
In the once upon a time days of the First Age of Magic, the prudent 
sorcerer regarded his own true name as his most valued possession but 
also the greatest threat to his continued good health, for--the stories go--
once an enemy, even a weak unskilled enemy, learned the sorcerer's 
true name, then routine and widely known spells could destroy or 
enslave even the most powerful. As times passed, and we graduated to 
the Age of Reason and thence to the first and second industrial 
revolutions, such notions were discredited. Now it seems that the Wheel 
has turned full circle (even if there never really was a First Age) and we 
are back to worrying about true names again:  

The first hint Mr. Slippery had that his own True Name might be known--
and, for that matter, known to the Great Enemy--came with the 
appearance of two black Lincolns humming up the long dirt driveway ... 
Roger Pollack was in his garden weeding, had been there nearly the 
whole morning.... Four heavy-set men and a hard-looking female piled 
out, started purposefully across his well-tended cabbage patch.… 

This had been, of course, Roger Pollack's great fear. They had 
discovered Mr. Slippery's True Name and it was Roger Andrew Pollack 
TIN/SSAN 0959-34-2861. 
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Recap: soft joins/similarity joins


… … 

Input:  Two Different Lists of Entity Names 
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Recap: soft joins/similarity joins

Output:  Pairs of Names Ranked by Similarity 

… 

… 

identical 

similar 

less similar 
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Example: soft joins/similarity joins

Output:  Pairs of Names Ranked by Similarity 

… 

… 

A surprisingly good similarity score is TFIDF cosine distance. 
•  Mismatches on frequent terms (“&” vs “and”, “N.”, “Preserve”, 

“NHP”, …) are discounted  
•  Matches on rare term (“Kalaupapa”, “Samoa”) are rewarded. 
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Softjoin Example - 1


A useful scalable similarity metric:  IDF weighting plus cosine distance! 

~ means 
“similar to” 
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One solution: Soft (Similarity) joins

•  A similarity join of two sets A and B is


– an ordered list of triples (sij,ai,bj) such that 

•  ai is from A

• bj is from B

•  sij is the similarity of ai and bj


•  the triples are in descending order


•  the list is either the top K triples by sij or ALL 
triples with sij>L … or sometimes some 
approximation of these….
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How well does TFIDF work?
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There are refinements to TFIDF distance – eg ones that extend with 
soft matching at the token level (e.g., softTFIDF) 
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Semantic Joining�
with Multiscale Statistics


William Cohen

Katie Rivard, Dana Attias-Moshevitz


CMU
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SOFT JOINS WITH TFIDF:�
HOW? 
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Rocchio’s algorithm

DF(w) = # different docs w occurs in 

TF(w,d) = # different times w occurs in doc d

IDF(w) = |D |
DF(w)

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w))
u(d) = u(w1,d),....,u(w|V |,d)

u(y) =α 1
|Cy |

u(d)
||u(d) ||2d∈Cy

∑ −β
1

|D−Cy |
u(d ')

||u(d ') ||2d '∈D−Cy

∑

f (d) = argmaxy
u(d)

||u(d) ||2

⋅
u(y)

||u(y) ||2

Many variants 
of these 
formulae 

…as long as 
u(w,d)=0 for 
words not in d! 

Store only non-zeros in 
u(d), so size is O(|d| ) 

But size of u(y) is O(|nV| ) 

u
2
= ui

2

i
∑

13 



TFIDF similarity

DF(w) = # different docs w occurs in 

TF(w,d) = # different times w occurs in doc d

IDF(w) = |D |
DF(w)

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w))
u(d) = u(w1,d),....,u(w|V |,d)

v(d) = u(d)
||u(d) ||2

sim(v(d1),v(d2 )) = v(d1) ⋅v(d2 ) = u(w,d1)
||u(d1) ||2w

∑ u(w,d2 )
||u(d2 ) ||2
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TFIDF soft joins

