In the once upon a time days of the First Age of Magic, the prudent sorcerer regarded his own true name as his most valued possession but also the greatest threat to his continued good health, for--the stories go-once an enemy, even a weak unskilled enemy, learned the sorcerer's true name, then routine and widely known spells could destroy or enslave even the most powerful. As times passed, and we graduated to
 the Age of Reason and thence to the first and second industrial revolutions, such notions were discredited. Now it seems that the Wheel has turned full circle (even if there never really was a First Age) and we are back to worrying about true names again:

The first hint Mr. Slippery had that his own True Name might be known-and, for that matter, known to the Great Enemy--came with the appearance of two black Lincolns humming up the long dirt driveway ... Roger Pollack was in his garden weeding, had been there nearly the whole morning.... Four heavy-set men and a hard-looking female piled out, started purposefully across his well-tended cabbage patch....

This had been, of course, Roger Pollack's great fear. They had discovered Mr. Slippery's True Name and it was Roger Andrew Pollack TIN/SSAN 0959-34-2861.

Recap: soft joins/similarity joins

Input: Two Different Lists of Entity Names

```
Abraham Lincoln Birthplace NHS
Acadia NP
Adams NHS
Agate Fossil Beds NM
Alagnak Wild River
Alaska Public Lands Inf. Center
Alibates Flint Quarries NM
Allegheny Portage Railroad NHS
American Memorial Park
Amistad NRA
Andersonville NHS
Andrew Johnson NHS
Aniakchak NM & NPRES
Antietam NB
Apostle Islands NL
Appalachian National Scenic Trail
Appomattox Courthouse NHP
Arches NP
Arkansas Post NM
```

Acadia NP
Allegheny Portage Railroad NHS
American Memorial Park
Amistad NRA
Andersonville NHP
Aniakchak NM
Antietam NB
Apostle Is lands NL
Appomattox Court House NHP
Arches NP
Arkansas Post N. Mem.
Assateague Island NS
Aztec Ruins NM
Badlands NP
Bandelier NM
Bent's Old Fort NHS
Bering Land Bridge N. Preserve
Big Bend NP
Big Cypress N. Preserve

Recap: soft joins/similarity joins

identical

Chickamauga \& Chattanooga NMP:d445 George Washington Carver NM:d499 Salinas Pueblo Missions NM:d597 Florissant Fossil Beds NM:d473 Hagerman Fossil Beds NM:d517 Gila Cliff Dwellings NM:d502 Booker T. Washington NM:d423

$$
\begin{array}{r}
\text { similar } \\
\text { Obed Wild \& Scenic River:d570 } \\
\text { Andersonville NHP:d401 } \\
\text { Sitka NHP:d606 } \\
\text { Bering Land Bridge N. Preserve:d413 } \\
\text { Sequoia \& Kings Canyon NP:d603 } \\
\text { Glacier Bay NP \& Preserve:d643 } \\
\text { NP of American Samoa:d561 } \\
\text { Kalaupapa NHS:d538 }
\end{array}
$$

less similar

Lake Mead NRA:d545
Upper Delaware Scenic \& Rec. River:d617

Chickamauga \& Chattanooga NMP:d72 George Washington Carver NM:d153 Salinas Pueblo Missions NM:d329
Florissant Fossil Beds NM:d116 Hagerman Fossil Beds NM:d177 Gila Cliff Dwellings NM:d156 Booker T. Washington NM:d38

Obed Wild and Scenic River:d283 Andersonville NHS:d11 Sitka NHS:d342
Bering Land Bridge NPRES:d26 Sequoia and Kings Canyon NP:d339 Glacier Bay NP \& NPRES:d157 National Park Of American Samoa:d267 Kalaupapa NHP:d210

Example: soft joins/similarity joins

Output: Pairs of Names Ranked by Similarity

A surprisingly good similarity score is TFIDF cosine distance.

- Mismatches on frequent terms (" $\&$ " vs "and", "N.","Preserve", "NHP", ...) are discounted
- Matches on rare term ("Kalaupapa","'Samoa") are rewarded.

Obed Wild \& Scenic ${ }^{-}$River:d570
Andersonville NHP:d401
Sitka NHP:d606
Bering Land Bridge N. Preserve:d413
Sequoia \& Kings Canyon NP:d603
Glacier Bay NP \& Preserve:d643
NP of American Samoa:d561
Kalaupapa NHS:d538

Lake Mead NRA:d545
Upper Delaware Scenic \& Rec. River:d617

Obed Wild and Scenic ${ }^{-}$River:d283 Andersonville NHS:d11

Sitka NHS: d342
Bering Land Bridge NPRES:d26 Sequoia and Kings Canyon NP:d339 Glacier Bay NP \& NPRES:d157 National Park Of American Samoa:d267 Kalaupapa NHP:d210

Softjoin Example - 1

means

"similar to"
FROM top500,hiTech SELECT * WHERE top500.name~hiTech.name

A useful scalable similarity metric: IDF weighting plus cosine distance!

One solution: Soft (Similarity) joins

- A similarity join of two sets A and B is
-an ordered list of triples $\left(s_{i j}, a_{i}, b_{j}\right)$ such that
- a_{i} is from A
- b_{j} is from B
- s_{ij} is the similarity of a_{i} and b_{j}
- the triples are in descending order
- the list is either the top K triples by $s_{i j}$ or ALL triples with $s_{\mathrm{ij}}>\mathrm{L} \ldots$ or sometimes some approximation of these....

How well does TFIDF work?

- Input: query
- Output: ordered list of documents

1	$\sqrt{ }$	a_{1}	b_{1}	
2	$\sqrt{ }$	a_{2}	b_{2}	
3	\times	a_{3}	b_{3}	Precision at $K: G_{K} / K$
4	$\sqrt{ }$	a_{4}	b_{4}	
5	$\sqrt{ }$	a_{5}	b_{5}	
6	$\sqrt{ }$	a_{6}	b_{6}	
7	\times	a_{7}	b_{7}	
8	$\sqrt{ }$	a_{8}	b_{8}	
9	$\sqrt{ }$	a_{9}	b_{9}	
10	\times	a_{10}	b_{10}	
11	\times	a_{11}	b_{11}	
12	$\sqrt{ }$	a_{12}	b_{12}	

Table VI. Pairs of Names from the Hoovers and lontech Relations

\checkmark	Texas Instruments Incorporated	TEXAS INSTRUMENTS INC
\checkmark	The New York Times Company	NEW YORK TIMES CO
$\sqrt{ }$	Campo Electronics, Appliances and Computers, Inc.	CAMPO ELECTRONICS APPLIANCES
\checkmark	Cascade Communications Corp.	CASCADE COMMUNICATION
\checkmark	The McGraw-Hill Companies, Inc.	MCGRAW-HILL CO
\checkmark	U S WEST Communications Group	U S WEST INC
\times	Silicon Valley Group, Inc.	SILICON VALLEY RESEARCH INC
\times	The Reynolds and Reynolds Company	REYNOLDS \& REYNOLDS CO
\checkmark	InTime Systems International, Inc.	INTIME SYSTEMS INTERNATIONAL I

Table V. Average Precision for Similarity Joins

Domain	Relations Joined	Average Precision
Movies	MovieLink/Review	100.0%
Animals	IntFact1/SWFact	100.0%
	IntFact2/FWSFact	99.6%
	IntFact3/NMFSFact	97.1%
	Endanger/ParkAnim	95.2%
Birds	IntBirdPic1/DonBirdPic	100.0%
	IntBirdPic2/MBRBirdPic	99.1%
	IntBirdMap/BirdMap	91.4%
	BirdCall/BirdList	95.8%
Businesses	Fodor/Zagrat	99.5%
	HooverWeb/Iontech	84.9%
National Parks	IntPark/Park	95.7%
Computer Games	Demo/AgeList	86.1%

