
In the once upon a time days of the First Age of Magic, the prudent
sorcerer regarded his own true name as his most valued possession but
also the greatest threat to his continued good health, for--the stories go--
once an enemy, even a weak unskilled enemy, learned the sorcerer's
true name, then routine and widely known spells could destroy or
enslave even the most powerful. As times passed, and we graduated to
the Age of Reason and thence to the first and second industrial
revolutions, such notions were discredited. Now it seems that the Wheel
has turned full circle (even if there never really was a First Age) and we
are back to worrying about true names again:

The first hint Mr. Slippery had that his own True Name might be known--
and, for that matter, known to the Great Enemy--came with the
appearance of two black Lincolns humming up the long dirt driveway ...
Roger Pollack was in his garden weeding, had been there nearly the
whole morning.... Four heavy-set men and a hard-looking female piled
out, started purposefully across his well-tended cabbage patch.…

This had been, of course, Roger Pollack's great fear. They had
discovered Mr. Slippery's True Name and it was Roger Andrew Pollack
TIN/SSAN 0959-34-2861.

1

Recap: soft joins/similarity joins

… …

Input: Two Different Lists of Entity Names

2

Recap: soft joins/similarity joins
Output: Pairs of Names Ranked by Similarity

…

…

identical

similar

less similar

3

Example: soft joins/similarity joins
Output: Pairs of Names Ranked by Similarity

…

…

A surprisingly good similarity score is TFIDF cosine distance.
•  Mismatches on frequent terms (“&” vs “and”, “N.”, “Preserve”,

“NHP”, …) are discounted
•  Matches on rare term (“Kalaupapa”, “Samoa”) are rewarded.

4

Softjoin Example - 1

A useful scalable similarity metric: IDF weighting plus cosine distance!

~ means
“similar to”

5

One solution: Soft (Similarity) joins
•  A similarity join of two sets A and B is

– an ordered list of triples (sij,ai,bj) such that
•  ai is from A
• bj is from B
•  sij is the similarity of ai and bj

•  the triples are in descending order

•  the list is either the top K triples by sij or ALL
triples with sij>L … or sometimes some
approximation of these….

6

How well does TFIDF work?

7

8

There are refinements to TFIDF distance – eg ones that extend with
soft matching at the token level (e.g., softTFIDF)

9

Semantic Joining�
with Multiscale Statistics

William Cohen
Katie Rivard, Dana Attias-Moshevitz

CMU

10

Semantic Joining�
with Multiscale Statistics

William Cohen
Katie Rivard, Dana Attias-Moshevitz

CMU

11

SOFT JOINS WITH TFIDF:�
HOW?

12

Rocchio’s algorithm
DF(w) = # different docs w occurs in

TF(w,d) = # different times w occurs in doc d

IDF(w) = |D |
DF(w)

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w))
u(d) = u(w1,d),....,u(w|V |,d)

u(y) =α 1
|Cy |

u(d)
||u(d) ||2d∈Cy

∑ −β
1

|D−Cy |
u(d ')

||u(d ') ||2d '∈D−Cy

∑

f (d) = argmaxy
u(d)

||u(d) ||2

⋅
u(y)

||u(y) ||2

Many variants
of these
formulae

…as long as
u(w,d)=0 for
words not in d!

Store only non-zeros in
u(d), so size is O(|d|)

But size of u(y) is O(|nV|)

u
2
= ui

2

i
∑

13

TFIDF similarity
DF(w) = # different docs w occurs in

TF(w,d) = # different times w occurs in doc d

IDF(w) = |D |
DF(w)

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w))
u(d) = u(w1,d),....,u(w|V |,d)

v(d) = u(d)
||u(d) ||2

sim(v(d1),v(d2)) = v(d1) ⋅v(d2) = u(w,d1)
||u(d1) ||2w

∑ u(w,d2)
||u(d2) ||2

14

TFIDF soft joins
•  A similarity join of two sets of TFIDF-weighted

vectors A and B is
– an ordered list of triples (sij,ai,bj) such that

•  ai is from A
• bj is from B
•  sij is the dot product of ai and bj
•  the triples are in descending order

•  the list is either the top K triples by sij or ALL
triples with sij>L … or sometimes some
approximation of these….