•  A similarity join of two sets of TFIDF-weighted 

vectors A and B is

– an ordered list of triples (sij,ai,bj) such that 


•  ai is from A

• bj is from B

•  sij is the dot product of ai and bj

•  the triples are in descending order


•  the list is either the top K triples by sij or ALL 
triples with sij>L … or sometimes some 
approximation of these….
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PARALLEL SOFT JOINS
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SIGMOD 2010 
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TFIDF similarity: variant for joins

DF(A,w) = # different docs w occurs in from A
DF(B,w) = # different docs w occurs in from B
TF(w,d) = # different times w occurs in doc d

IDF(w,d) = |Cd |
DF(Cd,w)

,  where Cd ∈ {A,B}

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w,d))
u(d) = u(w1,d),....,u(w|V |,d)

v(d) = u(d)
||u(d) ||2

sim(v(d1),v(d2 )) = v(d1) ⋅v(d2 ) = u(w,d1)
||u(d1) ||2w

∑ u(w,d2 )
||u(d2 ) ||2
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Sim Joins on Product Descriptions 

•  Similarity can be high for descriptions of distinct items: 

o  AERO TGX-Series Work Table -42'' x 96'' Model 1TGX-4296 All tables shipped KD 
AEROSPEC- 1TGX Tables are Aerospec Designed. In addition to above 
specifications; - All four sides have a V countertop edge ... 

o  AERO TGX-Series Work Table -42'' x 48'' Model 1TGX-4248 All tables shipped KD 
AEROSPEC- 1TGX Tables are Aerospec Designed. In addition to above 
specifications; - All four sides have a V countertop ..  

•  Similarity can be low for descriptions of identical items: 
o  Canon Angle Finder C 2882A002 Film Camera Angle Finders Right Angle 

Finder C (Includes ED-C & ED-D Adapters for All SLR Cameras) Film Camera 
Angle Finders & Magnifiers The Angle Finder C lets you adjust  ... 

o   CANON 2882A002 ANGLE FINDER C FOR EOS REBEL® SERIES 
PROVIDES A FULL SCREEN IMAGE SHOWS EXPOSURE DATA BUILT-IN 
DIOPTRIC ADJUSTMENT COMPATIBLE WITH THE CANON® REBEL, EOS 
& REBEL EOS SERIES. 
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Parallel Inverted Index Softjoin - 1


want this to 
work for long 
documents or 
short ones…and 
keep the 
relations simple 

Statistics for computing TFIDF with IDFs local to each relation 20 

sumSquareWeights 



Parallel Inverted Index Softjoin - 2


What’s the algorithm?

•  Step 1: create document vectors as (Cd, d, term, weight) 

tuples

•  Step 2: join the tuples from A and B: one sort and reduce


•  Gives you tuples (a, b, term, w(a,term)*w(b,term))

•  Step 3: group the common terms by (a,b) and reduce to 

aggregate the components of the sum
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An alternative TFIDF pipeline
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Inverted Index Softjoin – PIG 1/3
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Inverted Index Softjoin – 2/3
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Inverted Index Softjoin – 3/3
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Inverted Index Softjoin – 3/3
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Results…..
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Making the algorithm smarter….
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Inverted Index Softjoin - 2


we should make a smart choice about which terms to use 
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Adding heuristics to the soft join - 1


31 

vavb = va[w]
w
∑ ∗vb[w]≤ va[w]

w
∑ ∗maxweight2[w]

score for w in doc a 



Adding heuristics to the soft join - 1
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Adding heuristics to the soft join - 2
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PageRank at Scale
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Google’s PageRank


web site 
xxx 

web site yyyy 

web site a b c 
d e f g 

web  

site  

pdq pdq .. 

web site yyyy 

web site a b c 
d e f g 

web site 
xxx 

Inlinks are 
“good” (recommendations) 

Inlinks from a “good” site 
are better than inlinks from 
a “bad” site 

but inlinks from sites with 
many outlinks are not as 
“good”... 