There are refinements to TFIDF distance - eg ones that extend with soft matching at the token level (e.g., softTFIDF)

Pairs: 6806 Correct: 250Matching time: 0.278				
+	1.00	\| Agate Fossil Beds NM		Agate Fossil Beds NM
+ 2	1.00	\| Big Bend NP	Big Bend NP	
. .				
+ 194	1.00	1 Gateway NRA	Gateway NRA	
+ 195	0.99	\| Gulf Islands NS	Gulf Island NS	
+ 196	0.99	\| Rainbow Bridge NM	Rainbow Bridges NM	
+ 197	0.98	\| Whiskeytown Shasta Trinity NRA	Whiskey-Shasta-Trinity NRA	
+ 198	0.97	\| Capitol Reef NP	Capital Reef NP	
+ 199	0.95	\| Timpanogos Cave NM	Timpanogas Caves NM	
+ 200	0.94	I War in the Pacific NHP	War in Pacific NHP	
+ 201	0.94	\| Chesapeake \& Ohio Canal NHP	Chesapeake and Ohio Canal NHP	
+ 203	0.92	1 Saguaro NP \|	Saguaro NM	
+ 211	0.86	\| National Park of American Samoa		NP of American Samoa
.				
+ 224	0.76	\| Pu'uhonua a Honaunau NHP	Pu'uohonua O Honaunau NHP	
+ 225	0.75	\| Bering Land Bridge NPRES	Bering Land Bridge N. Preserve	
+ 226	0.75	\| Yukon Charley Rivers NPRES	Yukon-Charley Rivers N. Preserve	
. .				
+ 241	0.69	\| Wolf Trap Farm Park for the Perfo	orming Arts Wolf Trap Farm Park	
+ 242	0.69	\| Fredericksburg and Spotsylvania	County Battlefields Memorial NMP	
			Fredericksburg \& Spotsylvania NMP	
+ 243	0.69	1 Great Smoky Mtn. NP	Great Smoky Mountains NP	
+ 245	0.67	Mount Rushmore NM	Mount Rushmore N. Mem.	
+ 246	0.67	Chattahoochee NSR \|	Chattahoochee River NRA	

SOFT JOINS WITH TFIDF: HOW?

Rocchio's algorithm

$D F(w)=$ \# different docs w occurs in
$T F(w, d)=$ \# different times w occurs in $\operatorname{doc} d$

$$
\begin{aligned}
I D F(w) & =\frac{|D|}{D F(w)} \\
u(w, d) & =\log (T F(w, d)+1) \cdot \log (I D F(w))
\end{aligned}
$$

Many variants of these formulae
...as long as $u(w, d)=0$ for words not in d !

$$
\mathbf{u}(d)=\left\langle u\left(w_{1}, d\right), \ldots,, u\left(w_{I V}, d\right)\right\rangle
$$

Store only non-zeros in $\mathbf{u}(\mathrm{d})$, so size is $\mathrm{O}(|d|)$
$\mathbf{u}(y)=\alpha \frac{1}{\left|C_{y}\right|} \sum_{d \in C_{y}} \frac{\mathbf{u}(d)}{\|\mathbf{u}(d)\|_{2}}-\beta \frac{1}{\mid D-C_{y}} \sum_{d \in D_{-} C_{y}} \frac{\mathbf{u}\left(d^{\prime}\right)}{\left\|\mathbf{u}\left(d^{\prime}\right)\right\|_{2}}$
$f(d)=\arg \max _{y} \frac{\mathbf{u}(d)}{\|\mathbf{u}(d)\|_{2}} \cdot \frac{\mathbf{u}(y)}{\|\mathbf{u}(y)\|_{2}}$
But size of $\mathbf{u}(y)$ is $\mathrm{O}\left(\left|n_{V}\right|\right)$

$$
\|\mathbf{u}\|_{2}=\sqrt{\sum_{i} u_{i}^{2}}
$$

TFIDF similarity

$D F(w)=$ \# different docs w occurs in
$T F(w, d)=$ \# different times w occurs in doc d

$$
\begin{aligned}
I D F(w) & =\frac{|D|}{D F(w)} \\
u(w, d) & =\log (T F(w, d)+1) \cdot \log (\operatorname{IDF}(w)) \\
\mathbf{u}(d) & =\left\langle u\left(w_{1}, d\right), \ldots, u\left(w_{|V|}, d\right)\right\rangle \\
\mathbf{v}(d) & =\frac{\mathbf{u}(d)}{\|\mathbf{u}(d)\|_{2}}
\end{aligned}
$$

$$
\operatorname{sim}\left(\mathbf{v}\left(d_{1}\right), \mathbf{v}\left(d_{2}\right)\right)=\mathbf{v}\left(d_{1}\right) \cdot \mathbf{v}\left(d_{2}\right)=\sum_{w} \frac{u\left(w, d_{1}\right)}{\left\|\mathbf{u}\left(d_{1}\right)\right\|_{2}} \frac{u\left(w, d_{2}\right)}{\left\|\mathbf{u}\left(d_{2}\right)\right\|_{2}}
$$

TFIDF soft joins

- A similarity join of two sets of TFIDF-weighted vectors A and B is
-an ordered list of triples ($\mathrm{s}_{\mathrm{i} j}, \mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}$) such that
- a_{i} is from A
- b_{j} is from B
- $s_{i j}$ is the dot product of a_{i} and b_{j}
- the triples are in descending order
- the list is either the top K triples by s_{ij} or ALL triples with $\mathrm{s}_{\mathrm{ij}}>\mathrm{L} \ldots$ or sometimes some approximation of these....

PARALLEL SOFT JOINS

Efficient Parallel Set-Similarity Joins Using MapReduce

Rares Vernica
Department of Computer
Science
University of California, Irvine
rares@ics.uci.edu

Michael J. Carey
Department of Computer
Science
University of California, Irvine mjcarey@ics.uci.edu

Chen Li
Department of Computer
Science
University of California, Irvine chenli@ics.uci.edu

TFIDF similarity: variant for joins

$D F(A, w)=\#$ different docs w occurs in from A $D F(B, w)=\#$ different docs w occurs in from B $T F(w, d)=\#$ different times w occurs in doc d

$$
\begin{aligned}
\operatorname{IDF}(w, d) & =\frac{\left|C_{d}\right|}{D F\left(C_{d}, w\right)}, \text { where } C_{d} \in\{A, B\} \\
u(w, d) & =\log (T F(w, d)+1) \cdot \log (\operatorname{IDF}(w, d)) \\
\mathbf{u}(d) & =\left\langle u\left(w_{1}, d\right), \ldots, u\left(w_{|V|}, d\right)\right\rangle \\
\mathbf{v}(d) & =\frac{\mathbf{u}(d)}{\|\mathbf{u}(d)\|_{2}}
\end{aligned}
$$

$$
\operatorname{sim}\left(\mathbf{v}\left(d_{1}\right), \mathbf{v}\left(d_{2}\right)\right)=\mathbf{v}\left(d_{1}\right) \cdot \mathbf{v}\left(d_{2}\right)=\sum_{w} \frac{u\left(w, d_{1}\right)}{\left\|\mathbf{u}\left(d_{1}\right)\right\|_{2}} \frac{u\left(w, d_{2}\right)}{\left\|\mathbf{u}\left(d_{2}\right)\right\|_{2}}
$$

