
Announcements

•  Working AWS codes are out

•  605 waitlist ~= 25, slots ~= 15

•  10-805 project deadlines now posted

•  William has no ofDice hours next week

Recap

•  An algorithm for testing a huge naïve Bayes

classiDier

– More generally: for evaluating a linear

classiDier on a test set efDiciently on-disk,
using stream-and-sort or map-reduce ops
only

•  Sketch of algorithm for Rocchio training/
testing

2

Recap

•  Abstractions for map-reduce (TFIDF example)

•  map-side vs reduce-side joins

3

Proposed syntax:

table2 = MAP table1 TO λ row : f(row))

Proposed syntax:

table2 = FILTER table1 BY λ row : f(row))

f(row)! {true,false}

Proposed syntax:

table2 = FLATMAP table1 TO λ row : f(row))

f(row)!list of rows Proposed syntax:

GROUP table BY λ row : f(row)

Could deDine f via: a function, a Dield
of a deDined record structure, …

Proposed syntax:

JOIN table1 BY λ row : f(row),

 table2 BY λ row : g(row)

Today

•  Less abstract abstractions

4

Proposed syntax:

table2 = MAP table1 TO λ row : f(row))

Proposed syntax:

table2 = FILTER table1 BY λ row : f(row))

f(row)! {true,false}

Proposed syntax:

table2 = FLATMAP table1 TO λ row : f(row))

f(row)!list of rows Proposed syntax:

GROUP table BY λ row : f(row)

Could deDine f via: a function, a Dield
of a deDined record structure, …

Proposed syntax:

JOIN table1 BY λ row : f(row),

 table2 BY λ row : g(row)

PIG: A WORKFLOW/DATAFLOW
LANGUAGE

5

PIG: word count

•  Declarative “data Dlow” language

PIG program is a bunch of assignments where
every LHS is a relation.
No loops, conditionals, etc allowed.

6

More on Pig

•  Pig Latin

– atomic types + compound types like tuple,
bag, map

– execute locally/interactively or on hadoop

•  can embed Pig in Java (and Python and …)

•  can call out to Java from Pig

7

8

Tokenize – built-in function

Flatten – special keyword, which
applies to the next step in the
process – ie foreach is transformed
from a MAP to a FLATMAP

PIG Features

•  LOAD ‘hdfs-path’ AS (schema)

–  schemas can include int, double, bag, map, tuple, …

•  FOREACH alias GENERATE … AS …, …

–  transforms each row of a relation

•  DESCRIBE alias/ ILLUSTRATE alias -- debugging

•  GROUP alias BY …

•  FOREACH alias GENERATE group, SUM(….)

–  GROUP/GENERATE … aggregate op together act like a map-
reduce

•  JOIN r BY Hield, s BY Hield, …

–  inner join to produce rows: r::f1, r::f2, … s::f1, s::f2, …

•  CROSS r, s, …

–  use with care unless all but one of the relations are singleton

•  User deDined functions as operators

–  also for loading, aggregates, …

9

PIG parses and optimizes a sequence of commands before it executes them
It’s smart enough to turn GROUP … FOREACH… SUM … into a map-reduce

10

Example: the optimizer
will compress these steps
into one map-reduce
operation

ANOTHER EXAMPLE:�
 COMPUTING TFIDF IN PIG LATIN

11

Abstract Implementation: [TF]IDF

data = pairs (docid ,term) where term is a word appears in document with id docid
operators:
•  DISTINCT, MAP, JOIN
•  GROUP BY …. [RETAINING …] REDUCING TO a reduce step

docFreq = DISTINCT data

 | GROUP BY λ(docid,term):term REDUCING TO count /* (term,df) */

docIds = MAP DATA BY=λ(docid,term):docid | DISTINCT
numDocs = GROUP docIds BY λdocid:1 REDUCING TO count /* (1,numDocs) */

dataPlusDF =
 JOIN data BY λ(docid, term):term, docFreq BY λ(term, df):term
 | MAP λ((docid,term),(term,df)):(docId,term,df) /* (docId,term,document-freq) */

 unnormalizedDocVecs = JOIN dataPlusDF by λrow:1, numDocs by λrow:1
 | MAP λ((docId,term,df),(dummy,numDocs)): (docId,term,log(numDocs/df))
 /* (docId, term, weight-before-normalizing) : u */

1/2

docId term

d123 found

d123 aardvark

key value

found (d123,found),(d134,found),…

aardvark (d123,aardvark),…

key value

1 12451

key value

found (d123,found),(d134,found),… 2456

aardvark (d123,aardvark),… 7

12

Abstract Implementation: TFIDF

normalizers =
 GROUP unnormalizedDocVecs BY λ(docId,term,w):docid
 RETAINING λ(docId,term,w): w2

 REDUCING TO sum /* (docid,sum-of-square-weights) */

docVec = JOIN unnormalizedDocVecs BY λ(docId,term,w):docid,

 normalizers BY λ(docId,norm):docid
 | MAP λ((docId,term,w), (docId,norm)): (docId,term,w/sqrt(norm))
 /* (docId, term, weight) */