“Good” and “bad” are 
relative. 

web site 
xxx 
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Google’s PageRank


web site 
xxx 

web site yyyy 

web site a b c 
d e f g 

web  

site  

pdq pdq .. 

web site yyyy 

web site a b c 
d e f g 

web site 
xxx Imagine a “pagehopper” 

that always either 

•  follows a random link, or 

•  jumps to random page 
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Google’s PageRank�
(Brin & Page, http://www-db.stanford.edu/~backrub/google.html)


web site 
xxx 

web site yyyy 

web site a b c 
d e f g 

web  

site  

pdq pdq .. 

web site yyyy 

web site a b c 
d e f g 

web site 
xxx Imagine a “pagehopper” 

that always either 

•  follows a random link, or 

•  jumps to random page 

PageRank ranks pages by 
the amount of time the 
pagehopper spends on a 
page: 

•  or, if there were many 
pagehoppers, PageRank is 
the expected “crowd size” 
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PageRank in Memory

•  Let u = (1/N, …, 1/N)


– dimension = #nodes N

•  Let A = adjacency matrix: [aij=1 ó i links to j]

•  Let W = [wij = aij/outdegree(i)]


– wij is probability of jump from i to j

•  Let v0 = (1,1,….,1) 


– or anything else you want

•  Repeat until converged:


– Let vt+1 = cu + (1-c)Wvt


•  c is probability of jumping “anywhere randomly”
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Streaming PageRank

•  Assume we can store v but not W in memory

•  Repeat until converged:


– Let vt+1 = cu + (1-c)Wvt


•  Store A as a row matrix: each line is

–  i   ji,1,…,ji,d  [the neighbors of i]


•  Store v’ and v in memory: v’ starts out as cu

•  For each line “i   ji,1,…,ji,d “


–  For each j in ji,1,…,ji,d 

•  v’[j] += (1-c)v[i]/d


 
 

Everything needed 
for update is right 
there in row…. 
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Streaming PageRank: �
with some long rows

•  Repeat until converged:


– Let vt+1 = cu + (1-c)Wvt


•  Store A as a list of edges: each line is: “i d(i) j”

•  Store v’ and v in memory: v’ starts out as cu

•  For each line “i d j“


•  v’[j] += (1-c)v[i]/d


 
 

 
 

We need to get the 
degree of i and store 
it locally 
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Streaming PageRank:  preprocessing

•  Original encoding is edges (i,j)

•  Mapper replaces i,j with i,1

•  Reducer is a SumReducer

•  Result is pairs (i,d(i))


•  Then: join this back with edges (i,j)

•  For each i,j pair:


–  send j as a message to node i in the degree table

•  messages always sorted after non-messages


–  the reducer for the degree table sees i,d(i) kirst

•  then j1, j2, ….

•  can output the key,value pairs with key=i, value=d(i), j
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Preprocessing	Control	Flow:	1	
I J 

i1	 j1,1	

i1	 j1,2	

…	 …	

i1	 j1,k1	

i2	 j2,1	

…	 …	

i3	 j3,1	

…	 …	

I 

i1	 1	

i1	 1	

…	 …	

i1	 1	

i2	 1	

…	 …	

i3	 1	

…	 …	

I 

i1	 1	

i1	 1	

…	 …	

i1	 1	

i2	 1	

…	 …	

i3	 1	

…	 …	

I d(i) 

i1	 d(i1)	

..	 …	

i2	 d(i2)	

…	 …	

i3	 d)i3)	

