Announcements

* Working AWS codes are out

e 605 waitlist ~= 25, slots ~= 15

* 10-805 project deadlines now posted
* William has no office hours next week



Recap

* An algorithm for testing a huge naive Bayes
classifier

—More generally: for evaluating a linear
classifier on a test set efficiently on-disk,
using stream-and-sort or map-reduce ops
only

» Sketch of algorithm for Rocchio training/
testing



Recap

* Abstractions for map-reduce (TFIDF example)
* map-side vs reduce-side joins

Proposed syntax: Proposed syntax: f(row) = {true,false}
table2 = MAP tablel TO A row: f{row)) tableZ2 = FILTER tablel BY A row: f{(row))
Proposed syntax: f(row) list of rows | | Proposed syntax:

tableZ2 = FLATMAP tablel TO A row: f(row)) GROUP table BY A row: f{row)

Proposed syntax: Could define f via: a function, a field

of a defined record structure, ...
JOIN tablel BY A row: f(row),

tableZ BY A row: g(row)




Today

 Less abstract abstractions

Proposed syntax: Proposed syntax: f(row) = {true,false}
table2 = MAP tablel TO A row: f{row)) tableZ2 = FILTER tablel BY A row: f{(row))
Proposed syntax: f(row) list of rows | | Proposed syntax:

tableZ2 = FLATMAP tablel TO A row: f(row)) GROUP table BY A row: f{row)

Proposed syntax: Could define f via: a function, a field

of a defined record structure, ...

JOIN tablel BY A row: f(row),
tableZ BY A row: g(row)




PIG: A WORKFLOW/DATAFLOW
LANGUAGE



PIG: word count

* Declarative “data flow” language

A = ]Joad '/tmp/bible+shakes.nopunc’;

B = foreach A generate flatten(TOKENIZE((chararray)$0)) as word;
C = filter B by word matches '\w+';

D = group C by word;

E = foreach D generate COUNT(C) as count, group as word;

F = order E by count desc;

store F into '/tmp/wc';

PIG program is a bunch of assignments where
every LHS is a relation.
No loops, conditionals, etc allowed.




More on Pig

* Pig Latin
—atomic types + compound types like tuple,
bag, map
—execute locally/interactively or on hadoop
* can embed Pig in Java (and Python and ...)

* can call out to Java from Pig



load '/tmp/bible+shakes.nopunc’;

foreach A generate flatten(TOKENIZE((chararray)$0)) as word;

filter B by word matches\ ' \w+';

= foreach D generate COUNT(C) as count,\group as word;

A

B

C

D = group C by word;
E

F = order E by count desc;
s

tore F into '/tmp/wc';

Tokenize — built-in function

Flatten — special keyword, which
applies to the next step in the

process — ie foreach is transformed
from a MAP to a FLATMAP



PIG parses and optimizes a sequence of commands before it executes them
It’s smart enough to turn GROUP ... FOREACH... SUM ... into a map-reduce

LOAD ‘hdfs-path’AS (schema)

— schemas can include int, double, bag, map, tuple, ...
FOREACH alias GENERATE ... AS ..., ...

— transforms each row of a relation
DESCRIBE alias/ILLUSTRATE alias -- debugging
GROUP alias BY ...
FOREACH alias GENERATE group, SUM(....)

— GROUP/GENERATE ... aggregate op together act like a map-
reduce

JOIN rBY field, sBY field, ...

— Inner join to produce rows: r::fl, r::f2, ... s::fl, s::f2, ...
CROSS 1, s, ...

— use with care unless all but one of the relations are singleton
User defined functions as operators

— also for loading, aggregates, ...



= load '/tmp/bible+shakes.nopunc’;

filter B by word matches '\w+';
= group C by word;
= foreach D generat COUNT(C) as count, group as word;

R0 0 W
1

= order E by count sC:

store F into '/tmp/wc';

= foreach A generate flatten(TOKENIZE( (chararray)$0)) as word;

Example: the optimizer
will compress these steps
into one map-reduce
operation




ANOTHER EXAMPLE:
COMPUTING TFIDF IN PIG LATIN



Abstract Implementation: [TF]IDF

1/2

data - RaAaive (Aa~id +Avian) vidhAava +Avian ic A vitAavAd ARRKAAVA 1 I’I\fllw\lent With id docid

opers L ML S prorra P

* DIST found (eH23found)(dH34;found);... 2456
. GRC ep dl23 found

aardvark {eH23;aardvarlk);... 7 d123 aardvark
docFreq = DISTINCT data

| GROUP BY A (docid,term):term REDUCING TO ([ I TS

doclds = MAP DATA BY= 1 (docid,term):docid | DISTINCT 12451
numDocs = GROUP doclds BY A docid:] REDUCING TO count /* (I,numDocs) */

dataPlusDF =

JOIN data BY A (docid, term):term, docFreq BY A (term, df):term
| MAP A ((docid,term),(term,df)):(docld,term,df) /* (docld,term,document-freq) */

unnormalizedDocVecs = JOIN dataPlusDF by A row:l, numDocs by A row:|
| MAP A ((docld,term,df),(dummy,numDocs)): (docld,term,log(numDocs/df))
/* (docld, term, weight-before-normalizing) : u */