Sim Joins on Product Descriptions

- Similarity can be high for descriptions of distinct items:
- AERO TGX-Series Work Table -42" x 96 ", Model 1TGX 4296 All tables shipped KD AEROSPEC- 1TGX Tables are Aerospá'Designed. In additión to above specifications; - All four sides have a y' countertop edge,
- AERO TGX-Series Work Table -42" x 48 ",Model 1TGX-4248 Alll tables shipped KD AEROSPEC- 1TGX Tables are Aerospec' Designed. In additition to above specifications; - All four sides have a V countertop ..
- Similarity can be low for descriptions of identical items:
- CanonAngle Finder Cor $2882 A 002$ film Camera Angle Finders Right Angle
 Angle Finders \& Magnifiers-Thē-Angle Finder C lets you adjust
- CANON 2882A002 ${ }^{2}$ ANGLE FINDERE FOR EOS REBEL® SERIES PROVIDES'SAFÚĹL SĆREENTMĀḠE SHOWS EXPOSURE DATA BUILT-IN DIOPTRIC ADJUSTMENT COMPATIBLE WITH THE CANON® REBEL, EOS \& REBEL EOS SERIES.

Parallel Inverted Index Softjoin - 1

\#compute document †requency

```
docFreq = Group(data, by=lambda(rel,docid,term):(rel,term), reducingTo=ReduceTn「nunt()l \
```

\#find total number of docs per relation
ndoc = ReplaceEach(data, by=lambda(rel,docid,term):(rel,docid)) \}
| Distinct() | Group(by=lambda(rel,docid):rel, reducingTo=ReduceToCoun

\#unweighted document vectors

udocvec = Join(Jin(data,by=lambda(rel,docid,term):(rel,term)),
Jin(docFreq, by=lambda(rel,term,df):(rel,term))) \}
| ReplaceEach(by=lambda((rel,doc,term),(rel_,term_, df)):(rel,doc,term,df)
| JoinTo(Jin(ndoc, by=lambda(rel,relCount):rel), by=lambda(rel,doc,term,d
| ReplaceEach(by=lambda((rel,doc,term,df),(rel_,relCount)):(rel,doc,term,
ReplaceEach(by=lambda(rel,doc,term,df,relCount): (rel,doc,term,termWeight(relCount,df)))
\#normalizers
sumSquareWeights = ReduceTo(float, lambda accum,(rel,doc,term,weight): accum+weight*weight) norm = Group(udocvec,
by=lambda(rel,doc,term, weight): (rel, doc), retaining = lambda (rel,doc,term,weight): weight, reducingTo=RedueeToSum())
| ReplaceEach(by=lambda((rel,doc), z):(rel,doc,z))

sumSquareWeights

\#normalized document vector
docvec $=$ Join(Jin(norm, by=lambda(rel,doc,z):(rel,doc)), Jin(udocvec, by=lambda(rel,doc, term, weight):(rel,doc))) \}
ReplaceEach(by=lambda((rel,doc,z),(rel_, doc_,term,weight)): (rel,doc,term,weight/math.sqrt(z)))
Statistics for computing TFIDF with IDFs local to each relation ${ }^{\circ}$

Parallel Inverted Index Softjoin - 2

```
# naive algorithm: use all pairs for finding matches
rel1Docs = Filter(docvec, by=lambda(rel,doc,term,weight):rel=='icepark')
rel2Docs = Filter(docvec, by=lambda(rel,doc,term,weight):rel=='npspark')
softjoin = Join( Jin(rel1Docs,by=lambda(rel,doc,term,weight):term),
    Jin(rel2Docs,by=lambda(rel,doc,term,weight):term)) \
    | ReplaceEach(by=lambda((rel1,doc1,term,weight1),(rel2,doc2,term2,weight2)): (doc1,doc2,weight1*weight2))
    | Group(by=lambda(doc1,doc2,p):(doc1,doc2), \
        retaining=lambda(doc1,doc2,p):p, \
        reducingTo=ReduceToSum()) \
    | ReplaceEach(by=lambda((doc1,doc2),sim):(doc1,doc2,sim))
simpairs = Filter(softjoin, by=lambda(doc1,doc,sim):sim>0.75)
```

What's the algorithm?

- Step 1: create document vectors as ($C_{d^{\prime}}$ d, term, weight) tuples
- Step 2: join the tuples from A and B: one sort and reduce
- Gives you tuples (a, b, term, $w(a, t e r m)^{*} w(b$, term $\left.)\right)$
- Step 3: group the common terms by (a, b) and reduce to aggregate the components of the sum

An alternative TFIDF pipeline

class TFIDF(Planner):

D = GPig.getArgvParams()
data $=$ ReadLines(D.get('corpus','idcorpus.txt')) \}
| Map(by=lambda line: line.strip().split("\t")) \}
| Map(by=lambda (docid,doc): (docid,doc.lower().split())) \}
| FlatMap(by=lambda (docid,words): map(lambda w:(docid,w),words))
\#compute document frequency and inverse doc freq
docFreq = Distinct(data) \}
| Group(by=lambda (docid,term):term, retaining=lambda(docid,term):docid, reducingTo=ReduceToCount())
ndoc $=$ Map(data, by=lambda (docid,term):docid) \}
| Distinct() \}
| Group(by=lambda row:'ndoc', reducingTo=ReduceToCount())
inverseDocFreq $=$ Augment(docFreq, sideview=ndoc, loadedBy=lambda v:GPig.onlyRowOf(v)) \}
| Map(by=lambda((term,df),(dummy,ndoc)):(term,math.log(ndoc/df)))
\#compute unweighted document vectors
udocvec $=$ Augment (data, sideview=inverseDocFreq, loadedBy=loadDictView) \}
| Map(by=lambda ((docid,term),idfDict):(docid,term,idfDict[term]))
\#normalize
norm = Group(udocvec, by=lambda(docid,term,weight):docid, retaining=lambda(docid,term, weight):weight*weight, reducingTo=ReduceToSum())
docvec $=$ Augment(udocvec, sideview=norm, loadedBy=loadDictView) \}
| Map(by=lambda ((docid,term,weight), normDict): (docid,term,weight/math.sqrt(normDict[docid])))

Inverted Index Softjoin - PIG 1/3

-- invoke as: pig --param input=id-park --param rel=icepark ... phirl.pig

```
%default output sim
```

\%default rel a
\%default def_par 10

SET default_parallel \$def_par;
-- load and tokenize the data as data:\{rel,id,str,term\}

```
raw = LOAD 'phirl/$input' AS (rel,docid,keyid,str);
```

data $=$ FOREACH raw GENERATE rel,docid,FLATTEN(TOKENIZE(LOWER(str))) AS term;
-- compute relation-dependent document frequencies as docfreq:\{rel,term,df:int\}
docfreq =
FOREACH (GROUP data by (rel,term))
GENERATE group. rel AS rel, group.term as term, COUNT(data) as df;
-- find the total number of documents in each relation as ndoc:\{rel, c:long\}
ndoc1 = DISTINCT(FOREACH data GENERATE rel,docid);
ndoc $=$ FOREACH (GROUP ndoc1 by rel) GENERATE group AS rel, COUNT(ndoc1) AS c;