…	 …	

MAP SORT REDUCE 

Summing values 
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Preprocessing	Control	Flow:	2	
I J 

i1	 j1,1	

i1	 j1,2	

…	 …	

i2	 j2,1	

…	 …	

I 

i1	 d(i1)	

i1	 ~j1,1	

i1	 ~j1,2	

..	 …	

i2	 d(i2)	

i2	 ~j2,1	

i2	 ~j2,2	

…	 …	

I 

i1	 d(i1)	 j1,1	

i1	 d(i1)	 j1,2	

…	 …	 …	

i1	 d(i1)	 j1,n1	

i2	 d(i2)	 j2,1	

…	 …	 …	

i3	 d(i3)	 j3,1	

…	 …	 …	

I d(i) 

i1	 d(i1)	

..	 …	

i2	 d(i2)	

…	 …	

MAP SORT REDUCE 

I J 

i1	 ~j1,1	

i1	 ~j1,2	

…	 …	

i2	 ~j2,1	

…	 …	

I d(i) 

i1	 d(i1)	

..	 …	

i2	 d(i2)	

…	 …	

copy or convert to messages join degree with edges 44 



Streaming PageRank: �
with some long rows

•  Repeat until converged:


–  Let vt+1 = cu + (1-c)Wvt


•  Pure streaming: use a table of nodesà degree+pageRank

–  Lines are i: degree=d,pr=v


•  For each edge i,j

–  Send to i (in degree/pagerank) table: outlink j


•  For each line i: degree=d,pr=v:

–  send to i: incrementVBy c

–  for each message “outlink j”:


•  send to j: incrementVBy (1-c)*v/d

•  For each line i: degree=d,pr=v


–  sum up the incrementVBy messages to compute v’

–  output new row: i: degree=d,pr=v’


One 
identity 
mapper 
with two 
inputs 
(edges, 
degree/
pr table)  

Reducer 
outputs the 
incrementVBy 
messages 

Two-input 
mapper + 
reducer 
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Control	Flow:	Streaming	PR	
I J 

i1	 j1,1	

i1	 j1,2	

…	 …	

i2	 j2,1	

…	 …	

I d/v 

i1	 d(i1),v(i1)	

i1	 ~j1,1	

i1	 ~j1,2	

..	 …	

i2	 d(i2),v(i2)	

i2	 ~j2,1	

i2	 ~j2,2	

…	 …	

to delta 

i1	 c	

j1,1	 (1-c)v(i1)/d(i1)	

…	 …	

j1,n1	 i	

i2	 c	

j2,1	 …	

…	 …	

i3	 c	

I d/v 

i1	 d(i1),v(i1)	

i2	 d(i2),v(i2)	

…	 …	

MAP SORT 
REDUCE MAP SORT 

I delta 

i1	 c	

i1	 (1-c)v(…)….	

i1	 (1-c)…	

..	 …	

i2	 c	

i2	 (1-c)…	

i2	 ….	

…	 …	

copy or convert to messages 
send “pageRank 

updates ” to outlinks 46 



Control	Flow:	Streaming	PR	
to delta 

i1	 c	

j1,1	 (1-c)v(i1)/d(i1)	

…	 …	

j1,n1	 i	

i2	 c	

j2,1	 …	

…	 …	

i3	 c	

REDUCE MAP SORT 

I delta 

i1	 c	

i1	 (1-c)v(…)….	

i1	 (1-c)…	

..	 …	

i2	 c	

i2	 (1-c)…	

i2	 ….	

…	 …	

REDUCE 

I v’ 

i1	 ~v’(i1)	

i2	 ~v’(i2)	

…	 …	

Summing values 

I d/v 

i1	 d(i1),v(i1)	

i2	 d(i2),v(i2)	

…	 …	

MAP SORT REDUCE 

Replace v with v’ 

I d/v 

i1	 d(i1),v’(i1)	

i2	 d(i2),v’(i2)	

…	 …	
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Control	Flow:	Streaming	PR	
I J 

i1	 j1,1	

i1	 j1,2	

…	 …	

i2	 j2,1	

…	 …	

I d/v 

i1	 d(i1),v(i1)	

i2	 d(i2),v(i2)	

…	 …	

MAP 

copy or convert to messages 

and back around for 
next iteration…. 
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PageRank in Pig
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Julien Le Dem - 
Yahoo 

How to use loops, 
conditionals, etc? 
 