15

PARALLEL SOFT JOINS

16

SIGMOD 2010

17

TFIDF similarity: variant for joins
DF(A,w) = # different docs w occurs in from A
DF(B,w) = # different docs w occurs in from B
TF(w,d) = # different times w occurs in doc d

IDF(w,d) = |Cd |
DF(Cd,w)

, where Cd ∈ {A,B}

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w,d))
u(d) = u(w1,d),....,u(w|V |,d)

v(d) = u(d)
||u(d) ||2

sim(v(d1),v(d2)) = v(d1) ⋅v(d2) = u(w,d1)
||u(d1) ||2w

∑ u(w,d2)
||u(d2) ||2

18

Sim Joins on Product Descriptions

•  Similarity can be high for descriptions of distinct items:

o  AERO TGX-Series Work Table -42'' x 96'' Model 1TGX-4296 All tables shipped KD
AEROSPEC- 1TGX Tables are Aerospec Designed. In addition to above
specifications; - All four sides have a V countertop edge ...

o  AERO TGX-Series Work Table -42'' x 48'' Model 1TGX-4248 All tables shipped KD
AEROSPEC- 1TGX Tables are Aerospec Designed. In addition to above
specifications; - All four sides have a V countertop ..

•  Similarity can be low for descriptions of identical items:
o  Canon Angle Finder C 2882A002 Film Camera Angle Finders Right Angle

Finder C (Includes ED-C & ED-D Adapters for All SLR Cameras) Film Camera
Angle Finders & Magnifiers The Angle Finder C lets you adjust ...

o  CANON 2882A002 ANGLE FINDER C FOR EOS REBEL® SERIES
PROVIDES A FULL SCREEN IMAGE SHOWS EXPOSURE DATA BUILT-IN
DIOPTRIC ADJUSTMENT COMPATIBLE WITH THE CANON® REBEL, EOS
& REBEL EOS SERIES.

19

Parallel Inverted Index Softjoin - 1

want this to
work for long
documents or
short ones…and
keep the
relations simple

Statistics for computing TFIDF with IDFs local to each relation 20

sumSquareWeights

Parallel Inverted Index Softjoin - 2

What’s the algorithm?
•  Step 1: create document vectors as (Cd, d, term, weight)

tuples
•  Step 2: join the tuples from A and B: one sort and reduce

•  Gives you tuples (a, b, term, w(a,term)*w(b,term))
•  Step 3: group the common terms by (a,b) and reduce to

aggregate the components of the sum
21

An alternative TFIDF pipeline

22

Inverted Index Softjoin – PIG 1/3

23

Inverted Index Softjoin – 2/3

24

Inverted Index Softjoin – 3/3

25

Inverted Index Softjoin – 3/3

26

Results…..

27

28

Making the algorithm smarter….

29

Inverted Index Softjoin - 2

we should make a smart choice about which terms to use

30

Adding heuristics to the soft join - 1

31

vavb = va[w]
w
∑ ∗vb[w]≤ va[w]

w
∑ ∗maxweight2[w]

score for w in doc a

Adding heuristics to the soft join - 1

32

Adding heuristics to the soft join - 2

33

34

PageRank at Scale

35

Google’s PageRank

web site
xxx

web site yyyy

web site a b c
d e f g

web

site

pdq pdq ..

web site yyyy

web site a b c
d e f g

web site
xxx

Inlinks are
“good” (recommendations)

Inlinks from a “good” site
are better than inlinks from
a “bad” site

but inlinks from sites with
many outlinks are not as
“good”...

“Good” and “bad” are
relative.

web site
xxx

36

Google’s PageRank

web site
xxx

web site yyyy

web site a b c
d e f g

web

site

pdq pdq ..

web site yyyy

web site a b c
d e f g

web site
xxx Imagine a “pagehopper”

that always either

•  follows a random link, or

•  jumps to random page

37

Google’s PageRank�
(Brin & Page, http://www-db.stanford.edu/~backrub/google.html)

web site
xxx

web site yyyy

web site a b c
d e f g

web

site

pdq pdq ..

web site yyyy

web site a b c
d e f g

web site
xxx Imagine a “pagehopper”

that always either

•  follows a random link, or

•  jumps to random page

PageRank ranks pages by
the amount of time the
pagehopper spends on a
page:

