finding 4 – totals

MAP COMBINE

56

Phrase Finding 4 – totals

57

Phrase Finding 4 – totals (map-side)

58

Phrase Finding 5 – collect totals

59

Phrase Finding 6 – compute

….

60

Phrase Finding results

Overall Phrasiness Only Top 100 phraseiness,

lo informativeness

61

Phrase Finding results

Overall

Top 100
informativeness,
lo phraseiness

62

The full phrase-finding pipeline

63

The full phrase-finding pipeline

64

The full phrase-finding pipeline

65

Phrase Finding in PIG

66

Phrase Finding 1 - loading the input

67

…

68

PIG Features

•  comments -- like this /* or like this */

•  ‘shell-like’ commands:

– fs -ls … -- any hadoop fs … command

– some shorter cuts: ls, cp, …

– sh ls -al -- escape to shell

69

…

70

PIG Features
•  comments -- like this /* or like this */

•  ‘shell-like’ commands:

–  fs -ls … -- any hadoop fs … command

–  some shorter cuts: ls, cp, …

–  sh ls -al -- escape to shell

•  LOAD ‘hdfs-path’ AS (schema)

–  schemas can include int, double, …

–  schemas can include complex types: bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …

–  transforms each row of a relation

–  operators include +, -, and, or, …

–  can extend this set easily (more later)

•  DESCRIBE alias -- shows the schema

•  ILLUSTRATE alias -- derives a sample tuple

71

Phrase Finding 1 - word counts

72

73

PIG Features
•  LOAD ‘hdfs-path’ AS (schema)

– schemas can include int, double, bag, map,
tuple, …

•  FOREACH alias GENERATE … AS …, …

– transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP r BY x

– like a shufHle-sort: produces relation with Hields
group and r, where r is a bag

74

PIG parses and optimizes a sequence of commands before it executes them
It’s smart enough to turn GROUP … FOREACH… SUM … into a map-reduce

75

PIG Features
•  LOAD ‘hdfs-path’ AS (schema)

–  schemas can include int, double, bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …

–  transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP alias BY …

•  FOREACH alias GENERATE group, SUM(….)

–  GROUP/GENERATE … aggregate op together act like a
map-reduce

–  aggregates: COUNT, SUM, AVERAGE, MAX, MIN, …

–  you can write your own

76

PIG parses and optimizes a sequence of commands before it executes them
It’s smart enough to turn GROUP … FOREACH… SUM … into a map-reduce

77

Phrase Finding 3 - assembling phrase-
and word-level statistics

78

79

80

PIG Features
•  LOAD ‘hdfs-path’ AS (schema)

–  schemas can include int, double, bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …

–  transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP alias BY …

•  FOREACH alias GENERATE group, SUM(….)

–  GROUP/GENERATE … aggregate op together act like a
map-reduce

•  JOIN r BY Hield, s BY Hield, …

–  inner join to produce rows: r::f1, r::f2, … s::f1, s::f2, …

81

Phrase Finding 4 - adding total
frequencies

82

83

How do we add the totals to the phraseStats relation?

STORE triggers execution of the query plan….

it also limits optimization

84

Comment: schema is lost when you store….
85

PIG Features
•  LOAD ‘hdfs-path’ AS (schema)

–  schemas can include int, double, bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …

–  transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP alias BY …

•  FOREACH alias GENERATE group, SUM(….)

–  GROUP/GENERATE … aggregate op together act like a map-
reduce

•  JOIN r BY Hield, s BY Hield, …

–  inner join to produce rows: r::f1, r::f2, … s::f1, s::f2, …

•  CROSS r, s, …

–  use with care unless all but one of the relations are singleton

–  newer pigs allow singleton relation to be cast to a scalar

86

Phrase Finding 5 - phrasiness and
informativeness

87

How do we compute some
complicated function?

With a “UDF”

88

89

PIG Features
•  LOAD ‘hdfs-path’ AS (schema)

–  schemas can include int, double, bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …

–  transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP alias BY …

•  FOREACH alias GENERATE group, SUM(….)

–  GROUP/GENERATE … aggregate op together act like a map-
reduce

•  JOIN r BY Hield, s BY Hield, …

–  inner join to produce rows: r::f1, r::f2, … s::f1, s::f2, …

•  CROSS r, s, …

–  use with care unless all but one of the relations are singleton

•  User de:ined functions as operators

–  also for loading, aggregates, …

90

The full phrase-finding pipeline in PIG

91

92