2/2

key

d1234 (d1234,found,1.542), (d1234,aardvark,13.23),… 37.234

d3214 ….

key

d1234 (d1234,found,1.542), (d1234,aardvark,13.23),… 37.234

d3214 ….
29.654

docId term w

d1234 found 1.542

d1234 aardvark 13.23

docId w

d1234 37.234

d1234 37.234 13

(docid,token) è (docid,token,tf(token in doc))

(docid,token,tf) è (docid,token,tf,length(doc))

(docid,token,tf,n)è(…,tf/n)

(docid,token,tf,n,tf/n)è(…,df)

ndocs.total_docs

(docid,token,tf,n,tf/n)è(docid,token,tf/n * id)

relation-to-scalar casting

14

group outputs record with “group” as field name

Debugging/visualization

15

16

TF-IDF in PIG - another version

17

GUINEA PIG

18

GuineaPig: PIG in Python

•  Pure Python (< 1500 lines)

•  Streams Python data structures

–  strings, numbers, tuples (a,b), lists [a,b,c]

–  No records: operations deDined functionally

•  Compiles to Hadoop streaming pipeline

–  Optimizes sequences of MAPs

•  Runs locally without Hadoop

–  compiles to stream-and-sort pipeline

–  intermediate results can be viewed

•  Can easily run parts of a pipeline

•  http://curtis.ml.cmu.edu/w/courses/index.php/Guinea_Pig

19

GuineaPig: PIG in Python

•  Pure Python, streams Python data structures

–  not too much new to learn (eg Dield/record notation, special
string operations, UDFs, …)

–  codebase is small and readable

•  Compiles to Hadoop or stream-and-sort, can easily run parts of a

pipeline

–  intermediate results often are (and always can be) stored and

inspected

–  plan is fairly visible

•  Syntax includes high-level operations but also fairly detailed
description of an optimized map-reduce step

–  Flatten | Group(by=…, retaining=…, reducingTo=…)

20

21

A wordcount example

class variables
in the planner
are data
structures

Wordcount example ….

•  Data structure can be converted to a series of

“abstract map-reduce tasks”

22

More examples of GuineaPig

23

Join syntax, macros, Format command

Incremental debugging, when intermediate views are stored:

% python wrdcmp.py –store result
…
% python wrdcmp.py –store result –reuse cmp

More examples of GuineaPig

24

Full Syntax for Group

Group(wc, by=lambda (word,count):word[:k],
 retaining=lambda (word,count):count,
 reducingTo=ReduceToSum())

equiv to:

Group(wc, by=lambda (word,count):word[:k],

 reducingTo=
 ReduceTo(int,

 lambda accum,(word,count)): accum+count))

ANOTHER EXAMPLE:�
 COMPUTING TFIDF IN GUINEA PIG

25

Actual Implementation

26

Actual Implementation

27

docId w

d123 found

d123 aardvark

Actual Implementation

28

docId w

d123 found

d123 aardvark

key value

found (d123,found),(d134,found),… 2456

aardvark (d123,aardvark),… 7

Actual Implementation

29

Augment: loads a preloaded object b at mapper initialization time,
cycles thru the input, and generates pairs (a,b)

Full Implementation

30

Outline: Soft Joins with TFIDF

•  Why similarity joins are important

•  Useful similarity metrics for sets and strings

•  Fast methods for K-NN and similarity joins

– Blocking

– Indexing

– Short-cut algorithms

– Parallel implementation

31

In the once upon a time days of the First Age of Magic, the prudent
sorcerer regarded his own true name as his most valued possession but
also the greatest threat to his continued good health, for--the stories go--
once an enemy, even a weak unskilled enemy, learned the sorcerer's
true name, then routine and widely known spells could destroy or
enslave even the most powerful. As times passed, and we graduated to
the Age of Reason and thence to the first and second industrial
revolutions, such notions were discredited. Now it seems that the Wheel
has turned full circle (even if there never really was a First Age) and we
are back to worrying about true names again:

The first hint Mr. Slippery had that his own True Name might be known--
and, for that matter, known to the Great Enemy--came with the
appearance of two black Lincolns humming up the long dirt driveway ...
Roger Pollack was in his garden weeding, had been there nearly the
whole morning.... Four heavy-set men and a hard-looking female piled
out, started purposefully across his well-tended cabbage patch.…

This had been, of course, Roger Pollack's great fear. They had
discovered Mr. Slippery's True Name and it was Roger Andrew Pollack
TIN/SSAN 0959-34-2861.

32

SOFT JOINS WITH TFIDF:�
WHY AND WHAT

33

Motivation

•  Integrating data is important

•  Data from different sources

may not have consistent
object identiHiers

– Especially automatically-

constructed ones

•  But databases will have

human-readable names for
the objects

•  But names are tricky….

