In the once upon a time days of the First Age of Magic, the prudent ,
sorcerer regarded his own true name as his most valued possession but T
also the greatest threat to his continued good health, for--the stories go-- I o
once an enemy, even a weak unskilled enemy, learned the sorcerer's
true name, then routine and widely known spells could destroy or
enslave even the most powerful. As times passed, and we graduated to
the Age of Reason and thence to the first and second industrial
revolutions, such notions were discredited. Now it seems that the Wheel
has turned full circle (even if there never really was a First Age) and we
are back to worrying about true names again:

The first hint Mr. Slippery had that his own True Name might be known--
and, for that matter, known to the Great Enemy--came with the
appearance of two black Lincolns humming up the long dirt driveway ...
Roger Pollack was in his garden weeding, had been there nearly the
whole morning.... Four heavy-set men and a hard-looking female piled
out, started purposefully across his well-tended cabbage patch....

This had been, of course, Roger Pollack's great fear. They had
discovered Mr. Slippery's True Name and it was Roger Andrew Pollack
TIN/SSAN 0959-34-2861.

Recap: soft joins/similarity joins

Input: Two Different Lists of Entity Names

Abraham Lincoln Birthplace NHS
Acadia NP

Adams NHS

Agate Fossil Beds NM

Alagnak Wild River

Alaska Public Lands Inf. Center
Alibates Flint Quarries NM
Allegheny Portage Railroad NHS
American Memorial Park

Amistad NRA

Andersonville NHS

Andrew Johnson NHS

Aniakchak NM & NPRES

Antietam NB

Apostle Islands NL

Appalachian National Scenic Trail
Appomattox Courthouse NHP
Arches NP

Arkansas Post NM

Acadia NP

Allegheny Portage Railroad NHS
American Memorial Park
Amistad NRA

Andersonville NHP
Aniakchak NM

Antietam NB

Apostle Islands NL
Appomattox Court House NHP
Arches NP

Arkansas Post N. Mem.

Assateague Island NS

Aztec Ruins NM

Badlands NP

Bandelier NM

Bent's 0ld Fort NHS

Bering Land Bridge N. Preserve
Big Bend NP

Big Cypress N. Preserve

Recap: soft joins/similarity joins

Output: Pairs of Names Ranked by Similarity

identical
Chickamauga & Chattanooga NMP:d445 Chickamauga & Chattanooga NMP:d72
George Washington Carver NM:d499 George Washington Carver NM:d153
Salinas Pueblo Missions NM:d597 Salinas Pueblo Missions NM:d329
Florissant Fossil Beds NM:d473 Florissant Fossil Beds NM:d116
Hagerman Fossil Beds NM:d517 Hagerman Fossil Beds NM:d177
Gila Cliff Dwellings NM:d502 Gila Cliff Dwellings NM:d156
Booker T. Washington NM:d423 Booker T. Washington NM:d38
similar
Obed Wild & Scenic River:d570 Obed Wild and Scenic River:d283
Andersonville NHP:d401 Andersonville NHS:d11l
Sitka NHP:d606 Sitka NHS:d342
Bering Land Bridge N. Preserve:d413 Bering Land Bridge NPRES:d26
Sequoia & Kings Canyon NP:d603 Sequoia and Kings Canyon NP:d339
Glacier Bay NP & Preserve:d643 Glacier Bay NP & NPRES:d157
NP of American Samoa:d561 National Park Of American Samoa:d267
Kalaupapa NHS:d538 Kalaupapa NHP:d210
Lake Mead NRA:d545 Lake Mead NRA (Nevada):d224

Upper Delaware Scenic & Rec. River:d617 |Upper Delaware Scenic & Recreational River:d368
3

Example: soft joins/similarity joins

Output: Pairs of Names Ranked by Similarity

A surprisingly good similarity score is TFIDF cosine distance.

* Mismatches on frequent terms (“&” vs “and”,“N.”,“Preserve”,
“NHP”, ...) are discounted

* Matches on rare term (“Kalaupapa”,“Samoa”) are rewarded.

Obed Wild & Scenic River:d570 Obed Wild and Scenic River:d283

Andersonville NHP:d401 Andersonville NHS:d11

Sitka NHP:d606 Sitka NHS:d342

Bering Land Bridge N. Preserve:d413 Bering Land Bridge NPRES:d26
Sequoia & Kings Canyon NP:d603 Sequoia and Kings Canyon NP:d339
Glacier Bay NP & Preserve:d643 Glacier Bay NP & NPRES:d157
NP of American Samoa:d561 National Park Of American Samoa:d267

Kalaupapa NHS:d538 Kalaupapa NHP:d210

Lake Mead NRA:d545 Lake Mead NRA (Nevada):d224

Upper Delaware Scenic & Rec. River:d617 |Upper Delaware Scenic & Recreational River:d368
4

Softjoin Example - 1

FROM top500,hiTech SELECT * WHERE top500.name~hiTech.name

top500: hiTech:
Abbott Laboratories ACC CORP
Ahle Toleam Haldine (Clarn ADC TERT ECONMMIINTCATTON TN
Table VI. Pairs of Names from the Hoovers and lontech Relations
v/ | Texas Instruments Incorporated TEXAS INSTRUMENTS INC
v/ | The New York Times Company NEW YORK TIMES CO
v/ | Campo Electronics, Appliances CAMPO ELECTRONICS
and Computers, Inc. APPLIANCES
v/ | Cascade Communications Corp. CASCADE COMMUNICATION
v/ | The McGraw-Hill Companies, Inc. MCGRAW-HILL CO
v/ | US WEST Communications Group U S WEST INC
x | Silicon Valley Group, Inc. SILICON VALLEY RESEARCH INC
X | The Reynolds and Reynolds Company | REYNOLDS & REYNOLDS CO
v/ | InTime Systems International, Inc. INTIME SYSTEMS INTERNATIONAL 1

A useful scalable similarity metric: IDF weighting plus cosine distance!

One solution: Soft (Similarity) joins

* A similarity join of two sets A and B is

—an ordered list of triples (s;,a;b;) such that

ij’
* 3, is from A
* b;is from B
* 5;1s the similarity of a; and b,

* the triples are in descending order

* the list is either the top K triples by s;; or ALL
triples with s;;>L ... or sometimes some
approximation of these....

e Input: query

How well does TFIDF work?

e Output: ordered list of documents

1 vooay by

2 v, oa bo Precision at K: G /K
3 X a3 b3 Recall at K: Gk /G
4 v oay by

5 v oas by

6 v ag bg

7 X ar b~

8 v oas bs (G: # good pairings
9 v ag bg G . # good pairings in first K
10 = a0 bio

11 X ail b11

12/ a2 b2

-
O

1
0.9
0.8

0.7 |

LI

Table VI. Pairs of Names from the Hoovers and lontech Relatidns

Texas Instruments Incorporated

TEXAS INSTRUMENTS INC

The New York Times Company

NEW YORK TIMES CO

Campo Electronics, Appliances
and Computers, Inc.

CAMPO ELECTRONICS
APPLIANCES

Cascade Communications Corp.

CASCADE COMMUNICATION

The McGraw-Hill Companies, Inc.

MCGRAW-HILL CO

U S WEST Communications Group

U S WEST INC

Silicon Valley Group, Inc.