Inverted Index Softjoin - 2/3

```
-- find the un-normalized document vectors as udocvec:{rel.docid,term,weight}
udocvec1 = JOIN data BY (rel,term), docfreq BY (rel,term);
udocvec2 = JOIN udocvec1 BY data::rel, ndoc BY rel;
udocvec =
    FOREACH udocvec2
    GENERATE data::rel, data::docid, data::term,
        LOG(2.0)*LOG(ndoc::c/(double)docfreq::df) AS weight;
-- find the square of the normalizer for each document: norm:{rel,docid,z2:double}
norm1 = FOREACH udocvec GENERATE rel,docid,term,weight*weight as w2;
norm =
    FOREACH (GROUP norm1 BY (rel,docid))
    GENERATE group.rel AS rel, group.docid AS docid, SUM(norm1.w2) AS z2;
-- compute the TFIDF weighted document vectors as: docvec:{rel,docid,term,weight:double}
docvec =
    FOREACH (JOIN udocvec BY (rel,docid), norm BY (rel,docid))
    GENERATE data::rel AS rel, data::docid AS docid, data::term AS term,
        weight/SQRT(z2) as weight;
```


Inverted Index Softjoin - 3/3

docvec: \{rel, docid,term, weight:double\}

-- naive algorithm: use all terms for finding potentil matches

```
docsA = FILTER docvec BY rel=='$rel';
docsB = FILTER docvec BY rel!='$rel';
softjoin1 = JOIN docsA BY term, docsB BY term;
softjoin2 =
    FOREACH softjoin1
    GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weight*docsB::weight AS p;
softjoin =
    FOREACH (GROUP softjoin2 BY (idA,idB))
    GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;
```

\# naive algorithm: use all pairs for finding matches
rel1Docs = Filter(docvec, by=lambda(rel,doc,term,weight): rel=='icepark')
rel2Docs = Filter(docvec, by=lambda(rel,doc,term,weight): rel=='npspark')
softjoin = Join(Jin(rel1Docs,by=lambda(rel,doc,term,weight):term),
Jin(rel2Docs, by=lambda(rel,doc, term, weight):term)) \}
| ReplaceEach(by=lambda((rel1,doc1,term,weight1),(rel2,doc2,term2,weight2)): (doc1,doc2,weight1*weight2))
| Group(by=lambda(doc1,doc2, p):(doc1,doc2), \}
retaining=lambda(doc1,doc2,p):p, \}
reducingTo=ReduceToSum()) \}
| ReplaceEach(by=lambda((doc1,doc2),sim):(doc1,doc2,sim))

Inverted Index Softjoin - 3/3

docvec: \{rel, docid,term, weight: double\}

```
    naive algorithm: use all terms for finding potentil matches
docsA = FILTER docvec BY rel=='$rel';
docsB = FILTER docvec BY rel!='$rel';
softjoin1 = JOIN docsA BY term, docsB BY term;
softjoin2 =
    FOREACH softjoin1
    GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weight*docsB::weight AS p;
softjoin =
    FOREACH (GROUP softjoin2 BY (idA,idB))
    GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;
```

-- diagnostic output: look: \{sim,[01],idA,idB,str1,str2\}
look1 = JOIN topSimPairs BY idA, raw BY docid;
look2 = JOIN look1 BY idB, raw BY docid;
look =
FOREACH look2
GENERATE sim, (look1: : raw: : keyid==raw: : keyid ? 1 : 0),
idA,idB, look1::raw::str AS str1, raw::str AS str2;
STORE look INTO 'phirl/\$output';

Results.....

d00059 d00354 d00286 d00274 d00009 d00154 d00376 d00323 d00292 d00200 d00283 d00342 d00011 d00026 d00157 d00339 d00267 d00210 d00208 d00222 d00187 d00230 d00349 d00259 d00353 d00071 d00019 d00212 d00098 d00013 d00031 d00028
d00436 d00611 d00573 d00566 d00399 d00500 d00623 d00594 d00577 Pea Ridge NHS Pea Ridge NMP d00532 Jean Lafitte NHP \& NPRES d00570 Obed Wild and Scenic River d00606 Sitka NHS Sitka NHP d00401 Andersonville NHS Andersonville NHP d00413 Bering Land Bridge NPRES d00643 Glacier Bay NP \& NPRES d00603 Sequoia and Kings Canyon NP Sequoia \& Kings Canyon NP
d00561 National Park Of American Samoa NP of American Samoa d00538 Kalaupapa NHP Kalaupapa NHS d00536 Johnstown Flood NM Johnstown Flood N. Mem. d00646 Lake Clark NP \& NPRES Lake Clark NP \& Preserve d00523 Homestead National Monument of America Homestead NM of Amer d00548 Lincoln Boyhood NM Lincoln Boyhood N. Mem. d00610 Sunset Crater NM Sunset Crater Volcano NM d00559 Mount Rushmore NM Mount Rushmore N. Mem. d00611 Theodore Roosevelt Island Theodore Roosevelt NP d00444 Chesapeake \& Ohio Canal NHP Chesapeake and Ohio Canal NH d00407 Arkansas Post NM Arkansas Post N. Mem. d00644 Katmai NP \& NPRES Katmai NP \& Preserve d00464 Denali NP \& NPRES Denali NP \& Preserve d00402 Aniakchak NM \& NPRES d00417 Big Thicket NPRES d00415 Big Cypress NPRES

Aniakchak NM
Big Thicket N. Preserve
Big Cypress N. Preserve 27
raw $=$ LOAD 'phirl/\$input' AS (rel,docid,keyid,str);
data $=$ FOREACH raw GENERATE rel,docid,FLATTEN(TOKENIZE(LOWER(str))) AS term;
-- compute relation-dependent document frequencies as docfreq:\{rel,term,df:int\}
docfreq =
FOREACH (GROUP data by (rel,term))
GENERATE group. rel AS rel, group.term as term, COUNT(data) as df;
-- find the total number of documents in each relation as ndoc:\{rel,c:long\}
ndoc1 = DISTINCT(FOREACH data GENERATE rel,docid);
ndoc $=$ FOREACH (GROUP ndoc1 by rel) GENERATE group AS rel, COUNT(ndoc1) AS c;
-- find the un-normalized document vectors as udocvec:\{rel.docid,term,weight\}
udocvec1 = JOIN data BY (rel,term), docfreq BY (rel,term);
udocvec2 = JOIN udocvec1 BY data::rel, ndoc BY rel;
udocvec =
FOREACH udocvec2
GENERATE data: :rel, data::docid, data::term, LOG(2.0)*LOG(ndoc::c/(double)docfreq::df) AS weight;
-- find the square of the normalizer for each document: norm:\{rel,docid,z2:double\}
norm1 = FOREACH udocvec GENERATE rel,docid,term,weight*weight as w2;
norm =
FOREACH (GROUP norm1 BY (rel,docid))
GENERATE group. rel AS rel, group.docid AS docid, SUM(norm1.w2) AS z2;
-- compute the TFIDF weighted document vectors as: docvec:\{rel,docid,term,weight:double\}
docvec =

- FOREACH (JOIN udocvec BY (rel,docid), norm BY (rel,docid))

GENERATE data: :rel AS rel, data: docid AS docid, data::term AS term, weight/SQRT(z2) as weight;
fs -rmr phirl/docvec
STORE docvec INTO 'phirl/docvec';
-- naive algorithm: use all terms for finding potentil matches

```
docsA = FILTER docvec BY rel=='$rel';
docsB = FILTER docvec BY rel!='$rel';
softjoin1 = JOIN docsA BY term, docsB BY term;
softjoin2 =
    FOREACH softjoin1
    GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA:;weight*docsB::weight AS p;
softjoin =
GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;
```


Making the algorithm smarter....