34

35

Sim Joins on Product Descriptions

•  Similarity can be high for descriptions of distinct items:

o  AERO TGX-Series Work Table -42'' x 96'' Model 1TGX-4296 All tables shipped KD
AEROSPEC- 1TGX Tables are Aerospec Designed. In addition to above
specifications; - All four sides have a V countertop edge ...

o  AERO TGX-Series Work Table -42'' x 48'' Model 1TGX-4248 All tables shipped KD
AEROSPEC- 1TGX Tables are Aerospec Designed. In addition to above
specifications; - All four sides have a V countertop ..

•  Similarity can be low for descriptions of identical items:
o  Canon Angle Finder C 2882A002 Film Camera Angle Finders Right Angle

Finder C (Includes ED-C & ED-D Adapters for All SLR Cameras) Film Camera
Angle Finders & Magnifiers The Angle Finder C lets you adjust ...

o  CANON 2882A002 ANGLE FINDER C FOR EOS REBEL® SERIES
PROVIDES A FULL SCREEN IMAGE SHOWS EXPOSURE DATA BUILT-IN
DIOPTRIC ADJUSTMENT COMPATIBLE WITH THE CANON® REBEL, EOS
& REBEL EOS SERIES.

36

One solution: Soft (Similarity) joins

•  A similarity join of two sets A and B is

– an ordered list of triples (sij,ai,bj) such that

•  ai is from A

• bj is from B

•  sij is the similarity of ai and bj

•  the triples are in descending order

•  the list is either the top K triples by sij or ALL
triples with sij>L … or sometimes some
approximation of these….

37

Softjoin Example - 1

A useful scalable similarity metric: IDF weighting plus cosine distance!
38

How well does TFIDF work?

39

40

There are refinements to TFIDF distance – eg ones that extend with
soft matching at the token level (e.g., softTFIDF)

41

Semantic Joining�
with Multiscale Statistics

William Cohen

Katie Rivard, Dana Attias-Moshevitz

CMU

42

43

SOFT JOINS WITH TFIDF:�
HOW?

44

Rocchio’s algorithm

DF(w) = # different docs w occurs in

TF(w,d) = # different times w occurs in doc d

IDF(w) = |D |
DF(w)

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w))
u(d) = u(w1,d),....,u(w|V |,d)

u(y) =α 1
|Cy |

u(d)
||u(d) ||2d∈Cy

∑ −β
1

|D−Cy |
u(d ')

||u(d ') ||2d '∈D−Cy

∑

f (d) = argmaxy
u(d)

||u(d) ||2

⋅
u(y)

||u(y) ||2

Many variants
of these
formulae

…as long as
u(w,d)=0 for
words not in d!

Store only non-zeros in
u(d), so size is O(|d|)

But size of u(y) is O(|nV|)

u
2
= ui

2

i
∑

45

TFIDF similarity

DF(w) = # different docs w occurs in

TF(w,d) = # different times w occurs in doc d

IDF(w) = |D |
DF(w)

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w))
u(d) = u(w1,d),....,u(w|V |,d)

v(d) = u(d)
||u(d) ||2

sim(v(d1),v(d2)) = v(d1) ⋅v(d2) = u(w,d1)
||u(d1) ||2w

∑ u(w,d2)
||u(d2) ||2

46

Soft TFIDF joins

•  A similarity join of two sets of TFIDF-weighted

vectors A and B is

– an ordered list of triples (sij,ai,bj) such that

•  ai is from A

• bj is from B

•  sij is the dot product of ai and bj

•  the triples are in descending order

•  the list is either the top K triples by sij or ALL
triples with sij>L … or sometimes some
approximation of these….

47

PARALLEL SOFT JOINS

48

SIGMOD 2010

49

TFIDF similarity: variant for joins

DF(A,w) = # different docs w occurs in from A
DF(B,w) = # different docs w occurs in from B
TF(w,d) = # different times w occurs in doc d

IDF(w,d) = |Cd |
DF(Cd,w)

, where Cd ∈ {A,B}

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w,d))
u(d) = u(w1,d),....,u(w|V |,d)

v(d) = u(d)
||u(d) ||2

sim(v(d1),v(d2)) = v(d1) ⋅v(d2) = u(w,d1)
||u(d1) ||2w

∑ u(w,d2)
||u(d2) ||2

50

Parallel Inverted Index Softjoin - 1

want this to
work for long
documents or
short ones…and
keep the
relations simple

Statistics for computing TFIDF with IDFs local to each relation 51

Parallel Inverted Index Softjoin - 2

What’s the algorithm?

•  Step 1: create document vectors as (Cd, d, term, weight)

tuples

•  Step 2: join the tuples from A and B: one sort and reduce

•  Gives you tuples (a, b, term, w(a,term)*w(b,term))

•  Step 3: group the common terms by (a,b) and reduce to

aggregate the components of the sum

52

An alternative TFIDF pipeline

53

Inverted Index Softjoin – PIG 1/3

54

Inverted Index Softjoin – 2/3

55

Inverted Index Softjoin – 3/3

56

Results…..

57

58

Making the algorithm smarter….

59

Inverted Index Softjoin - 2

we should make a smart choice about which terms to use

60

Adding heuristics to the soft join - 1

61

Adding heuristics to the soft join - 2

62

63