Abstract Implementation: TFIDF

2/2

normalizers =
GROUP unnormalizedDocVecs BY A (docld,term,w):docid

RETAINING A (docld,term,w): w?
REDUCING TO sum /* (docid,sum-of-square-weights) */

ey |

d1234 (d1234,found,1.542), (d1234,aardvark,13.23),... 37.234

d3214
29.654
docVec = JOIN unnormalizedDocVecs BY A (docld,term,w):docid,
normalizers BY A (docld,norm):docid

| MAP A ((docld,term,w), (docld,norm)): (docld,term,w/sqrt(norm))
/* (docld, term, weight) */

d1234 found 1.542 dl234 37.234
d1234 aardvark 13.23 dl234 37234 13



DEFINE tf idf(in_relation, id field, text field) RETURNS out relation {
token_records = foreach $in_relation generate $id field, FLATTEN(TOKENIZE(S$text field)) as tokens;

group outputs record with “group” as field name

doc_word totals = foreach (group token records by ($id field, tokens)) generate
FLATTEN(group) as ($id field, token),

COUNT_STAR(token_records) as doc_total; | (docjd,token) =» (docid,token,tf(token in doc))

9 /* Calculate the document size */
10 pre term counts = foreach (group doc word totals by $id field) generate

1
2
3
4 /* Calculate the term count per document */
5
6
7
8

11 group AS $id field,

12 FLATTEN (doc_word_totals.(token, doc_total)) as (token, doc_total),

13 SUM(doc_word totals.doc total) as doc_size;

14 . 0
e (docid,token,tf) =» (docid,token,tf,length(doc))

16 term freqs = foreach pre_ term counts generate $id field as $id field,

17 token as token,
18 ((double)doc _total / (double)doc size) AS term freq; .
19 (docid,token,tf,n)=>(...,tf/n)

20 /* Get count of documents using each token, for idf */
21 token usages = foreach (group term freqgs by token) generate

22 FLATTEN(term_fregs) as ($id_field, token, term freq),
23 COUNT STAR(term freqgs) as num docs with token; (docid,token,tf,n,tf/n)-)(. . ’df)
24

25 /* Get document count */

26 just_ids = foreach $in _relation generate $id field;
27 ndocs = foreach (group just_ ids all) generate COUNT STAR(just_ids) as total docs;
28

29 /* Note the use of Pig Scalars to calculate idf */
30 $out relation = foreach token usages {

ndocs.total docs

31 idf = LOG( (double)ndocs.total docs/(double)num docs with token);

32 tf _idf = (double)term freqg * idf;

33 generate $id_field as $id_field, relation-to-scalar casting

34 token as score,

35 h f idf lue:ch ; . g .

T (docid,token,tf,n,tf/n)=» (docid,token,tf/n * id)
4 4

37};



Debugging/visualization

DESCRIBE fgPhrases;
2014-04-01 16:43:06,631 [main] WARN org.apache.pig.PigServer - Encountere
2014 04 01 16:43:06, 631 [maln] WARN org apache plg PigServer - Encounterec

grunt> ILLUSTRATE nghrases, o

| fgPhrasesl | Xy:bytearray | ciint |
| | patachon mon | 1 |
| fgPhrases | xy:tuple(x:bytearray,y:bytearray) | c:int |

| | (patachon, mon) | 1 |







DEFINE tokenize_docs “ruby tokenize_documents.rb --id_field=0 --text_field=1 --map" SHIP('t¥ikenize_documents.rb');

raw_documents
tokenized

LOAD '$DOCS' AS (doc_id:chararray, text:chararray);
STREAM raw documents THROUGH tokenize docs AS (doc id:chararray, token:chararray);