Inverted Index Softjoin - 2

```
-- naive algorithm: use all terms for finding potentil matches
docsA = FILTER docvec BY rel=='$rel';
docsB = FILTER docvec BY rel!='$rel';
softjoin1 = JOIN docsA BY term, docsB BY term;
softjoin2 =
    FOREACH softjoin1
    GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weight*docsB::weight AS p;
softjoin =
    FOREACH (GROUP softjoin2 BY (idA,idB))
    GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;
```

we should make a smart choice about which terms to use

Adding heuristics to the soft join - 1

-- compute maximum weight for rel2docs as: maxweight2:\{term,weight\}
maxweightB $=$
FOREACH (GROUP docsB BY (rel,term))
GENERATE group.term AS term, MAX(docsB.weight) AS weight;
-- augment the docvecs for rel1 with maxweight2 and docfreq information to get
-- augdocsA: \{rel,docid,term, w,df,maxw,score\}
docfreqB = FILTER docfreq BY rel!='\$rel';
augdocsA1 = JOIN docsA BY term, docfreqB BY term, maxweightB BY term;
augdocsA =
FOREACH augdocsA1
GENERATE docsA::rel, docsA::docid, docsA::term, docsA::weight AS w, docfreqB::df AS df, maxweightB::weight AS maxw, docsA::weight*maxweightB::weight AS score;

$$
\begin{gathered}
\mathbf{v}_{a} \mathbf{v}_{b}=\sum_{w} \mathbf{v}_{a}[w] * \mathbf{v}_{b}[w] \leq \sum_{w} \mathbf{v}_{a}[w] * \text { maxweight } 2[w] \\
\text { score for } w \text { in doc a }
\end{gathered}
$$

Adding heuristics to the soft join - 1

augdocsA =
FOREACH augdocsA1
GENERATE docsA::rel, docsA::docid, docsA::term, docsA::weight AS w, docfreqB::df AS df, maxweightB::weight AS maxw, docsA::weight*maxweightB::weight AS score;
-- filter out useful terms to join on, using the info in augdocsA.
-- the heuristics used here are:
--- (1) only use top K by maxscore w / in each document;
--- (2) filter by $\mathrm{df}<=\mathrm{maxDF}$
--- (3) filter by score>=minscore
usefulTerms1 =
FOREACH (GROUP augdocsA BY (rel,docid))
GENERATE group, TOP(\$top_k,6,augdocsA) AS top;
usefulTerms2 =
FOREACH usefulTerms1 \{
filteredTop = FILTER top BY (df<=\$max_df) AND score>\$min_sim;
topTerms = FOREACH filteredTop GENERATE term;
GENERATE flatten(topTerms);
\};
usefulTerms = DISTINCT usefulTerms2;

Adding heuristics to the soft join - 2

```
-- use the restricted sets of terms to get candidate pairs
pairs1 = JOIN usefulTerms BY term, docsA BY term, docsB BY term;
pairs2 = FOREACH pairs1 GENERATE docsA::docid AS idA, docsB::docid AS idB;
pairs = DISTINCT pairs2;
-- STORE pairs INTO 'phirl/pairs';
softjoin1 = JOIN pairs BY idA, docsA by docid;
softjoin2 = JOIN softjoin1 BY (idB,term), docsB by (docid,term);
softjoin3 =
    FOREACH softjoin2
    GENERATE idA, idB, docsA::term AS term, docsA::weight*docsB::weight AS p;
softjoin =
    FOREACH (GROUP softjoin3 BY (idA,idB))
    GENERATE group.idA, group.idB, SUM(softjoin3.p) AS sim;
```

```
docsB = FILTER docvec BY rel!='$rel';
```

-- compute maximum weight for rel2docs as: maxweight2:\{term,weight\}
maxweightB =
FOREACH (GROUP docsB BY (rel,term))
GENERATE group.term AS term, MAX(docsB.weight) AS weight;
-- augment the docvecs for rel1 with maxweight2 and docfreq information to get
-- augdocsA: \{rel,docid,term, w,df,maxw, score\}
docfreqB = FILTER docfreq BY rel!='\$rel';
augdocsA1 = JOIN docsA BY term, docfreqB BY term, maxweightB BY term;
augdocsA =
FOREACH augdocsA1
GENERATE docsA::rel, docsA::docid, docsA::term, docsA::weight AS w,
docfreqB::df AS df, maxweightB::weight AS maxw,
docsA::weight*maxweightB::weight AS score;
usefulTerms1 =
FOREACH (GROUP augdocsA BY (rel,docid))
GENERATE group, TOP(\$top_k,6,augdocsA) AS top;
usefulTerms2 =
FOREACH usefulTerms1 \{
filteredTop = FILTER top BY (df<=\$max_df) AND score>\$min_sim;
topTerms = FOREACH filteredTop GENERATE term;
GENERATE flatten(topTerms);
\};
usefulTerms = DISTINCT usefulTerms2;
pairs1 = JOIN usefulTerms BY term, docsA BY term, docsB BY term;
pairs2 = FOREACH pairs1 GENERATE docsA::docid AS idA, docsB::docid AS idB;
pairs = DISTINCT pairs2;
-- STORE pairs INTO 'phirl/pairs';
softjoin1 = JOIN pairs BY idA, docsA by docid;
softjoin2 = JOIN softjoin1 BY (idB,term), docsB by (docid,term);
softjoin3 =
FOREACH softjoin2
GENERATE idA, idB, docsA::term AS term, docsA::weight*docsB::weight AS p;
softjoin =
FOREACH (GROUP softjoin3 BY (idA,idB))
GENERATE group.idA, group.idB, SUM(softjoin3.p) AS sim;

PageRank at Scale

Google's PageRank

Inlinks are
"good" (recommendations)
Inlinks from a "good" site are better than inlinks from a "bad" site
but inlinks from sites with many outlinks are not as "good"...
"Good" and "bad" are relative.

Google's PageRank

Imagine a "pagehopper" that always either \because

- follows a random link, or
- jumps to random page

Google's PageRank

(Brin \& Page, http://www-db.stanford.edu/~backrub/google.html)

Imagine a "pagehopper" that always either

- follows a random link, or
- jumps to random page

PageRank ranks pages by the amount of time the pagehopper spends on a page:

- or, if there were many pagehoppers, PageRank is the expected "crowd size"

PageRank in Memory

- Let $\mathbf{u}=(1 / \mathrm{N}, \ldots, 1 / \mathrm{N})$
- dimension = \#nodes N
- Let $\mathrm{A}=$ adjacency matrix: $\left[\mathrm{a}_{\mathrm{ij}}=1 \Leftrightarrow \mathrm{i}\right.$ links to j$]$
- Let $\mathrm{W}=\left[\mathrm{w}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}} /\right.$ outdegree(i$\left.)\right]$
$-\mathrm{w}_{\mathrm{ij}}$ is probability of jump from i to j
- Let $\mathbf{v}^{0}=(1,1, \ldots ., 1)$
- or anything else you want
- Repeat until converged:
- Let $\mathbf{v}^{\mathrm{t}+1}=\mathbf{c u}+(1-c) \mathbf{W v}^{\mathrm{t}}$
- c is probability of jumping "anywhere randomly"

Streaming PageRank

- Assume we can store v but not W in memory
- Repeat until converged:
- Let $\mathbf{v}^{\mathrm{t}+1}=\mathbf{c u}+(1-\mathrm{c}) \mathbf{W v}^{\mathrm{t}}$
- Store A as a row matrix: each line is
- $\mathrm{i} \mathrm{j}_{\mathrm{i}, 1}, \ldots, \mathrm{j}_{\mathrm{i}, \mathrm{d}}$ [the neighbors of i]
- Store \mathbf{v}^{\prime} and \mathbf{v} in memory: v^{\prime} starts out as $\mathbf{c u}$
- For each line "i $\mathrm{j}_{\mathrm{i}, 1}, \ldots, \mathrm{j}_{\mathrm{i}, \mathrm{d}}$ "
- For each j in $\mathrm{j}_{\mathrm{i}, 1}, \ldots, \mathrm{j}_{\mathrm{i}, \mathrm{d}}$
- $\mathrm{v}^{\prime}[\mathrm{j}]+=(1-\mathrm{c}) \mathrm{v}[\mathrm{i}] / \mathrm{d}$

Everything needed for update is right there in row....