SILICON VALLEY RESEARCH INC

The Reynolds and Reynolds Company

REYNOLDS & REYNOLDS CO

JX XIS S

InTime Systems International, Inc.

INTIME SYSTEMS INTERNATIONAL 1

Table V. Average Precision for Similarity Joins
Domain Relations Joined Average Precision
Movies MovieLink/Review 100.0%
Animals IntFact1/SWFact 100.0%

IntFact2/FWSFact 99.6%

IntFact3/NMFSFact 97.1%

Endanger /ParkAnim 95.2%

Birds IntBirdPicl/DonBirdPic 100.0%
IntBirdPic2/MBRBirdPic 99.1%
IntBirdMap/BirdMap 91.4%

BirdCall/BirdList 95.8%

Businesses Fodor/Zagrat 99.5%
HooverWeb/Iontech 84.9%

National Parks IntPark/Park 95.7%
Computer Games Demo/AgeList 86.1%

There are refinements to TFIDF distance — eg ones that extend with
soft matching at the token level (e.g., soft TFIDF)

Lgate Fossil Beds NM
Big Bend NP

Gateway NRZ

Gulf Island NS

Rainkow Bridges NM
Whiskey-Shasta-Trinity NRA
Capital Reef NP

Timpanogas Caves NM

War in Pacific NHP

Chesapeake and Ohio Canal NHP
Saguaro NM

LZniakchak NM
NP of American Samoa

Pu'uohonua O Honaunau NHP
Bering Land Bridge N. Preserve
Yukon-Charley Rivers N. Presexrve

Wolf Trap Farm Park
Fredericksburg & Spotsylwvania NMP

Great Smoky Mountains NP
Mount Rushmore N. Mem.

distance is '[JaroWinklerxTFIDF:threshold=0.9]"
Pairs: 6806 Correct: 250
Matching time: 0.278
- 1 1.00 | Agate Fossil Beds NM |
+ 2 1.00 | Big Bend NP |
+ 194 1.00 | Gateway NRZ |
+ 195 0.99 | Gulf Islands NS |
+ 1396 0.99 | Rainbow Bridge NM |
+ 197 0.98 | Whiskeytown Shasta Trinity NR& |
+ 198 0.97 | Capitol Reef NP |
+ 199 0.95 | Timpanogos Cave NM |
+ 200 0.94 | War in the Pacific NHP |
+ 201 0.94 | Chesapeake & Ohio Canal NHP |
+ 203 0.92 | Saguaro NP |
+ 210 0.88 | Aniakchak NM & NPRES]
+ 211 0.86 | National Park Of Zmerican Samoa|
+ 224 0.76 | Pu'uhonua a Honaunau NHP |
+ 225 0.75 | Bexring Land Bridge NPRES |
+ 228 0.75 | Yukon Charley Riwvers NPRES |
+ 241 0.692 | Wolf Trap Farm Park for the Performing Arts
l
+ 242 0.89 | Frederickskburg and Spotsylvania County Battlefields Memorial NMP
l
+ 243 0.69 | Great Smoky Mtn. NP |
+ 245 0.67 | Mount Rushmore NM |
+ 248 0.87 | Chattahoochee NSR |

Chattahoochee River NRL

distance is
6806 Correct: 250
Ol

Pairs:

Matching time:
- 1 1.00
+ 2 1.00
+ 194 1.00
+ 185 0.99%
+ 1986 0.99%9
+ 197 0.98
+ 198 0.97
+ 199 0.95
+ 200 0.94
+ 201 0.94
+ 203 0.92
+ 210 0.88
+ 211 0.86
+ 224 0.76
+ 225 0.75
+ 226 0.75
+ 241 0.69
+ 242 0.69
+ 243 0.69
+ 245 0.67
+ 246 0.67

'[JaroWinklexTFIDF:threshold=0.9]"

278
Agate Fossil Beds NM | Lgate Fossil Beds NM
Big Bend NP | Big Bend NP

Gateway NRLZ

Gulf Islands NS

Rainkow Bridge NM

Whiskeytown Shasta Trinity NRA

Gateway NRZ

Gulf Island NS

Rainkow Bridges NM
Whiskey-Shasta-Trinity NRAa

Capital Reef NP

Timpanogas Caves NM

War in Pacific NHP

Chesapeake and Ohio Canal NHP
Saguaro NM

|

|

l

l
Capitol Reef NP |
Timpanogos Cave NM |

War in the Pacific NHP |
Chesapeake & Ohio Canal NHP |
Saguaro NP |
Aniakchak NM

NP of American Samoa

LZniakchak NM & NPRES |
National Park Of Zmerican Samoa!

Pu'uhonua a Honaunau NHP | Pu'uohonua O Honaunau NHP
Bering Land Bridge NPRES | Bering Land Bridge N. Preserve
Yukon Charley Riwvers NPRES | Yukon-Charley Riwvers N. Preserve

Wolf Trap Farm Park for the Performing Arts
| Wolf Trap Farm Park

Frederickskburc and Spotsylvania County Battlefields Memorial NMP
Fredericksburg & Spotsvlivania NMP
Great Smoky Mountains NP
Mount Rushmore N. Mem.
Chattahoochee Riwvexr NRA

|
Great Smoky Mtn. NP |
Mount Rushmore NM |
Chattahoochee NSR |

SOFT JOINS WITH TFIDF:
HOW?

Rocchio’s algorithm

DF (w) = #different docs w occurs 1n
TF(w,d) = #different times w occurs in doc d
|IDI
DF(w)
u(w,d)=1log(TF(w,d)+1)log(IDF(w))

IDF(w) =

Many variants
of these
formulae

...as long as
u(w,d)=0 for
words not in d!

_ Store only non-zeros in
u(d) = <u(w1’d)"”"u(w|‘/|’d)> u(d), so size is O(|d|)

u-a—r P HD_ g L §

1C |

y deC,

la(d)ll, " |ID-C,I

y ' d'€D-C,

u(d")
la(d" i,

ll(d) . u(y) But size of u(y) is O(|n,|)

f(d)=argmax lu(d)ll, lla(y)ll,

ol = [Xu

i

13

TFIDF similarity

DF (w) = # different docs w occurs 1n

TF (w,d) = # different times w occurs in doc d
|D |
DF(w)
u(w,d) =log(TF(w,d)+1)-log(IDF(w))
u(d)= <u(wl,d), u(leI,d)>
u(d)
la(d)ll,

sim(v(d,),v(d,))=v(d,) v(d,) = E

IDF(w) =

v(d) =

uw,d,) u(w,d,)
la(d) I, lla(d,) I,

TFIDF soft joins

* A similarity join of two sets of TFIDF-weighted
vectors A and B is

—an ordered list of triples (s;,a;b;) such that
* 3, is from A
* b, is from B
* 5;1s the dot product of a; and b,

* the triples are in descending order

* the list is either the top K triples by s;; or ALL
triples with s;>L ... or sometimes some
approximation of these....