•  or, if there were many
pagehoppers, PageRank is
the expected “crowd size”

38

PageRank in Memory
•  Let u = (1/N, …, 1/N)

– dimension = #nodes N
•  Let A = adjacency matrix: [aij=1 ó i links to j]
•  Let W = [wij = aij/outdegree(i)]

– wij is probability of jump from i to j
•  Let v0 = (1,1,….,1)

– or anything else you want
•  Repeat until converged:

– Let vt+1 = cu + (1-c)Wvt

•  c is probability of jumping “anywhere randomly”

39

Streaming PageRank
•  Assume we can store v but not W in memory
•  Repeat until converged:

– Let vt+1 = cu + (1-c)Wvt

•  Store A as a row matrix: each line is
–  i ji,1,…,ji,d [the neighbors of i]

•  Store v’ and v in memory: v’ starts out as cu
•  For each line “i ji,1,…,ji,d “

–  For each j in ji,1,…,ji,d
•  v’[j] += (1-c)v[i]/d

Everything needed
for update is right
there in row….

40

Streaming PageRank: �
with some long rows
•  Repeat until converged:

– Let vt+1 = cu + (1-c)Wvt

•  Store A as a list of edges: each line is: “i d(i) j”
•  Store v’ and v in memory: v’ starts out as cu
•  For each line “i d j“

•  v’[j] += (1-c)v[i]/d

We need to get the
degree of i and store
it locally

41

Streaming PageRank: preprocessing
•  Original encoding is edges (i,j)
•  Mapper replaces i,j with i,1
•  Reducer is a SumReducer
•  Result is pairs (i,d(i))

•  Then: join this back with edges (i,j)
•  For each i,j pair:

–  send j as a message to node i in the degree table
•  messages always sorted after non-messages

–  the reducer for the degree table sees i,d(i) kirst
•  then j1, j2, ….
•  can output the key,value pairs with key=i, value=d(i), j

42

Preprocessing	Control	Flow:	1	
I J

i1	 j1,1	

i1	 j1,2	

…	 …	

i1	 j1,k1	

i2	 j2,1	

…	 …	

i3	 j3,1	

…	 …	

I

i1	 1	

i1	 1	

…	 …	

i1	 1	

i2	 1	

…	 …	

i3	 1	

…	 …	

I

i1	 1	

i1	 1	

…	 …	

i1	 1	

i2	 1	

…	 …	

i3	 1	

…	 …	

I d(i)

i1	 d(i1)	

..	 …	

i2	 d(i2)	

…	 …	

i3	 d)i3)	

…	 …	

MAP SORT REDUCE

Summing values

43

Preprocessing	Control	Flow:	2	
I J

i1	 j1,1	

i1	 j1,2	

…	 …	

i2	 j2,1	

…	 …	

I

i1	 d(i1)	

i1	 ~j1,1	

i1	 ~j1,2	

..	 …	

i2	 d(i2)	

i2	 ~j2,1	

i2	 ~j2,2	

…	 …	

I

i1	 d(i1)	 j1,1	

i1	 d(i1)	 j1,2	

…	 …	 …	

i1	 d(i1)	 j1,n1	

i2	 d(i2)	 j2,1	

…	 …	 …	

i3	 d(i3)	 j3,1	

…	 …	 …	

I d(i)

i1	 d(i1)	

..	 …	

i2	 d(i2)	

…	 …	

MAP SORT REDUCE

I J

i1	 ~j1,1	

i1	 ~j1,2	

…	 …	

i2	 ~j2,1	

…	 …	

I d(i)

i1	 d(i1)	

..	 …	

i2	 d(i2)	

…	 …	

copy or convert to messages join degree with edges 44

Streaming PageRank: �
with some long rows
•  Repeat until converged:

–  Let vt+1 = cu + (1-c)Wvt

•  Pure streaming: use a table of nodesà degree+pageRank
–  Lines are i: degree=d,pr=v

•  For each edge i,j
–  Send to i (in degree/pagerank) table: outlink j

•  For each line i: degree=d,pr=v:
–  send to i: incrementVBy c
–  for each message “outlink j”:

•  send to j: incrementVBy (1-c)*v/d
•  For each line i: degree=d,pr=v

–  sum up the incrementVBy messages to compute v’
–  output new row: i: degree=d,pr=v’