TF-IDF in PIG - another version

DEFINE tokenize_docs ~ruby tokenize_documents.rb --id_field=@ --text_field=1 --map~ SHIP('%ikenize_documents.rb');

raw_documents

LOAD '$DOCS' AS (doc_id:chararray, text:chararray);
tokenized

STREAM raw_documents THROUGH tokenize_docs AS (doc_id:chararray, token:chararray);

doc_tokens
doc_token_counts

GROUP tokenized BY (doc_id, token);
FOREACH doc_tokens GENERATE FLATTEN(group) AS (doc_id, token), COUNT(tokenized) AS num_doc_tok_usages;

doc_usage_bag
doc_usage_bag_fg

GROUP doc_token_counts BY doc_id;
FOREACH doc_usage_bag GENERATE

group AS doc_id,
FLATTEN(doc_token_counts. (token, num_doc_tok_usages)) AS (token, num_doc_tok_usages),
SUM(doc_token_counts.num_doc_tok_usages) AS doc_size

.
3

term_freqs = FOREACH doc_usage_bag_fg GENERATE
doc_id AS doc_id,
token AS token,
((double)num_doc_tok_usages / (double)doc_size) AS term_freq;

3

term_usage_bag
token_usages

GROUP term_freqs BY token;

FOREACH term_usage_bag GENERATE
FLATTEN(term_freqs) AS (doc_id, token, term_freq),
COUNT(term_freqs) AS num_docs_with_token

3

tfidf_all = FOREACH token_usages {

idf = LOG((double)$NDOCS/(double)num_docs_with_token);
tf_idf = (double)term_freq*idf;
GENERATE

doc_id AS doc_id,
token AS token,
tf_idf AS tf_idf

};
STORE tfidf all INTO '$OUT';



GUINEA PIG



GuineaPig: PIG in Python

* Pure Python (< 1500 lines)
* Streams Python data structures
— strings, numbers, tuples (a,b), lists [a,b,c]
— No records: operations defined functionally
* Compiles to Hadoop streaming pipeline
— Optimizes sequences of MAPs
* Runs locally without Hadoop
— compiles to stream-and-sort pipeline
— intermediate results can be viewed
* (Can easily run parts of a pipeline
* http://curtis.ml.cmu.edu/w/courses/index.php/Guinea_Pig




GuineaPig: PIG in Python

Pure Python, streams Python data structures

— not too much new to learn (eg field /record notation, special
string operations, UDFs, ...)

— codebase is small and readable

Compiles to Hadoop or stream-and-sort, can easily run parts of a
pipeline
— intermediate results often are (and always can be) stored and
inspected
— plan is fairly visible
Syntax includes high-level operations but also fairly detailed
description of an optimized map-reduce step

— Flatten | Group(by=..., retaining=..., reducingTo=...)

20



A wordcount example

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

3 # always start like this
. from guineapig import *
i import sys

# supporting rou T T
i def tokens(line)
: for tok in 1

yiela to ReduceTo(int,by=lambda accum,val:accum+l)

3 #always subclass

wc = ReadLines('corpus.txt') | Flatten(by=tokens) | Group(by=lambda x:x, reduci h=ReduceToCount())

3 # always end like this
i if name == "_ main_ ":
‘ WordCount().main(sys.argv)

...................................................

class WordCount(Planner):
lines = ReadLines( 'corpus.txt')
words = Flatten(lines,by=tokens)
wordCount = Group(words, by=lambda x:x, reducingTo=ReduceToCount())

...............................................................................................................................................................

class variables

in the planner | wordCount = Group(words,by=<function <lambda> at
are data - | words = Flatten(lines, by=<function tokens at 0
structures | | lines = ReadLines("corpus.txt")

_________________________________________________________________________________________________________________



Wordcount example ....

 Data structure can be converted to a series of
“abstract map-reduce tasks”

map-reduce task 1l: corpus.txt => wordCount
i Dt explanation ——————mmmmmm
- | read corpus.txt with lines
| flatten to words
| group to wordCount
I commands —————————m—m
| python longer-wordcount.py --view=wordCount --do=doGroupMap < corpus.txt | LC_COLLATE=C sort -kl |

python longer-wordcount.py --view=wordCount --do=doGroupMap < corpus.txt \
| LC COLLATE=C sort -k1 \

| python longer-wordcount.py --view=wordCount --do=doStoreRows \
> gpig views/wordCount.gp

22



More examples of GuineaPig

Join syntax, macros, Format command

class WordCmp(Planner):

def wcPipe(fileName):
return ReadLines(fileName) | Flatten(by=tokens) | Group(by=lambda x:x, reducingTo

wcl = wcPipe( 'bluecorpus.txt’')
wc2 = wcPipe('redcorpus.txt')

Join( Jin(wcl, by=lambda(word,n):word), Jin(wc2, by=lambda(word,n):word) ) \
| ReplaceEach(by=lambda((wordl,nl), (word2,n2)):(wordl, score(nl,n2)))

cmp

result = Format(cmp, by=lambda(word,blueScore):'%6.4f %s' % (blueScore,word))

Incremental debugging, when intermediate views are stored:
% python wrdcmp.py —store result

% python wrdcmp.py —store result —reuse cmp .