PARALLEL SOFT JOINS

Efficient Parallel Set-Similarity Joins Using MapReduce

Rares Vernica Michael J. Carey Chen Li
Department of Computer Department of Computer Department of Computer
Science Science Science
University of California, Irvine University of California, Irvine University of California, Irvine
rares@ics.uci.edu mjcarey@ics.uci.edu chenli@ics.uci.edu

SIGMOD 2010

TFIDF similarity: variant for joins

DF(A,w) = # different docs w occurs 1n from A
DF(B,w) = # different docs w occurs in from B
TF(w,d) = # different times w occurs 1n doc d
IC, |
DF(C,,w)
u(w,d)=1log(TF(w,d)+1)log(IDF(w,d))

u(d) = <u(w1,d), u(w,V|,d)>
u(d)
llua(d)ll,

sim(v(d,),v(d,))=v(d,) v(d,)= E

IDF(w,d) =

, where C, €{A,B}

v(d) =

uw,d,) u(w,d,)
la(d) Il la(d,) I,

Sim Joins on Product Descriptions

* Similarity can be high for descriptions of distinct items:

-—
)’ \

o AERO TGX-Series Work Table -42" X\96",|\/Iodel 1TGX14296 AII tables shipped KD
AEROSPEC- 1TGX Tables are Aerospbe{De&gned In éddltLOn to above
specifications; - All four sides have a V countertop edge & s

AV

o AERO TGX-Series Work Table -42" x‘48“,1\/lodel 1TGX-4248 AII tables shipped KD
AEROSPEC- 1TGX Tables are Aerospec Designed. In aﬁdltlcm to above

specifications; - All four sides have a V countertop ..