One
identity
mapper
with two
inputs
(edges,
degree/
pr table)

Reducer
outputs the
incrementVBy
messages

Two-input
mapper +
reducer

45

Control	Flow:	Streaming	PR	
I J

i1	 j1,1	

i1	 j1,2	

…	 …	

i2	 j2,1	

…	 …	

I d/v

i1	 d(i1),v(i1)	

i1	 ~j1,1	

i1	 ~j1,2	

..	 …	

i2	 d(i2),v(i2)	

i2	 ~j2,1	

i2	 ~j2,2	

…	 …	

to delta

i1	 c	

j1,1	 (1-c)v(i1)/d(i1)	

…	 …	

j1,n1	 i	

i2	 c	

j2,1	 …	

…	 …	

i3	 c	

I d/v

i1	 d(i1),v(i1)	

i2	 d(i2),v(i2)	

…	 …	

MAP SORT
REDUCE MAP SORT

I delta

i1	 c	

i1	 (1-c)v(…)….	

i1	 (1-c)…	

..	 …	

i2	 c	

i2	 (1-c)…	

i2	 ….	

…	 …	

copy or convert to messages
send “pageRank

updates ” to outlinks 46

Control	Flow:	Streaming	PR	
to delta

i1	 c	

j1,1	 (1-c)v(i1)/d(i1)	

…	 …	

j1,n1	 i	

i2	 c	

j2,1	 …	

…	 …	

i3	 c	

REDUCE MAP SORT

I delta

i1	 c	

i1	 (1-c)v(…)….	

i1	 (1-c)…	

..	 …	

i2	 c	

i2	 (1-c)…	

i2	 ….	

…	 …	

REDUCE

I v’

i1	 ~v’(i1)	

i2	 ~v’(i2)	

…	 …	

Summing values

I d/v

i1	 d(i1),v(i1)	

i2	 d(i2),v(i2)	

…	 …	

MAP SORT REDUCE

Replace v with v’

I d/v

i1	 d(i1),v’(i1)	

i2	 d(i2),v’(i2)	

…	 …	

47

Control	Flow:	Streaming	PR	
I J

i1	 j1,1	

i1	 j1,2	

…	 …	

i2	 j2,1	

…	 …	

I d/v

i1	 d(i1),v(i1)	

i2	 d(i2),v(i2)	

…	 …	

MAP

copy or convert to messages

and back around for
next iteration….

48

PageRank in Pig

49

Julien Le Dem -
Yahoo

How to use loops,
conditionals, etc?

Embed PIG in a
real programming
language.

50

51

52 lots of i/o happening here…

An example from Ron Bekkerman

53

Example: k-means clustering

•  An EM-like algorithm:
•  Initialize k cluster centroids
•  E-step: associate each data instance with the

closest centroid
– Find expected values of cluster assignments

given the data and centroids
•  M-step: recalculate centroids as an average of

the associated data instances
– Find new centroids that maximize that

expectation
54

k-means Clustering

centroids

55

Parallelizing k-means

56

Parallelizing k-means

57

Parallelizing k-means

58

k-means on MapReduce

•  Mappers read data portions and centroids
•  Mappers assign data instances to clusters
•  Mappers compute new local centroids and

local cluster sizes
•  Reducers aggregate local centroids

(weighted by local cluster sizes) into new
global centroids

•  Reducers write the new centroids

Panda et al, Chapter 2

59

k-means in Apache Pig: input data

•  Assume we need to cluster documents
– Stored in a 3-column table D:

•  Initial centroids are k randomly chosen docs
– Stored in table C in the same format as

above

Document Word Count

doc1 Carnegie 2

doc1 Mellon 2

60

D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step

()∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg

61

D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step

()∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg

62

D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step

()∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg

63

D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step

()∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg

64

D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step

()∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg

65

k-means in Apache Pig: E-step

D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

66

k-means in Apache Pig: M-step

D_C_W	=	JOIN	CLUSTERS	BY	d,	D	BY	d;	
	
D_C_Wg	=	GROUP	D_C_W	BY	(c,	w);	
SUMS	=	FOREACH	D_C_Wg	GENERATE	c,	w,	SUM(id)	AS	sum;	
	
D_C_Wgg	=	GROUP	D_C_W	BY	c;	
SIZES	=	FOREACH	D_C_Wgg	GENERATE	c,	COUNT(D_C_W)	AS	size;	
	
SUMS_SIZES	=	JOIN	SIZES	BY	c,	SUMS	BY	c;	
C	=	FOREACH		SUMS_SIZES		GENERATE	c,	w,	sum	/	size	AS	ic	;	

Finally - embed in Java (or Python or ….) to do the looping

67

h/t Julien Le Dem -
Yahoo

How to use loops,
conditionals, etc?