More examples of GuineaPig

Full Syntax for Group

Group(wc, by=lambda (word,count):word[:k],
retaining=lambda (word,count):count,
reducingTo=ReduceToSum())

equiv to:
Group(wc, by=lambda (word,count):word[:k],
reducing To=

ReduceTo(int,
lambda accum,(word,count)): accum+count))

24



ANOTHER EXAMPLE:
COMPUTING TFIDF IN GUINEA PIG

25



Actual Implementation

D = GPig.getArgvParams()

idDoc = ReadLines(D.get('corpus','idcorpus.txt')) | Map(by=lambda line:line.strip().split("\t"))
idWords = Map(idDoc, by=lambda (docid,doc): (docid,doc.lower().split()))

data = FlatMap(idWords, by=lambda (docid,words): map(lambda w:(docid,w),words))

#compute document frequency
docFreq = Distinct(data) \
| Group(by=lambda (docid,term):term, retaining=lambda(docid,term):docid, reducingTo=ReduceToCount())

docIds = Map(data, by=lambda (docid,term):docid) | Distinct()
ndoc = Group(docIds, by=lambda row: 'ndoc', reducingTo=ReduceToCount())

#unweighted document vectors

udocvecl = Join( Jin(data,by=lambda(docid,term):term), Jin(docFreq,by=lambda(term,df):term) )
udocvec2 = Map(udocvecl, by=lambda((docid,terml), (term2,df)):(docid,terml,df))
udocvec3 = Augment(udocvec2, sideview=ndoc, loadedBy=lambda v:GPig.onlyRowOf(v))

udocvec = Map(udocvec3, by=lambda((docid,term,df), (dummy,ndoc)):(docid,term,math.log(ndoc/df)))

norm = Group( udocvec, by=lambda(docid,term,weight):docid,
retaining=lambda(docid, term,weight) :weight*weight,
reducingTo=ReduceToSum() )

docvec = Join( Jin(norm,by=lambda(docid,z):docid), Jin(udocvec,by=lambda(docid,term,weight):docid) ) \
| Map( by=lambda((docidl,z), (docid2,term,weight)): (docidl,term,weight/math.sqrt(z)) )

26



Actual Implementation

D = GPig.getArgvParams()

idDoc = ReadLines(D.get('corpus', 'idcorpus.txt')) | Map(by=lambda line:]
idWords = Map(idDoc, by=lambda (docid,doc): (docid,doc.lower().split()))
data = FlatMap(idWords, by=lambda (docid,words): map(lambda w:(docid,w),

dl23 found
dl23 aardvark

27



Actual Implementation

D = GPig.getArgvParams()

idDoc = ReadLines(D.get('corpus', 'idcorpus.txt')) | Map(by=lambda line:1
idWords = Map(idDoc, by=lambda (docid,doc): (docid,doc.lower().split()))
data = FlatMap(idWords, by=lambda (docid,words): map(lambda w:(docid,w),

dl23 found
dl23 aardvark

docFreq = Distinct(data) \
| Group(by=lambda (docid,term):term, retaining=lambda(docid,term):docid,

, reducingTo=ReduceToCount()

key value
found ; 5 ; s... 2456
aardvark {eH23;aardvark),... 7

28



Actual Implementation

udocvecl = Join( Jin(data,by=lambda(docid,term):term), Jin(docFreq,by=1lambda(term,df):term) )
udocvec2 = Map(udocvecl, by=lambda((docid,terml), (term2,df)):(docid,terml,df))
udocvec3 = Augment(udocvec2, sideview=ndoc, loadedBy=lambda v:GPig.onlyRowOf(v))

udocvec = Map(udocvec3, by=lambda((docid,term,df), (dummy,ndoc)):(docid,term,math.log(ndoc/df))

Augment: loads a preloaded object b at mapper initialization time,
cycles thru the input, and generates pairs (a,b)

29



lrom guineapig import *
t compute TFIDF in Guineapig

mport sys
mport math

lass TFIDF(Planner):

D = GPig.getArgvParams()

idDoc = ReadLines(D.get('corpus','idcorpus.txt')) | Map(by=lambda line:line.strip().split("\t"))
idWords = Map(idDoc, by=lambda (docid,doc): (docid,doc.lower().split()))

data = FlatMap(idWords, by=lambda (docid,words): map(lambda w:(docid,w),words))