. Similarity can be low for descriptions of identical items:

~~~~~

———————

o Canon‘AngIe Finder, 9\2882A002'F|Im Camera Angle Finders Right Angle
Finder C (Incl'udes ED-C & ED-D Adapters for All SLR Cameras) Film Camera
Angle Finders & Magnifiers Thig-Angle Finder C lefs you adjust

o CANON 2882A002'ANGLE FINDERC FOR EOS REBEL® SERIES
PROVIDES AFULL SCREENTMAGE SHOWS EXPOSURE DATA BUILT-IN
DIOPTRIC ADJUSTMENT COMPATIBLE WITH THE CANON® REBEL, EOS
& REBEL EOS SERIES.




Parallel Inverted Index Softjoin - 1

#compute document frequency

docFreq = Group(data, by=lambda(rel,docid,term):(rel,term), reducingTo=ReduceTolountl)1) \
ReplaceEach(by=lambda((rel,term),df):(rel, term,df)) .
| Rep Y want this to

#find total number of docs per relation
ndoc = ReplaceEach(data, by=lambda(rel,docid,term):(rel,docid)) \ \A/C)r1(>ft)r'|()l1§;
| Distinct() | Group(by=lambda(rel,docid):rel, reducingTo=ReduceToCoun documents or

#unweighted document vectors
udocvec = Join( Jin(data,by=lambda(rel,docid,term):(rel,term)), ShOl’t ones.. ‘and
Jin(docFreq,by=1lambda(rel, term,df):(rel,term)) ) \ kee the
ReplaceEach(by=lambda((rel,doc,term), (rel_,term_,df)):(rel,doc, term,df) F)
JoinTo( Jin(ndoc,by=lambda(rel, relCount):rel), by=lambda(rel,doc,term,d

I
| L] L]
| ReplaceEach(by=1lambda((rel,doc,term,df), (rel_,relCount)):(rel,doc,term, relatlons Slmple
| ReplaceEach(by=lambda(rel,doc,term,df,relCount):(rel,doc,term,termWeight(relCount,df)))

#normalizers
sumSquareWeights = ReduceTo(float, lambda accum, (rel,doc,term,weight): accum+weightxweight)
norm = Group( udocvec,
by=lambda(rel,doc,term,weight): (rel,doc),
retaining = lambda (rel,doc,term,weight): weight,
reducingTo=ReduceTeSumi)}—) \
| ReplaceEach( by=lambda((rel,doc),z):(rel,doc,Zz]) suquuareWeights

#normalized document vector
docvec = Join( Jin(norm,by=lambda(rel,doc,z):(rel,doc)),
Jin(udocvec, by=1lambda(rel,doc,term,weight):(rel,doc)) ) \
| ReplaceEach( by=lambda((rel,doc,z),(rel_,doc_,term,weight)): (rel,doc,term,weight/math.sqrt(z)) )

Statistics for computing TFIDF with IDFs local to each relation®




Parallel Inverted Index Softjoin - 2

# naive algorithm: use all pairs for finding matches
rellDocs = Filter(docvec, by=lambda(rel,doc,term,weight):rel== )
rel2Docs = Filter(docvec, by=lambda(rel,doc,term,weight):rel== )
softjoin = Join( Jin(rellDocs,by=lambda(rel,doc,term,weight):term),
Jin(rel2Docs,by=1lambda(rel,doc,term,weight):term)) \
| ReplaceEach(by=1lambda((rell,docl,term,weightl), (rel2,doc2,term2,weight2)): (docl,doc2,weightlxweight2)) \
| Group(by=lambda(docl,doc2,p):(docl,doc2), \
retaining=1lambda(docl,doc2,p):p, \
reducingTo=ReduceToSum()) \
| ReplaceEach(by=1lambda((docl,doc2),sim):(docl,doc2,sim))

simpairs = Filter(softjoin, by=lambda(docl,doc,sim):sim>0.75)

What's the algorithm?
* Step 1: create document vectors as (C, d, term, weight)
tuples
» Step 2: join the tuples from A and B: one sort and reduce
* Gives you tuples (a, b, term, w(a,term)*w(b,term))
» Step 3: group the common terms by (a,b) and reduce to

aggregate the components of the sum N



class TFIDF(Planner):

An alternative TFIDF pipeline

def loadDictView(view):
result = {}
for (key,val) in GPig.rowsOf(view):
result[key] = val
return result

D = GPig.getArgvParams()
data = ReadLines(D.get('corpus’', 'idcorpus.txt')) \
| Map(by=lambda line:line.strip().split("\t")) \
| Map(by=lambda (docid,doc): (docid,doc.lower().split())) \
| FlatMap(by=lambda (docid,words): map(lambda w:(docid,w),words))

#compute document frequency and inverse doc freq
docFreq = Distinct(data) \
| Group(by=lambda (docid,term):term, retaining=lambda(docid,term):docid, reducingTo=ReduceToCount())

ndoc = Map(data, by=lambda (docid,term):docid) \
| Distinct() \
| Group(by=lambda row: 'ndoc', reducingTo=ReduceToCount())

inverseDocFreq = Augment(docFreq, sideview=ndoc, loadedBy=lambda v:GPig.onlyRowOf(v)) \
| Map(by=lambda((term,df), (dummy,ndoc)): (term,math.log(ndoc/df)))

#compute unweighted document vectors
udocvec = Augment(data, sideview=inverseDocFreq, loadedBy=1loadDictView) \
| Map(by=lambda ((docid,term),idfDict):(docid,term,idfDict[term]))

#normalize

norm = Group( udocvec, by=lambda(docid,term,weight):docid,
retaining=1lambda(docid, term,weight) :weight*weight,
reducingTo=ReduceToSum() )

docvec = Augment(udocvec, sideview=norm, loadedBy=1loadDictView) \ 22
| Map( by=lambda ((docid,term,weight),normDict): (docid,term,weight/math.sqrt(normDict[docid])))



Inverted Index Softjoin - PIG 1/3

-- invoke as: pig --param input=id-park --param rel=icepark ... phirl.pig
%$default output sim

%sdefault rel a

%$default def_par 10

SET default_parallel $def_par;

-- load and tokenize the data as data:{rel,id,str,term}

raw = LOAD 'phirl/$input' AS (rel,docid, keyid,str);
data = FOREACH raw GENERATE rel,docid, FLATTEN(TOKENIZE(LOWER(str))) AS term;

-— compute relation-dependent document frequencies as docfreq:{rel,term,df:int}
docfreq =

FOREACH (GROUP data by (rel,term))

GENERATE group.rel AS rel, group.term as term, COUNT(data) as df;

-— find the total number of documents in each relation as ndoc:{rel,c:long}

ndocl = DISTINCT(FOREACH data GENERATE rel,docid);
ndoc = FOREACH (GROUP ndocl by rel) GENERATE group AS rel, COUNT(ndocl) AS c;

23



Inverted Index Softjoin - 2/3

-— find the un-normalized document vectors as udocvec:{rel.docid,term,weight}
udocvecl = JOIN data BY (rel,term), docfreq BY (rel,term);
udocvec?2 JOIN udocvecl BY data::rel, ndoc BY rel;
udocvec =
FOREACH udocvec?2
GENERATE data::rel, data::docid, data::term,
LOG(2.0)*L0G(ndoc::c/(double)docfreq::df) AS weight;

-— find the square of the normalizer for each document: norm:{rel,docid,z2:double}

norml = FOREACH udocvec GENERATE rel,docid,term,weightxweight as w2;
norm =

FOREACH (GROUP norml BY (rel,docid))

GENERATE group.rel AS rel, group.docid AS docid, SUM(norml.w2) AS z2;

-— compute the TFIDF weighted document vectors as: docvec:{rel,docid,term,weight:double}

docvec =
FOREACH (JOIN udocvec BY (rel,docid), norm BY (rel,docid))
GENERATE data::rel AS rel, data::docid AS docid, data::term AS term,
weight/SQRT(z2) as weight;

24



Inverted Index Softjoin - 3/3

docvec:{rel,docid, term,weight:double}

-— naive algorithm: use all terms for finding potentil matches

docsA = FILTER docvec BY rel=='$rel';
docsB = FILTER docvec BY rel!='$rel';

softjoinl = JOIN docsA BY term, docsB BY term;
softjoin2 =
FOREACH softjoinl

GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weightxdocsB::weight AS p;
softjoin =

FOREACH (GROUP softjoin2 BY (idA, idB))
GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;

# naive algorithm: use all pairs for finding matches

rellDocs = Filter(docvec, by=lambda(rel,doc,term,weight):rel=="1icepark’)
rel2Docs = Filter(docvec, by=lambda(rel,doc,term,weight): rel ='npspark"')
softjoin = Join( Jin(rellDocs,by=lambda(rel,doc,term,weight):term),

Jin(rel2Docs,by=1lambda(rel,doc,term,weight): term)) \

| ReplaceEach(by=lambda((rell,docl,term,weightl),(re12,doc2,term2,weight2)): (docl,doc2,weightlxweight2)) \
| Group(by=lambda(docl,doc2,p):(docl,doc2), \