Embed PIG in a 
real programming 
language. 
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52 lots of i/o happening here… 



An example from Ron Bekkerman
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Example: k-means clustering


•  An EM-like algorithm:

•  Initialize k cluster centroids

•  E-step: associate each data instance with the 

closest centroid

– Find expected values of cluster assignments 

given the data and centroids

•  M-step: recalculate centroids as an average of 

the associated data instances

– Find new centroids that maximize that 

expectation
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k-means Clustering


centroids 
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Parallelizing k-means
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Parallelizing k-means
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Parallelizing k-means
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k-means on MapReduce


•  Mappers read data portions and centroids

•  Mappers assign data instances to clusters

•  Mappers compute new local centroids and 

local cluster sizes

•  Reducers aggregate local centroids 

(weighted by local cluster sizes) into new 
global centroids


•  Reducers write the new centroids


Panda et al, Chapter 2 
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k-means in Apache Pig: input data


•  Assume we need to cluster documents

– Stored in a 3-column table D: 




•  Initial centroids are k randomly chosen docs

– Stored in table C in the same format as 

above


Document Word Count 

doc1 Carnegie 2 

doc1 Mellon 2 

60 



D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step


( )∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg

61 



D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step


( )∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg
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D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step


( )∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg
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D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step


( )∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg
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D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	

k-means in Apache Pig: E-step


( )∑
∑

∈

∈
⋅

=

cw
w
c

dw
w
c

w
d

cd
i

ii
c

2
maxarg
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k-means in Apache Pig: E-step


D_C	=	JOIN	C	BY	w,	D	BY	w;	
PROD	=	FOREACH	D_C	GENERATE	d,	c,	id	*	ic	AS	idic	;	
	

PRODg	=	GROUP	PROD	BY	(d,	c);	
DOT_PROD	=	FOREACH	PRODg	GENERATE	d,	c,	SUM(idic)	AS	dXc;	
	

SQR	=	FOREACH	C	GENERATE	c,	ic	*	ic	AS	ic2;	
SQRg	=	GROUP	SQR	BY	c;	
LEN_C	=	FOREACH	SQRg	GENERATE	c,	SQRT(SUM(ic2))	AS	lenc;	
	

DOT_LEN	=	JOIN	LEN_C		BY	c,	DOT_PROD	BY	c;	
SIM	=	FOREACH	DOT_LEN	GENERATE	d,	c,	dXc	/	lenc;	
	

SIMg	=	GROUP	SIM	BY	d;	
CLUSTERS	=	FOREACH	SIMg	GENERATE	TOP(1,	2,	SIM);	
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k-means in Apache Pig: M-step


D_C_W	=	JOIN	CLUSTERS	BY	d,	D	BY	d;	
	
D_C_Wg	=	GROUP	D_C_W	BY	(c,	w);	
SUMS	=	FOREACH	D_C_Wg	GENERATE	c,	w,	SUM(id)	AS	sum;	
	
D_C_Wgg	=	GROUP	D_C_W	BY	c;	
SIZES	=	FOREACH	D_C_Wgg	GENERATE	c,	COUNT(D_C_W)	AS	size;	
	
SUMS_SIZES	=	JOIN	SIZES	BY	c,	SUMS	BY	c;	
C	=	FOREACH		SUMS_SIZES		GENERATE	c,	w,	sum	/	size	AS	ic	;	

Finally - embed in Java (or Python or ….) to do the looping 
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h/t Julien Le Dem - 
Yahoo 

How to use loops, 
conditionals, etc? 
 