Streaming PageRank: with some long rows

- Repeat until converged:

$$
- \text { Let } \mathbf{v}^{\mathrm{t}+1}=\mathbf{c u}+(1-\mathbf{c}) \mathbf{W} \mathbf{v}^{\mathrm{t}}
$$

- Store A as a list of edges: each line is: "id(i) j "
- Store v' and vin memory: v' starts out as cu
- For each line "idj"

> - v'[j] += (1-c)v[i]/d

We need to get the degree of i and store it locally

Streaming PageRank: preprocessing

- Original encoding is edges (i,j)
- Mapper replaces i,j with i,1
- Reducer is a SumReducer
- Result is pairs (i,d(i))
- Then: join this back with edges (i,j)
- For each i,j pair:
- send j as a message to node i in the degree table
- messages always sorted after non-messages
- the reducer for the degree table sees $i, d(i)$ first
- then j1, j2,
- can output the key,value pairs with $k e y=i$, value $=d(i), j$

Preprocessing Control Flow: 1

I	J
i1	$j 1,1$
i1	$j 1,2$
$\ldots \ldots$	\ldots
i1	$j 1, k 1$
i2	$j 2,1$
\ldots	\ldots
i3	$j 3,1$
\ldots	\ldots

I	
i1	1
i1	1
\ldots	\ldots
i1	1
i2	1
$\ldots .$.	\ldots
$i 3$	1
\ldots	\ldots

I	
i1	1
i1	1
\ldots	\ldots
$i 1$	1
$i 2$	1
$\ldots \ldots$	\ldots
$i 3$	1
\ldots	\ldots

l	$d(i)$
$i 1$	$d(i 1)$
..	\ldots
$i 2$	$d(i 2)$
$\ldots \ldots$	\ldots
$i 3$	$d) i 3)$
\ldots	\ldots

Summing values

Preprocessing Control Flow: 2

1	J	1	J	I		I		
i1	j1,1	i1	~j1,1	i1	d(i1)	i1	d(i1)	j1,1
i1	j1,2	i1	\sim	i1	~j1,1	i1	d(i1)	j1,2
...	...	\ldots		i1	~j1,2
i2	j2,1	i2	\sim j2,1	..	~	i1	d(i1)	j1,n1
...	i2	d(i2)	i2	d(i2)	j2,1
		I	d(i)	i2	~j2,1
1	d(i)	i1	d(i1)	i2	$\sim \mathrm{j} 2,2$	i3	$d(i 3)$	j3,1
i1	d(i1)
.	...	i2	$d(i 2)$					
i2	d(i2)	...						
...						

Streaming PageRank: with some long rows

- Repeat until converged:
- Let $\mathbf{v}^{\mathrm{t}+1}=\mathbf{c u}+(1-\mathrm{c}) \mathbf{W v}^{\mathrm{t}}$
- Pure streaming: use a table of nodes \rightarrow degree + pageRank
- Lines are i: degree $=d, p r=v$
- For each edge i, j
- Send to i (in degree/pagerank) table: outlink j
- For each line i : degree $=d, \mathrm{pr}=\mathrm{v}$:
- send to i : incrementVBy c
- for each message "outlink j":
- send to j : incrementVBy $(1-c) * v / d$
- For each line i : degree $=\mathrm{d}, \mathrm{pr}=\mathrm{v}$
- sum up the incrementVBy messages to compute v^{\prime}
- output new row: i: degree $=d, \mathrm{pr}=v^{\prime}$

One identity mapper with two inputs (edges, degree/ pr table)

Reducer

outputs the incrementVBy messages

Two-input mapper + reducer

Control Flow: Streaming PR

Control Flow: Streaming PR

to	delta
i1	c
$j 1,1$	$(1-c) \mathrm{v}(\mathrm{i} 1) / \mathrm{d}(\mathrm{i} 1)$
\ldots	\ldots
$j 1, \mathrm{n} 1$	i
i 2	c
j2,1	\ldots
\ldots	\ldots
$i 3$	c

I	delta
i1	c
$i 1$	$(1-c) v(\ldots) \ldots$.
i1	$(1-c) \ldots$
\ldots.	\ldots
$i 2$	c
$i 2$	$(1-c) \ldots$
i2	$\ldots .$.
$\ldots . . .$.	

1	v^{\prime}
$i 1$	$\sim^{\prime} v^{\prime}(i 1)$
$i 2$	$\sim^{\prime}(i 2)$
\ldots	\ldots

	d / v
$i 1$	$d(i 1), v^{\prime}(i 1)$
$i 2$	$d(i 2), v^{\prime}(i 2)$
\ldots	\ldots

Control Flow: Streaming PR

I	J
i1	j1,1
i1	j1,2
...	...
i2	j2,1
...	...

and back around for next iteration....

I	d / v
i 1	$\mathrm{~d}(\mathrm{i} 1), \mathrm{v}(\mathrm{i} 1)$
i 2	$\mathrm{~d}(\mathrm{i} 2), \mathrm{v}(\mathrm{i} 2)$
\ldots	\ldots

MAP

PageRank in Pig

\#!/usr/bin/python
from org.apache.pig.scripting import *

How to use loops, conditionals, etc?

Embed PIG in a real programming language.

Julien Le Dem Yahoo

```
P = Pig.compile("n"
-- PR(A) = (1-d) +d (PR(T1)/C(T1) + .. + +PR(Tn)/C(Tn))
previous_pagerank =
    LOAD '$docs_in'
    USING PigStorage('\t')
    AS (url: chararray, pagerank: float, links:{ link: (url: chararray ) } );
outbound_pagerank =
    FOREACH previous_pagerank
    GENERATE
        pagerank / COUNT ( links ) AS pagerank,
        FLATTEN ( links ) AS to_url;
new_pagerank =
    FOREACH
        ( COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER )
    GENERATE
        group AS url,
            (1 - $d ) + $d * SUM (outbound_pagerank.pagerank ) AS pagerank,
            FLATTEN ( previous_pagerank.links ) AS links;
STORE new_pagerank
    INTO 'Sdocs_out'
    USING PigStorage('\t');
""")
params = { 'd': '0.5', 'docs_in': 'data/pagerank_data_simple' }
for i in range(10):
    out = "out/pagerank_data_" + str(i + 1)
    params["docs_out"] = out
    Pig.fs("rmr " + out)
    stats = P.bind(params).runSingle()
    if not stats.isSuccessful():
            raise 'failed'
    params["docs_in"] = out
```


\#!/usr/bin/python

from org.apache.pig.scripting import *
P = Pig.compile(""
pig script: $\operatorname{PR}(A)=(1-d)+d(P R(T 1) / C(T 1)+\ldots+\operatorname{PR}(T n) / C(T n))$
" " ")
params = \{ 'd': '0.5', 'docs_in': 'data/pagerank_data_simple' \}

Iterate 10 times

for i in range(10):
out = "out/pagerank_data_" $+\operatorname{str}(\mathrm{i}+1)$
params["docs_out"] = out
Pig.fs("rmr " + out)
stats = P.bind(params).runSingle()
if not stats.isSuccessful():
raise 'failed'
params["docs_in"] = out