retaining=1lambda(docl,doc2,p):p, \

reducingTo=ReduceToSum()) \
| ReplaceEach(by=1lambda((docl,doc2),sim):(docl,doc2,sim))

25



Inverted Index Softjoin - 3/3

docvec:{rel,docid, term,weight:double}

-— naive algorithm: use all terms for finding potentil matches

docsA = FILTER docvec BY rel=='$rel';
docsB = FILTER docvec BY rel!='$rel’;
softjoinl = JOIN docsA BY term, docsB BY term;
softjoin2

FOREACH softjoinl

GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weightxdocsB::weight AS p;
softjoin =

FOREACH (GROUP softjoin2 BY (idA,idB))

GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;

-— diagnostic output: look: {sim, [01],idA,idB,strl,str2}

lookl = JOIN topSimPairs BY idA, raw BY docid;
look2 = JOIN lookl BY idB, raw BY docid;
look =

FOREACH look2
GENERATE sim, (lookl::raw::keyid==raw::keyid ? 1 : @),
ddA,idB, lookl::raw::str AS strl,raw::str AS str2;

STORE look INTO 'phirl/$output’'; 26



QOO0 oG

.99436717611623
.9937688379278058
.9920648281782544
.9914077975044103
.9881961852455996
.9878514547862078
.9422676645498852
.92307133361005
.8914304226443976
.890829830425262
.8873463623037525
.8838421147370781
.8838421147370781
.8700042867436217
.8684330615122184
.8680495192463105
.8660286476353838
.8593112749780314
.8500226387429363
.8424859579540737
.8398407018438242
.8395526626941698
.8390553468895996
.8344604123961857
.8313853772986841
.8301435671019225
.82492593280652
.8202902347497227
.8202902347497227
.7965479702996782
.7835432589199314
.7835432589199314

RRRPRRPRRPRRPRRPRORRPRRPRPRPRPRPRPRPRPRRPRRPRRPRORRLPREPRERERERERERE R

dovess
dee354
d00286
deo274
d00ee9
dee154
dee376
dee323
d00292
d00200
dee283
d0e342
deeoll
d00026
dee157
dee339
d00267
d00210
d00208
d00222
dee187
d00230
doe349
d00259
dee353
deee71
doeo19
d0e212
d0009s8
doeo13
doee31
d00028

Results.....

dov436
dee61l
dees73
d00566
dee399
doe500
dee623
dees594
dees77
dees532
dees7e
d00606
dee401
dee413
dee643
doe6e3
dees61
does538
doe536
do0646
dees23
does548
doo610
dee559
dee61l
dee444
dee4e7
doo644
doo464
d0e402
dee417
dee41s

Carl Sandburg Home NHS Carl Sandburg Home NHS

Theodore Roosevelt NP Theodore Roosevelt NP

Oregon Caves NM Oregon Caves NM

New River Gorge NR New River Gorge NR

American Memorial Park American Memorial Park

George Washington Memorial Parkway George Washington Me
War in the Pacific NHP War in Pacific NHP

Saguaro NP Saguaro NM
Pea Ridge NHS Pea Ridge NMP
Jean Lafitte NHP & NPRES

Obed Wild and Scenic River
Sitka NHS Sitka NHP
Andersonville NHS Andersonville NHP

Bering Land Bridge NPRES Bering Land Bridge N. Preser
Glacier Bay NP & NPRES Glacier Bay NP & Preserve
Sequoia and Kings Canyon NP Sequoia & Kings Canyon NP
National Park Of American Samoa NP of American Samoa
Kalaupapa NHP  Kalaupapa NHS

Johnstown Flood NM Johnstown Flood N. Mem.

Lake Clark NP & NPRES Lake Clark NP & Preserve

Homestead National Monument of America Homestead NM of Amer
Lincoln Boyhood NM Lincoln Boyhood N. Mem.

Sunset Crater NM Sunset Crater Volcano NM

Mount Rushmore NM Mount Rushmore N. Mem.

Theodore Roosevelt Island Theodore Roosevelt NP
Chesapeake & Ohio Canal NHP Chesapeake and Ohio Canal NH
Arkansas Post NM Arkansas Post N. Mem.

Katmai NP & NPRES Katmai NP & Preserve

Denali NP & NPRES Denali NP & Preserve

Aniakchak NM & NPRES Aniakchak NM

Big Thicket NPRES Big Thicket N. Preserve

Big Cypress NPRES Big Cypress N. Preserve 27

Jean Lafitte NHP & Preserve
Obed Wild & Scenic River



raw = LOAD 'phirl/$input' AS (rel,docid,keyid,str);
data = FOREACH raw GENERATE rel,docid, FLATTEN(TOKENIZE(LOWER(str))) AS term;

—-- compute relation-dependent document frequencies as docfreq:{rel,term,df:int}
docfreq =

FOREACH (GROUP data by (rel,term))

GENERATE group.rel AS rel, group.term as term, COUNT(data) as df;

-— find the total number of documents in each relation as ndoc:{rel,c:long}

ndocl = DISTINCT(FOREACH data GENERATE rel,docid);
ndoc = FOREACH (GROUP ndocl by rel) GENERATE group AS rel, COUNT(ndocl) AS c;

-— find the un-normalized document vectors as udocvec:{rel.docid,term,weight}

udocvecl = JOIN data BY (rel,term), docfreq BY (rel,term);
udocvec2 = JOIN udocvecl BY data::rel, ndoc BY rel;
udocvec =

FOREACH udocvec?2
GENERATE data::rel, data::docid, data::term,
L0OG(2.0)*L0G(ndoc::c/(double)docfreq::df) AS weight;

-— find the square of the normalizer for each document: norm:{rel,docid,z2:double}

norml = FOREACH udocvec GENERATE rel,docid,term,weightxweight as w2;
norm =

FOREACH (GROUP norml BY (rel,docid))

GENERATE group.rel AS rel, group.docid AS docid, SUM(norml.w2) AS z2;

-— compute the TFIDF weighted document vectors as: docvec:{rel,docid,term,weight:double}
docvec =
I FOREACH (JOIN udocvec BY (rel,docid), norm BY (rel,docid))
GENERATE data::rel AS rel, data::docid AS docid, data::term AS term,
weight/SQRT(z2) as weight;

fs —rmr phirl/docvec
STORE docvec INTO 'phirl/docvec';

-- naive algorithm: use all terms for finding potentil matches

docsA = FILTER docvec BY rel=='$rel’;
docsB = FILTER docvec BY rel!='$rel’;
softjoinl = JOIN docsA BY term, docsB BY term;
softjoin2 =
FOREACH softjoinl
GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weightxdocsB::weight AS p;
softjoin =
FOREACH (GROUP softjoin2 BY (idA,idB))
GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;

28



Making the algorithm smarter....



Inverted Index Softjoin - 2

-— naive algorithm: use all terms for finding potentil matches

docsA = FILTER docvec BY rel=='$rel';
docsB = FILTER docvec BY rel!='$rel’;
softjoinl = JOIN docsA BY term, docsB BY term;
softjoin2 =
FOREACH softjoinl
GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weightxdocsB::weight AS p;
softjoin =
FOREACH (GROUP softjoin2 BY (idA,idB))
GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;

we should make a smart choice about which terms to use

30



Adding heuristics to the soft join - 1

—-— compute maximum weight for rel2docs as: maxweight2:{term,weight}

maxweightB =
FOREACH (GROUP docsB BY (rel,term))
GENERATE group.term AS term, MAX(docsB.weight) AS weight;

-— augment the docvecs for rell with maxweight2 and docfreq information to get
-— augdocsA: {rel,docid,term, w,df,maxw,score}

docfreqB = FILTER docfreq BY rel!='$rel';
augdocsAl = JOIN docsA BY term, docfregB BY term, maxweightB BY term;
augdocsA =
FOREACH augdocsAl
GENERATE docsA::rel, docsA::docid, docsA::term, docsA::weight AS w,
docfreqB::df AS df, maxweightB::weight AS maxw,
docsA: :weightxmaxweightB::weight AS score;

VY, = 3V [wlsv,[wls Y v, [w]*maxweight2[ w]

4

score for w in doc a

31



Adding heuristics to the soft join - 1

augdocsA =
FOREACH augdocsAl

GENERATE docsA::rel, docsA::docid, docsA::term, docsA::weight AS w,

docfregB::df AS df, maxweightB::weight AS maxw,
docsA: :weightxmaxweightB: :weight AS score;

-— filter out useful terms to join on, using the infollin augdocsA.
-— the heuristics used here are:

-—— (1) only use top K by maxscore w/in each document;

-—— (2) filter by df<=maxDF

-—— (3) filter by score>=minscore

usefulTermsl =
FOREACH (GROUP augdocsA BY (rel,docid))