Embed PIG in a
real programming
language.

68

69

The problem with k-means in Hadoop
I/O costs

70

Data is read, and model is written, with
every iteration

•  Mappers read data portions and centroids
•  Mappers assign data instances to clusters
•  Mappers compute new local centroids and

local cluster sizes
•  Reducers aggregate local centroids

(weighted by local cluster sizes) into new
global centroids

•  Reducers write the new centroids

Panda et al, Chapter 2

71

Spark

72

Spark
•  Too much typing

– programs are not concise
•  Too low level

– missing abstractions
– hard to specify a workklow

•  Not well suited to iterative operations
– E.g., E/M, k-means clustering, …
– Workklow and memory-loading issues

73

Set of concise dataflow
operations
(“transformation”)

Dataflow operations are
embedded in an API
together with “actions”

Sharded files are replaced by “RDDs” – resiliant distributed datasets

RDDs can be cached in cluster memory and recreated to recover from
error

Spark examples

74

spark is a spark
context object

Spark examples

75

errors is a
transformation, and

thus a data strucure
that explains HOW to

do something
count() is an action: it
will actually execute
the plan for errors
and return a value.

errors.filter() is a
transformation

collect() is an action

everything is sharded, like in
Hadoop and GuineaPig

Spark examples

76

modify errors to be stored in cluster memory

subsequent
actions will be
much faster

everything is sharded … and the shards are stored in memory of
worker machines not local disk (if possible)

You can also persist() an RDD on disk, which
is like marking it as opts(stored=True) in
GuineaPig. Spark’s not smart about persisting
data.

Spark examples: wordcount

77

the action
transformation on
(key,value) pairs ,
which are special

Spark examples: batch logistic regression

78

reduce is an action –
it produces a numby

vector

p.x and w are
vectors, from the
numpy package

p.x and w are vectors,
from the numpy package.

Python overloads
operations like * and +

for vectors.

Spark examples: batch logistic regression

Important note: numpy vectors/matrices are not just “syntactic
sugar”.
•  They are much more compact than something like a list of python

floats.
•  numpy operations like dot, *, + are calls to optimized C code
•  a little python logic around a lot of numpy calls is pretty efficient

79

Spark examples: batch logistic regression

80

w is defined outside
the lambda function,

but used inside it
So: python builds a closure – code

including the current value of w – and
Spark ships it off to each worker. So

w is copied, and must be read-only.

Spark examples: batch logistic regression

81

dataset of points is
cached in cluster

memory to reduce i/o

Spark logistic regression example

82

Spark

83

Spark details: broadcast

84

So: python builds a closure – code
including the current value of w – and
Spark ships it off to each worker. So

w is copied, and must be read-only.

Spark details: broadcast

85

alternative: create a broadcast variable, e.g.,
•  w_broad = spark.broadcast(w)
which is accessed by the worker via
•  w_broad.value()

what’s sent is a small
pointer to w (e.g., the
name of a file containing
a serialized version of
w) and when value is
called, some clever all-
reduce like machinery is
used to reduce network
load.

little penalty for
distributing something
that’s not used by all
workers

Spark details: mapPartitions

86

Common issue:
•  map task requires loading in some small shared value
•  more generally, map task requires some sort of initialization before

processing a shard
•  GuineaPig:

•  special Augment … sideview … pattern for shared values
•  can kludge up any initializer using Augment

•  Raw Hadoop: mapper.configure() and mapper.close()
methods

Spark details: mapPartitions

87

Spark:
•  rdd.mapPartitions(f): will call f(iteratorOverShard) once per

shard, and return an iterator over the mapped values.

•  f() can do any setup/close steps it needs

Also:
•  there are transformations to partition an RDD with a user-selected

function, like in Hadoop. Usually you partition and persist/cache.