The output becomes
the new input

```
previous_pagerank =
    LOAD '$docs_in'
    USING PigStorage('\t')
    AS (url: chararray, pagerank: float, links:{ link: (url: chararray ) } );
outbound_pagerank =
    FOREACH previous_pagerank
    GENERATE
            pagerank / COUNT ( links ) AS pagerank,
            FLATTEN ( links ) AS to_url;
new_pagerank =
    FOREACH
        ( COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER )
    GENERATE
        group AS url,
        (1 - $d) + $d * SUM ( outbound_pagerank.pagerank) AS pagerank,
        FLATTEN ( previous_pagerank.links ) AS links;
STORE new_pagerank
    INTO 'Sdocs_out'
    USING PigStorage('\t');
```


An example from Ron Bekkerman

Example: k-means clustering

- An EM-like algorithm:
- Initialize k cluster centroids
- E-step: associate each data instance with the closest centroid
- Find expected values of cluster assignments given the data and centroids
- M-step: recalculate centroids as an average of the associated data instances
- Find new centroids that maximize that expectation

k-means Clustering

Parallelizing k-means

Parallelizing k-means

Parallelizing k-means

k-means on MapReduce

Panda et al, Chapter 2

- Mappers read data portions and centroids
- Mappers assign data instances to clusters
- Mappers compute new local centroids and local cluster sizes
- Reducers aggregate local centroids (weighted by local cluster sizes) into new global centroids
- Reducers write the new centroids

k-means in Apache Pig: input data

- Assume we need to cluster documents
- Stored in a 3-column table D :

Document	Word	Count
docl	Carnegie	2
docl	Mellon	2

- Initial centroids are k randomly chosen docs
-Stored in table C in the same format as above

k-means in Apache Pig: E-step

$D_{-} C=\mathrm{JOIN} C$ BY w, D BY w;
PROD $=$ FOREACH $D_{-} C$ GENERATE $d, c, i_{d} * i_{c}$ AS $i_{d} i_{c}$;
$P R O D_{a}=\operatorname{GROUP} \operatorname{PROD}$ BY (d, c);

SIM = FOREACH DOT_LEN GENERATE $d, c, d X c /$ len $_{c} ;$
$S I M_{g}=$ GROUP SIM BY d;
CLUSTERS $=$ FOREACH S_{g} GENERATE TOP $(1,2, S I M)$;

k-means in Apache Pig: E-step

$D_{-} C=\mathrm{JOIN} C$ BY w, D BY w;
PROD $=$ FOREACH $D_{-} C$ GENERATE $d, c, i_{d} * i_{c}$ AS $i_{d} i_{c}$;
$P R O D_{a}=$ GROUP PROD BY (d, c);

SIM = FOREACH DOT_LEN GENERATE $d, c, d X c /$ len $_{c} ;$
$S I M_{g}=$ GROUP SIM BY d;
CLUSTERS $=$ FOREACH $S I M_{g}$ GENERATE TOP $(1,2, S I M)$;

k-means in Apache Pig: E-step

$D_{-} C=\mathrm{JOIN} C$ BY w, D BY w;
PROD $=$ FOREACH $D_{-} C$ GENERATE $d, c, i_{d} * i_{c}$ AS $i_{d} i_{c}$;
$P R O D_{a}=\operatorname{GROUP} \operatorname{PROD}$ BY (d, c);

$S I M_{g}=$ GROUP SIM BY $d ;$
CLUSTERS = FOREACH $S I M_{g}$ GENERATE TOP(1, $\left.2, ~ S I M\right)$;

k-means in Apache Pig: E-step

$D_{-} C=\mathrm{JOIN} C$ BY w, D BY w;
PROD $=$ FOREACH $D_{-} C$ GENERATE $d, c, i_{d} * i_{c}$ AS $i_{d} i_{c}$;
$P R O D_{a}=\operatorname{GROUP} \operatorname{PROD}$ BY (d, c);

$S I M_{g}=$ GROUP SIM BY $d ;$
CLUSTERS $=$ FOREACH $S I M_{g}$ GENERATE TOP(1, $\left.2, ~ S I M\right)$;

k-means in Apache Pig: E-step

$D_{-} C=\mathrm{JOIN} C$ BY w, D BY w;
$P R O D=$ FOREACH $D_{-} C$ GENERATE $d, c, i_{d} * i_{c}$ AS $i_{d} i_{c}$;
$P R O D_{a}=\operatorname{GROUP} \operatorname{PROD}$ BY (d, c);

SIM = FOREACH DOT_LEN GENERATE $d, c, d X c /$ len $_{c} ;$
$S I M_{g}=$ GROUP SIM BY d;
CLUSTERS $=$ FOREACH $S I M_{g}$ GENERATE TOP $(1,2, S I M)$;

k-means in Apache Pig: E-step

$D_{-} C=\operatorname{JOIN} C B Y w, D$ BY w;
PROD_CnEACH D_C GENERATE $d, c, i_{d} * i_{c}$ AS $i_{d} i_{c}$;
$P R O D_{g}=$ GROUP $\operatorname{ROD} \mathbf{B Y}(d, c)$;

SQR $=$ FOPRACH C GENERATE $c, i_{c}{ }^{*} i_{c}$ AS $i_{c}{ }^{2}$;
$S Q R_{g}=$ sROUP $S R R$ BY $c ;$

DOT_LEN $=$ IOIN $L N_{-} C$ BY $c, D O T_{-} P R O D$ BY c;

$S I M_{g}=$ GROUP $: M B \mathbf{B Y} d ;$
CLUSTEKS - OREACH S_{g} GENERATE TOP (1, 2, SIM);

k-means in Apache Pig: M-step

D_C_W JOIN LUSTERS BY d, D BY d;
$\left.D_{-} C_{-} W_{g}: G R O U P\right)_{-} C_{-} W$ BY (c, w);
SUMS = FONEAOn $D_{-} C_{-} W_{g}$ GENERATE $c, w, \operatorname{SUM}\left(i_{d}\right)$ AS sum;
$D_{-} C_{-} W_{g g}$: GROUP D_C_W BY c;
SIZES $=$ FORLricir $D_{-} C _W_{g}$ GENERATE $c, \operatorname{COUNT}\left(D_{-} C-W\right)$ AS size;
SUMS_SIZES JOIN IZES BY c, SUMS BY c;
$C=$ FOREACH SOTviS_SIZES GENERATE c, w, sum / size AS i_{c};

Finally - embed in Java (or Python or) to do the looping
\#!/usr/bin/python
from org.apache.pig.scripting import *

How to use loops, conditionals, etc?