GENERATE group, TOP($top_k,6,augdocsA) AS top;
usefulTerms2 =
FOREACH usefulTermsl {
filteredTop = FILTER top BY (df<=$max_df) AND score>$min_sim;
topTerms = FOREACH filteredTop GENERATE term;
GENERATE flatten(topTerms);

};
usefulTerms = DISTINCT usefulTerms2;

32



Adding heuristics to the soft join - 2

-— use the restricted sets of terms to get candidate pairs

pairsl = JOIN usefulTerms BY term, docsA BY term, docsB BY term;

pairs2 = FOREACH pairsl GENERATE docsA::docid AS idA, docsB::docid AS idB;
pairs = DISTINCT pairs2;

—— STORE pairs INTO 'phirl/pairs';

softjoinl = JOIN pairs BY idA, docsA by docid;
softjoin2 = JOIN softjoinl BY (idB,term), docsB by (docid,term);
softjoin3 =

FOREACH softjoin2

GENERATE idA, idB, docsA::term AS term, docsA::weightxdocsB::weight AS p;
softjoin =

FOREACH (GROUP softjoin3 BY (idA, idB))

GENERATE group.idA, group.idB, SUM(softjoin3.p) AS sim;

33



FILTER docvec BY rel=='$rel';
FILTER docvec BY rel!='$rel';

docsA
docsB

—-— compute maximum weight for rel2docs as: maxweight2:{term,weight}

maxweightB =
FOREACH (GROUP docsB BY (rel,term))
GENERATE group.term AS term, MAX(docsB.weight) AS weight;

-— augment the docvecs for rell with maxweight2 and docfreq information to get
—-- augdocsA: {rel,docid,term, w,df,maxw,score}

docfreqB = FILTER docfreq BY rel!='$rel';
augdocsAl = JOIN docsA BY term, docfreqB BY term, maxweightB BY term;
augdocsA =
FOREACH augdocsAl
GENERATE docsA::rel, docsA::docid, docsA::term, docsA::weight AS w,
docfreqB::df AS df, maxweightB::weight AS maxw,
docsA: :weight*maxweightB::weight AS score;

usefulTermsl =
FOREACH (GROUP augdocsA BY (rel,docid))
GENERATE group, TOP($top_k,6,augdocsA) AS top;
usefulTerms2 =
FOREACH usefulTermsl {
filteredTop = FILTER top BY (df<=$max_df) AND score>$min_sim;
topTerms = FOREACH filteredTop GENERATE term;
GENERATE flatten(topTerms);
}
usefulTerms = DISTINCT usefulTerms2;

pairsl JOIN usefulTerms BY term, docsA BY term, docsB BY term;

pairs2 FOREACH pairsl GENERATE docsA::docid AS idA, docsB::docid AS idB;
pairs = DISTINCT pairs2;

—— STORE pairs INTO 'phirl/pairs';

softjoinl = JOIN pairs BY idA, docsA by docid;
softjoin2 = JOIN softjoinl BY (idB,term), docsB by (docid,term);
softjoin3 =

FOREACH softjoin2

GENERATE idA, idB, docsA::term AS term, docsA::weightxdocsB::weight AS p;
softjoin =

FOREACH (GROUP softjoin3 BY (idA,idB))

GENERATE group.idA, group.idB, SUM(softjoin3.p) AS sim;

34



PageRank at Scale



web sitea b ¢
defg

Google’s PageRank

web sitea b ¢
defg

web

site
Z
- qu qu -
\ | web site yyyy |

Inlinks are
“good” (recommendations)

Inlinks from a “good” site
are better than inlinks from
a “bad” site

but inlinks from sites with
many outlinks are not as
“good”...

“Good” and “bad” are
relative.

36



web sitea b ¢
defg

Google’s PageRank

web site
xxx web sitea b ¢
defg

t!)

web

Imagine a “pagehopper”
that always either @

* follows a random link, or

* jumps to random page

37



Google’s PageRank

(Brin & Page, http://www-db.stanford.edu/~backrub/google.html)

web si « ”
/ n Imagine a "pagehopper
that always either
web sitea b ¢
—" defgt \ I

* follows a random link, or

* jumps to random page

PageRank ranks pages by
the amount of time the
pagehopper spends on a

page:

* or, if there were many
pagehoppers, PageRank is
the expected “crowd size”

38



PageRank in Memory

Letu=(1/N, .., 1/N)
—dimension = #nodes N
Let A = adjacency matrix: [a;=1 <> i links to j]
Let W = [w;; = a;;/outdegree(i)]
w;; is probability of jump fromi to ]
Let VO (1,1,....,1)
—or anything else you want

Repeat until converged:
—Letvttl=cu + (1-c)Wvt

* cis probability of jumping “anywhere randomly”

39



Streaming PageRank

* Assume we can store v but not W in memory
* Repeat until converged:
— Letvttl=cu + (1-c)Wvt

» Store A as a row matrix: each line is
—1i ji1.ujiq [the neighbors of i
e Store v’ and v in memory: v’ starts out as cu

* Foreachline“i jq,...jiq"

— Foreachjinjq,...jiq Everything needed
* V'[j] += (1-c)v][i]/d for upFIate is right
there in row....




Streaming PageRank:

with some long rows
* Repeat until converged:
— Letvttl=cu + (1-c)Wvt

« Store A as a list of edges: each line is: “i d(i) j”
e Store v’ and v in memory: v’ starts out as cu
* For eachline “idj"“

* v[j] += (1-o)v[i]/d

We need to get the
degree of i and store

it locally

41



Streaming PageRank: preprocessing

* Original encoding is edges (i,j)
 Mapper replacesi,j withi,1

* Reducer is a SumReducer

* Resultis pairs (i,d(i))

* Then: join this back with edges (i,j)
* For eachi,j pair:
— send j as a message to node i in the degree table
* messages always sorted after non-messages

— the reducer for the degree table sees i,d(i) first
* thenjl,j2, ...
* can output the key,value pairs with key=i, value=d(i),

42



Preprocessing Control Flow: 1
I [ i

i1 j1,1 i1 1 i1 1 i1 d(i1)
i1 i1,2 i1 1 i1 1 B

2 d(i2)
i1 j1,k1 i1 1 i1 1
i2 j2,1 i2 1 i2 1 i3 d)i3)
i3 j3,1 i3 1 i3 1

) E) EE

Summing values

43



Preprocessing Control Flow: 2
P el | B

i1 ~j11
i1 1,1 i1 d(i1) i1 d(i1) j1,1
i1 ~j1,2
i1 j1,2 i1 ~i1,1 i1 d(i1) j1,2
. 12
2 ~j2,1
2 j2,1 . i1 d(i1) j1,n1
i2 d(i2) i2 d(i2) j2,1
2~
| d(i) 0 ‘
i1 d(i1) i2 ~i2,2 i3 d(i3) j3,1
i1 d(i1)
2 d(i2)
2 d(i2)

copy or convert to messages join degree with edges



Streaming PageRank:
with some long rows

* Repeat until converged: Ej’"e |
identity
— Letvttl=cu + (].-C)WVt mapper
with two
* Pure streaming: use a table of nodes—> degree+pageRank i("Z”ts
: . _ _ edges,
— Lines are i: degree=d,pr=v degree/
* For each edge ij pr table)

— Send to i (in degree/pagerank) table: outlink j

* For each line i: degree=d,pr=v:

— send to i:incrementVBy ¢ Reducer s
— for each message “outlink j”: outputs the
o incrementVBy
* send to j:incrementVBy (1-c)*v/d messages
* For each line i: degree=d,pr=v
— sum up the incrementVBy messages to compute v’ Two-input
mapper +

— output new row: i: degree=d,pr=v’ .

reducer

45



Control Flow: Streaming PR
I 1 [delta

i1 j1,1 i1 d(i1),v(i1) i1 i1 c

i1 j1,2 i1 ~j1,1 i1l (1-o)v(i1)/d(i1) | i1 (1-c)v(...)....
i1 ~j1,2 i1 (1-C)...

i2 j2,1 ol jL,nl i
2 d(i2),v(i2) 2 i2 ¢

| div 2 ~j2,2 i ..
i1 d(i1)v(i1)
2 d(i2),v(i2)

i i -Em$ MAP SORT
send “pageRank

copy or convert to messages updates ” to outlinks i




Control Flow: Streaming PR

i1 C il c 1 [V

L1 (@-ov(in)/din) | il (ovi)e. | lin ~v(in
i1 (1-c)... 2 ~(i2) i1 d(i1)v(i1)

jL,nl i T i2 d(i2),v'(i2)

i2 C 2 c

i i2 (1-c)...

.
i1 d(i1),v(i1)
i2 d(i2),v(i2)

i3 c e e

D PN AN PN PN PN
.m MAP SORT REDUCE , MAP , SORT . REDUCE

Summing values Replace v with Vv’




Control Flow: Streaming PR

2 21 and back around for
""" next iteration....

i1 d(i1),v(i1)
2 d(i2),v(i2)

COpy or convert to messages 48



PageRank in Pig



¥!/usr/bin/python
from org.apache.pig.scripting import *

P = Pig.compile("""
HOW.t.O use |OOPS, -- PRCA) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))
conditionals, etc?
previous_pagerank =

LOAD 'Sdocs_in'

Embed PIG in a USING PigStorage('\t')
. AS ( url: chararray, pagerank: float, links:{ link: ( url: chararray ) } );