Embed PIG in a 
real programming 
language. 
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The problem with k-means in Hadoop

I/O costs
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Data is read, and model is written, with 
every iteration


•  Mappers read data portions and centroids

•  Mappers assign data instances to clusters

•  Mappers compute new local centroids and 

local cluster sizes

•  Reducers aggregate local centroids 

(weighted by local cluster sizes) into new 
global centroids


•  Reducers write the new centroids


Panda et al, Chapter 2 
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Spark
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Spark

•  Too much typing


– programs are not concise

•  Too low level


– missing abstractions

– hard to specify a workklow


•  Not well suited to iterative operations

– E.g., E/M, k-means clustering, …

– Workklow and memory-loading issues
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Set of concise dataflow 
operations 
(“transformation”) 
 
Dataflow operations are 
embedded in an API 
together with “actions” 

Sharded files are replaced by “RDDs” – resiliant distributed datasets 
 
RDDs can be cached in cluster memory and recreated to recover from 
error 



Spark examples
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spark is a spark 
context object 



Spark examples
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errors is a 
transformation, and 

thus a data strucure 
that explains HOW to 

do something 
count() is an action: it 
will actually execute 
the plan for errors 
and return a value. 

errors.filter() is a 
transformation 

collect() is an action 

everything is sharded, like in 
Hadoop and GuineaPig 



Spark examples


76 

# modify errors to be stored in cluster memory 

subsequent 
actions will be 
much faster 

everything is sharded … and the shards are stored in memory of 
worker machines not local disk (if possible) 

You can also persist() an RDD on disk, which 
is like marking it as opts(stored=True) in 
GuineaPig.  Spark’s not smart about persisting 
data. 



Spark examples: wordcount
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the action 
transformation on 
(key,value) pairs , 
which are special 



Spark examples: batch logistic regression
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reduce is an action – 
it produces a numby 

vector 

p.x and w are 
vectors, from the 
numpy package 

p.x and w are vectors, 
from the numpy package.  

Python overloads 
operations like * and + 

for vectors. 



Spark examples: batch logistic regression


Important note: numpy vectors/matrices are not just “syntactic 
sugar”.   
•  They are much more compact than something like a list of python 

floats. 
•  numpy operations like dot, *, + are calls to optimized C code 
•  a little python logic around a lot of numpy calls is pretty efficient 
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Spark examples: batch logistic regression
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w is defined outside 
the lambda function, 

but used inside it 
So: python builds a closure – code 

including the current value of w – and 
Spark ships it off to each worker.  So 

w is copied, and must be read-only. 



Spark examples: batch logistic regression
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dataset of points is 
cached in cluster 

memory to reduce i/o 



Spark logistic regression example
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Spark
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Spark details: broadcast
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So: python builds a closure – code 
including the current value of w – and 
Spark ships it off to each worker.  So 

w is copied, and must be read-only. 



Spark details: broadcast
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alternative:  create a broadcast variable, e.g.,  
•  w_broad = spark.broadcast(w) 
which is accessed by the worker via  
•  w_broad.value() 

 

what’s sent is a small 
pointer to w (e.g., the 
name of a file containing 
a serialized version of 
w) and when value is 
called, some clever all-
reduce like machinery is 
used to reduce network 
load. 

little penalty for 
distributing something 
that’s not used by all 
workers 



Spark details: mapPartitions


86 

Common issue: 
•  map task requires loading in some small shared value 
•  more generally, map task requires some sort of initialization before 

processing a shard 
•  GuineaPig:  

•  special Augment … sideview … pattern for shared values 
•  can kludge up any initializer using Augment 

•  Raw Hadoop:  mapper.configure() and mapper.close() 
methods 



Spark details: mapPartitions
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Spark: 
•  rdd.mapPartitions(f):  will call f(iteratorOverShard) once per 

shard, and return an iterator over the mapped values. 

•  f() can do any setup/close steps it needs 

Also: 
•  there are transformations to partition an RDD with a user-selected 

function, like in Hadoop.  Usually you partition and persist/cache.  