Embed PIG in a real programming language.

h/t Julien Le Dem Yahoo

```
P = Pig.compile("n"
-- PR(A) = (1-d) +d (PR(T1)/C(T1) + .. + +PR(Tn)/C(Tn))
previous_pagerank =
    LOAD '$docs_in'
    USING PigStorage('\t')
    AS (url: chararray, pagerank: float, links:{ link: (url: chararray ) } );
outbound_pagerank =
    FOREACH previous_pagerank
    GENERATE
        pagerank / COUNT ( links ) AS pagerank,
        FLATTEN ( links ) AS to_url;
new_pagerank =
    FOREACH
        ( COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER )
    GENERATE
        group AS url,
            (1 - $d ) + $d * SUM (outbound_pagerank.pagerank ) AS pagerank,
            FLATTEN ( previous_pagerank.links ) AS links;
STORE new_pagerank
    INTO 'Sdocs_out'
    USING PigStorage('\t');
""")
params = { 'd': '0.5', 'docs_in': 'data/pagerank_data_simple' }
for i in range(10):
    out = "out/pagerank_data_" + str(i + 1)
    params["docs_out"] = out
    Pig.fs("rmr " + out)
    stats = P.bind(params).runSingle()
    if not stats.isSuccessful():
        raise 'failed'
    params["docs_in"] = out
```


\#!/usr/bin/python

from org.apache.pig.scripting import *
P = Pig.compile(""
pig script: $\operatorname{PR}(A)=(1-d)+d(P R(T 1) / C(T 1)+\ldots+\operatorname{PR}(T n) / C(T n))$
" " ")
params = \{ 'd': '0.5', 'docs_in': 'data/pagerank_data_simple' \}

Iterate 10 times

for i in range(10):
out = "out/pagerank_data_" $+\operatorname{str}(\mathrm{i}+1)$
params["docs_out"] = out
Pig.fs("rmr " + out)
stats = P.bind(params).runSingle()
if not stats.isSuccessful():
raise 'failed'
params["docs_in"] = out

The output becomes
the new input

The problem with k-means in Hadoop

I/O costs

Data is read, and model is written, with every iteration

Panda et al, Chapter 2

- Mappers read data portions and centroids
- Mappers assign data instances to clusters
- Mappers compute new local centroids and local cluster sizes
- Reducers aggregate local centroids (weighted by local cluster sizes) into new global centroids
- Reducers write the new centroids

Spark

Spark

- Too much typing - programs are not concise
- Too low level
- missing abstractions
- hard to specify a workflow
- Not well suited to iterative operations
- E.g., E/M, k-means clustering, ...
- Workflow and memory-loading issues

Sharded files are replaced by "RDDs" - resiliant distributed datasets
RDDs can be cached in cluster memory and recreated to recover from error

Spark examples

 errors.cache()spark is a spark context object
text_file = spark.textFile("hdfs://...")
errors = text_file.filter(lambda line: "ERROR" in line)
\# Count all the errors
errors.count()
\# Count errors mentioning MySQL
errors.filter(lambda line: "MySQL" in line).count()
\# Fetch the MySQL errors as an array of strings
errors.filter(lambda line: "MySQL" in line).collect()

Spark examples

 errors. cache() text_file = park.textFile("hd, and return a value.errors is a transformation, and thus a
that exp count() is an action: it do : will actually execute the plan for errors errors = text_file.filter moda line. Lrmon 11 c.ne) \# Count all the erro errors. count() \# Count errors mentioning MySQL everything is sharded, like in Hadoop and GuineaPig \# Fetch the MySQL errors as an array of strings errors.filter(lambda line: "MySQL" in line). collect()
errors.filter() is a transformation
collect() is an action

Spark examples

everything is sharded ... and the shards are stored in memory of worker machines not local disk (if possible)
text_file = spark.textFile("hdfs://...")
errors = text_file.filter(lambda line: "ERROR" in line) errors.cache() \# modify errors to be stored in cluster memory errors.count()
\# Count errors meniioning MySQL
errors.filter(lambda la "MySQL" in line).count() \# Fetch the MySQL errors as cray of strinas errors.filter(lambda line: "MySQD

You can also persist() an RDD on disk, which is like marking it as opts(stored=True) in GuineaPig. Spark's not smart about persisting data.
subsequent actions will be much faster

Spark examples: wordcount

```
text_file = spark.textFile("hdfs://...")
counts = text_file.flatMap(lambda line: line.split(" ")) \
    .map(lambda word: (word, 1)) \
    .reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile(`\dfs://...")
```


Spark examples: batch logistic regression

```
points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
    gradient = points.map(
            lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * g.x
    ).reduce(lambda a, b: a + b)
    w -= gradient
print "Final parating plane: %s" % w
```

reduce is an action it produces a numby vector
p.x and w are vectors, from the numpy package. Python overloads operations like * and + for vectors.

Spark examples: batch logistic regression

```
points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
    gradient = points.map(
            lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x
    ).reduce(lambda a, b: a + b)
    w -= gradient
print "Final separating plane: %s" % w
```

Important note: numpy vectors/matrices are not just "syntactic sugar".

- They are much more compact than something like a list of python floats.
- numpy operations like dot, ${ }^{*},+$ are calls to optimized C code
- a little python logic around a lot of numpy calls is pretty efficient

Spark examples: batch logistic regression

```
points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
    gradient = points.map(
            lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x
    ).reduce(lambda a, b: a + b)
    w -= gradient
print "Final separating plane:
So: python builds a closure - code including the current value of \(\mathbf{w}\) - and
```

\mathbf{w} is defined outside the lambda function, but used inside it Spark ships it off to each worker. So \mathbf{w} is copied, and must be read-only.

Spark examples: batch logistic regression

```
points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
    gradient = points.map(
            lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)
        ).reduce(lambda a, b: a + b)
    w -= gradient
print "Final separating plane: %s" % w
```

- 1) * p.y * p.x
dataset of points is cached in cluster memory to reduce i/o

Spark logistic regression example

The graph below compares the performance of this Spark program against a Hadoop implementation on 30 GB of data on an 80-core cluster, showing the benefit of in-memory caching:

- Hadoop - Spark

Spark

Spark Core

Mesos

Spark details: broadcast

```
points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
    gradient = points.map(
            lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x
        ).reduce(lambda a, b: a + b)
    w -= gradient
print "Final separating plane:
```


Spark details: broadcast

little penalty for distributing something that's not used by all

```
workers
points = spark.textFile(...).map(parsePoint).cacl workers
```

w = numpy. random. ranf(size = D) \# current separating plane
for i in range(ITERATIONS):
gradient $=$ points.map(
lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x
). reduce(lambda a, b: a + b)
w -= gradient
print "Final separating plane:
alternative: create a broadcast variable, e.g.,

- w_broad = spark.broadcast(w) which is accessed by the worker via
- w_broad.value()
what's sent is a small pointer to \mathbf{w} (e.g., the name of a file containing a serialized version of \mathbf{w}) and when value is called, some clever allreduce like machinery is used to reduce network load.

Spark details: mapPartitions

class WordProb(Planner):

```
wc = ReadLines('corpus.txt') | Flatten(by=tokens) \
        | Group(by=lambda x:x, reducingTo=ReduceToCount())
total = ...
wcWithTotal = Augment(wc, sideview=total,loadedBy=lambda v:GPig.onlyRowOf(v))
prob = ReplaceEach(wcWithTotal, by=lambda ((word,count),n): (word,count,n,float(count)/n))
```

Common issue:

- map task requires loading in some small shared value
- more generally, map task requires some sort of initialization before processing a shard
- GuineaPig:
- special Augment ... sideview ... pattern for shared values
- can kludge up any initializer using Augment
- Raw Hadoop: mapper.configure() and mapper.close() methods

Spark details: mapPartitions

class WordProb(Planner):

```
wc = ReadLines('corpus.txt') | Flatten(by=tokens) \
        | Group(by=lambda x:x, reducingTo=ReduceToCount())
total = ...
wcWithTotal = Augment(wc, sideview=total,loadedBy=lambda v:GPig.onlyRowOf(v))
prob = ReplaceEach(wcWithTotal, by=lambda ((word,count),n): (word,count,n,float(count)/n))
```

Spark:

- rdd.mapPartitions(f): will call f(iteratorOverShard) once per shard, and return an iterator over the mapped values.
- $f()$ can do any setup/close steps it needs

Also:

- there are transformations to partition an RDD with a user-selected function, like in Hadoop. Usually you partition and persist/cache.