real programming
|anguage' outbound_pagerank =
FOREACH previous_pagerank
GENERATE
Julien Le Dem - pagerank / COUNT ( links ) AS pagerank,
FLATTEN ( links ) AS to_url;
Yahoo
new_pagerank =
FOREACH
( COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER )
GENERATE

group AS url,
(1-3%d) + $d * SUM ( outbound_pagerank.pagerank ) AS pagerank,
FLATTEN ( previous_pagerank.links ) AS links;

STORE new_pagerank
INTO 'Sdocs_out’
USING PigStorage('\t');
Ll 'l)

params = { 'd': '@0.5', 'docs_in': 'data/pagerank_data_simple' }

for i in range(10):
out = "out/pagerank_data_" + str(i + 1)
params[“docs_out"] = out
Pig.fs("rmr " + out)
stats = P.bind(params).runSingle()
if not stats.isSuccessful():
raise 'failed’
params[“docs_in"] = out

50



#!/usr/bin/python
from org.apache.pig.scripting import *

P = Pig.compile(""" L
pig script: PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

"

params = { 'd': '0.5', 'docs_in': 'data/pagerank_data_simple' }

[terate 10 times

for 1 in range(10):

out = "out/pagerank_data_" + str(i + 1) Pass parameters as a
params["docs_out"] = out dictionary
Pig.fs("rmr " + out) _
§tats = P.b1n§(params).run51ngle() i —
if not stats.isSuccessful():

) S an = . IR, declared above

raise 'failed

" 5 The output becomes

params["docs_in"] = out

the new input

51



previous_pagerank =
LOAD 'Sdocs_in'
USING PigStorage('\t')
AS ( url: chararray, pagerank: float, links:{ link: C url: chararray ) } );

outbound_pagerank =
FOREACH previous_pagerank
GENERATE
pagerank / COUNT ( links ) AS pagerank,
FLATTEN ( l1inks ) AS to_url;

new_pagerank =
FOREACH
( COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER )
GENERATE
group AS url,
(1-8%d) + %d * SUM ( outbound_pagerank.pagerank ) AS pagerank,
FLATTEN ( previous_pagerank.links ) AS links;

STORE new_pagerank
INTO 'Sdocs_out’
USING PigStorage('\t');

lots of i/o happening here... >



An example from Ron Bekkerman



Example: k~-means clustering

* An EM-like algorithm:
e Initialize & cluster centroids

* E-step: associate each data instance with the
closest centroid

— Find expected values of cluster assighments
given the data and centroids

* M-step: recalculate centroids as an average of
the associated data instances

— Find new centroids that maximize that
expectation

54



k-means Clustering

centroids

55



Parallelizing k-means




Parallelizing k-means




Parallelizing k-means

AR




k-means on MapReduce

Panda et al, Chapter 2

* Mappers read data portions and centroids
* Mappers assign data instances to clusters

* Mappers compute new local centroids and
local cluster sizes

* Reducers aggregate local centroids
(weighted by local cluster sizes) into new
global centroids

* Reducers write the new centroids

59



k-means in Apache Pig: input data

e Assume we need to cluster documents
—Stored in a 3-column table D:

docl Carnegie 2
docl Mellon 2

* Initial centroids are £ randomly chosen docs

—Stored in table C in the same format as
above

60



k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);

DOT. ME‘ S dXc;
SQR z l'
= drg maX

SQR

LEN_ \/ z; -w n,;
DOT wee

SIM = FOREACH DOT_LEN GENERATE d, ¢, dXc / /enc,

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

6l



k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);

DOT dXc;
SQR

SQRQ Cd — aI'g max

LEN_ ¢ E ( )2 ng
DOT wee

SIM = FOREACH DOT_LEN GENERATE d, c, dXc / len

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

62



k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);

DOT S dXc;
SQR

SQR, Cd — aI'g Imax

LEN | ¢ o
DOT!

SIM = FOREACH DOT _LEN GENERATE"Sma cr

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

63



k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);
DOT.

SQR
SQR,
LEN_

DOT
SIM = FOREACH DOT_LEN GENERA

d, ¢, dXc / leg

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

64



k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);
DOT.

S dXc;

SQR
SQR,
LEN_

C

DOT

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

65



k-means in Apache Pig: E-step

D C BY w, D BY w;

PROD @REACH D_C GENERATE d, ¢, i, *i ASi,_;

PRODg OD BY (d, c);

DOT _PRO® @XEACH PRODg GENERATE d, ¢, SUM(i i) AS dXc;

SQR = FOREAGH C GENERATE c, i, * i, AS i,2
SQR, = @ 2R BY ;
LEN_C “WQBSHCH SQR, GENERATE ¢, SQRT(SUM(i 2)) AS len,;

DOT LEN N_C BY ¢, DOT_PROD BY c;

SIM = FOR !IT_LEN GENERATE d, c, dXc / len
CLUSTER JREACH S/M, GENERATE TOP(1, 2, SIM);

66



k-means in Apache Pig: M-step

D_C_W,GENERATE c, w, SUM(i,) AS sum;

D_C_W,, _C_W BY c;
SIZES = FOR®W@¥D_C_W, GENERATE c, COUNT(D_C_W) AS size;

SUMS SIZES IZES BY ¢, SUMS BY c;
C = FOREACH 5S®WI5_SIZES GENERATE ¢, w, sum / size AS i_;

Finally - embed in Java (or Python or ....) to do the looping

67



¥!/usr/bin/python
from org.apache.pig.scripting import *

P = Pig.compile("""
HOW.t.O use |OOPS, -- PRCA) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))
conditionals, etc?
previous_pagerank =

LOAD 'Sdocs_in'

Embed PIG in a USING PigStorage('\t')
. AS ( url: chararray, pagerank: float, links:{ link: ( url: chararray ) } );
real programming
|anguage' outbound_pagerank =
FOREACH previous_pagerank
GENERATE
h/tJuIien Le Dem - pagerank / COUNT ( links ) AS pagerank,
FLATTEN ( links ) AS to_url;
Yahoo
new_pagerank =
FOREACH
( COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER )
GENERATE

group AS url,
(1-3%d) + $d * SUM ( outbound_pagerank.pagerank ) AS pagerank,
FLATTEN ( previous_pagerank.links ) AS links;

STORE new_pagerank
INTO 'Sdocs_out’
USING PigStorage('\t');
Ll 'l)

params = { 'd': '@0.5', 'docs_in': 'data/pagerank_data_simple' }

for i in range(10):
out = "out/pagerank_data_" + str(i + 1)
params[“docs_out"] = out
Pig.fs("rmr " + out)
stats = P.bind(params).runSingle()
if not stats.isSuccessful():
raise 'failed’
params[“docs_in"] = out

68



#!/usr/bin/python
from org.apache.pig.scripting import *

P = Pig.compile(""" L
pig script: PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

"

params = { 'd': '0.5', 'docs_in': 'data/pagerank_data_simple' }

[terate 10 times

for 1 in range(10):

out = "out/pagerank_data_" + str(i + 1) Pass parameters as a
params["docs_out"] = out dictionary
Pig.fs("rmr " + out) _
§tats = P.b1n§(params).run51ngle() i —
if not stats.isSuccessful():

) S an = . IR, declared above

raise 'failed

" 5 The output becomes

params["docs_in"] = out

the new input

69



The problem with k-means in Hadoop

[/0 costs



Data is read, and model is written, with

every iteration
Panda et al, Chapter 2

* Mappers read data portions and centroids
* Mappers assign data instances to clusters

* Mappers compute new local centroids and
local cluster sizes

* Reducers aggregate local centroids
(weighted by local cluster sizes) into new
global centroids

* Reducers write the new centroids

71



Spark



Set of concise dataflow

Spark operations

(“transformation)

* Too much typing
— programs are not concise | Dataflow operations are
* Too low level embedded in an AP
— missing abstractions together with “actions”
— hard to specify a workflow
* Not well suited to iterative operations
—E.g., E/M, k-means clustering, ...
— Workflow and memory-loading issues

Sharded files are replaced by “RDDs” — resiliant distributed datasets

RDDs can be cached in cluster memory and recreated to recover from
error



Spark examples
spark is a spark

errors.cache() context object

text_file = spark.textFile("hdfs://...")

errors = text _file.filter(lambda line: "ERROR" in 1line)
# Count all the errors

errors.count()

# Count errors mentioning MySQL

errors.filter(lambda line: "MySQL" in line).count()

# Fetch the MySQL errors as an array of strings
errors.filter(lambda line: "MySQL" in 1line).collect()



errors is a
Spark examples m

thus a

that exp count() is an action: it

errors.cache()

do ' will actually execute
the plan for errors
and return a value.

text_file .textFile("
errors = text_file.filt

a lines ne)

# Count all the err

everything is sharded, like in
errors.count()

Hadoop and GuineaPig

# Count errors mentioning MySQL
errors.filter(lambda line: "MySQL" in line).count()

# Fetch the MySQL errors as an array of strings
errors.filter(lambda line: "MySQL" in 1line).collect()

errors.filter() is a

. collect() is an action
transformation

75



Spark examples

everything is sharded ... and the shards are stored in memory of
worker machines not local disk (if possible)

text_file = spark.textFile("hdfs://...")
errors = text file.filter(lambda line: "ERROR" in 1line)

errors.cache() | # modify errors to be stored in cluster memory

errors.count(
# Count errors méenvianing MySQL
errors.filter(lambda "MySQL" in line).count()
# Fetch the MySQL errors as y of '
errors.filter(lambda line: "MyS

subsequent
actions will be
much faster

You can also persist() an RDD on disk, which
is like marking it as opts(stored=True) in
GuineaPig. Spark’s not smart about persisting
data.




Spark examples: wordcount

text_file = spark.textFile("hdfs://...")
counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
. reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile(™adfs://...")

transformation on
(key,value) pairs ,
which are special

the action




Spark examples: batch logistic regression

points = spark.textFile(...).map(parsePoint).cache()

W = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):

gradient = points.map(
lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) — 1) *x p.y * p.X
) .reduce(lambda a, b: a + b)
w —= gradient
print "Final arating plane: %s" % w

p-X and w are vectors,

reduce is an action — ' from the numpy package.
it produces a numby Python overloads
vector operations like * and +

for vectors.

78




Spark examples: batch logistic regression

points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
gradient = points.map(
lambda p: (1 / (1 + exp(-p.yx(w.dot(p.x)))) - 1) * p.y * p.x
) .reduce(lambda a, b: a + b)
w —= gradient
print "Final separating plane: %s" % w

Important note: numpy vectors/matrices are not just “‘syntactic

sugar”.

* They are much more compact than something like a list of python
floats.

* numpy operations like dot, *, + are calls to optimized C code

* a little python logic around a lot of numpy calls is pretty efficient

=
7

o
7




Spark examples: batch logistic regression

points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
gradient = points.map(
lambda p: (1 / (1 + exp(-p.yx(w.dot(p.x)))) - 1) * p.y * p.x
) .reduce(lambda a, b: a + b)
w —= gradient
print "Final separating plane: %S/

w is defined outside
So: python builds a closure — code the lambda function,

including the current value of w — and but used inside it

Spark ships it off to each worker. So
W is copied, and must be read-only.

80




Spark examples: batch logistic regression

points = spark.textFile(...).map(parsePoint).cache()

W = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):

gradient = points.map(

lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x) - 1) * p.y * p.X
). reduce(lambda a, b: a + b)
w —= gradient

print "Final separating plane: %s" % w

dataset of points is
cached in cluster
memory to reduce i/o

]



Spark logistic regression example

The graph below compares the performance of this Spark program
against a Hadoop implementation on 30 GB of data on an 80-core
cluster, showing the benefit of in-memory caching:

“Hadoop # Spark

~ 4000
0

S

5 3000
i= 2000
€ 1000

0 -

m

Runni

5 10 20 30
Number of Iterations

82



Spark

MLib
machine
learning

Spark SQL Spark Streaming
structured data real-time

GraphX
graph
processing

Standalone Scheduler YARN

83



Spark details: broadcast

points = spark.textFile(...).map(parsePoint).cache()

W = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):

gradient = points.map(
lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) — 1) x p.y * p.X
) .reduce(lambda a, b: a + b)

w —= gradient
print "Final separating plane:

So: python builds a closure — code
including the current value of w — and
Spark ships it off to each worker. So

W is copied, and must be read-only.

84




Spark details: broadcast e penatty for

distributing something
that’s not used by all
points = spark.textFile(...).map(parsePoint).cac| workers
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
gradient = points.map(
lambda p: (1 / (1 + exp(-p.yx(w.dot(p.x)))) - 1) * p.y * p.x
) .reduce(lambda a, b: a + b)
w —= gradient
print "Final separating plane: $

what’s sent is a small
pointer to w (e.g., the
name of a file containing
a serialized version of
w) and when value is

alternative: create a broadcast variable, e.g.,

* w_broad = spark.broadcast(w) called, some clever all-
which is accessed by the worker via reduce like machinery is
e w_broad.value() used to reduce network

load.

85



Spark details: mapPartitions

class WordProb(Planner):
wc = ReadLines( ) | Flatten(by=tokens) \
| Group(by=lambda x:x, reducingTo=ReduceToCount())
total = ...

wcWithTotal = Augment(wc, sideview=total, loadedBy=lambda v:GPig.onlyRowOf(v))
prob = ReplaceEach(wcWithTotal, by=lambda ((word,count),n): (word,count,n,float(count)/n))

Common issue:
* map task requires loading in some small shared value
* more generally, map task requires some sort of initialization before
processing a shard
* GuineaPig:
* special Augment ... sideview ... pattern for shared values
* can kludge up any initializer using Augment
* Raw Hadoop: mapper.configure() and mapper.close()
methods

86



Spark details: mapPartitions

class WordProb(Planner):
wc = ReadLines( ) | Flatten(by=tokens) \
| Group(by=lambda x:x, reducingTo=ReduceToCount())
total = ...

wcWithTotal = Augment(wc, sideview=total, loadedBy=lambda v:GPig.onlyRowOf(v))
prob = ReplaceEach(wcWithTotal, by=lambda ((word,count),n): (word,count,n,float(count)/n))

Spark:
* rdd.mapPartitions(f): will call f(iteratorOverShard) once per
shard, and return an iterator over the mapped values.

* f() can do any setup/close steps it needs

Also:
* there are transformations to partition an RDD with a user-selected
function, like in Hadoop. Usually you partition and persist/cache.

87