#compute document frequency
docFreq = Distinct(data) \
| Group(by=lambda (docid,term):term, retaining=lambda(docid,term):docid, reducingTo=ReduceToCount (

docIds = Map(data, by=lambda (docid,term):docid) | Distinct()
ndoc = Group(docIds, by=lambda row: 'ndoc', reducingTo=ReduceToCount())

#unweighted document vectors

udocvecl = Join( Jin(data,by=lambda(docid,term):term), Jin(docFreq,by=lambda(term,df):term) )
udocvec2 = Map(udocvecl, by=lambda((docid,terml), (term2,df)):(docid,terml,df))
udocvec3 = Augment(udocvec2, sideview=ndoc, loadedBy=lambda v:GPig.onlyRowOf(v))

udocvec = Map(udocvec3, by=lambda((docid,term,df), (dummy,ndoc)):(docid,term,math.log(ndoc/df)))

norm = Group( udocvec, by=lambda(docid,term,weight):docid,
retaining=1lambda(docid, term,weight) :weightxweight,
reducingTo=ReduceToSum() )

docvec = Join( Jin(norm,by=lambda(docid, z):docid), Jin(udocvec,by=1lambda(docid,term,weight):docid) ) \
| Map( by=lambda((docidl,z),(docid2,term,weight)): (docidl,term,weight/math.sqrt(z)) )

t always end like this

f __name__ == "__main__":
p = TFIDF()
p.main(sys.argv)



Outline: Soft Joins with TFIDF

 Why similarity joins are important
* Useful similarity metrics for sets and strings
* Fast methods for K-NN and similarity joins
— Blocking
—Indexing
—Short-cut algorithms
—Parallel implementation

31



In the once upon a time days of the First Age of Magic, the prudent
sorcerer regarded his own true name as his most valued possession but T
also the greatest threat to his continued good health, for--the stories go-- ’
once an enemy, even a weak unskilled enemy, learned the sorcerer's
true name, then routine and widely known spells could destroy or
enslave even the most powerful. As times passed, and we graduated to
the Age of Reason and thence to the first and second industrial
revolutions, such notions were discredited. Now it seems that the Wheel
has turned full circle (even if there never really was a First Age) and we
are back to worrying about true names again:

The first hint Mr. Slippery had that his own True Name might be known--
and, for that matter, known to the Great Enemy--came with the
appearance of two black Lincolns humming up the long dirt driveway ...
Roger Pollack was in his garden weeding, had been there nearly the
whole morning.... Four heavy-set men and a hard-looking female piled
out, started purposefully across his well-tended cabbage patch....

This had been, of course, Roger Pollack's great fear. They had
discovered Mr. Slippery's True Name and it was Roger Andrew Pollack
TIN/SSAN 0959-34-2861.

32



SOFT JOINS WITH TFIDF:
WHY AND WHAT

33



Motivation

* Integrating data is important

 Data from different sources
may not have consistent
object identifiers

— Especially automatically-
constructed ones

 But databases will have
human-readable names for
the objects

* But names are tricky....

KB

Site? Site3

World Wide Web

34



~N

4 )
Humongous Humongous
Entertainment
\. J
4 )
Headbone Headbone
Interactive
\_ J
4 )
The Lion King: Lion King
Storybook Animated
\ StoryBook )
(
Disney’s Activity  The Lion King
Center, The Activity Center
\ Lion King

iMicrosoft Microsoft Kids |
; Microsoft /Scholastic!
s American Kestrel )
Kestrel Eurasian Kestrel
\, J
e p
Canada Goose  Goose,

Aleutian Canada
- J
e A
Mallard Mallard, Mariana
. y

J

35



Sim Joins on Product Descriptions

* Similarity can be high for descriptions of distinct items:

-—
)’ \

o AERO TGX-Series Work Table -42" X\96",|\/Iodel 1TGX14296 AII tables shipped KD
AEROSPEC- 1TGX Tables are Aerospbe{De&gned In éddltLOn to above
specifications; - All four sides have a V countertop edge & s

AV

o AERO TGX-Series Work Table -42" x‘48“,1\/lodel 1TGX-4248 AII tables shipped KD
AEROSPEC- 1TGX Tables are Aerospec Designed. In aﬁdltlcm to above

specifications; - All four sides have a V countertop ..

. Similarity can be low for descriptions of identical items:

______
~~~~~

———————

o Canon‘AngIe Finder, 9\2882A002'F|Im Camera Angle Finders Right Angle
Finder C (Incl'udes ED-C & ED-D Adapters for All SLR Cameras) Film Camera
Angle Finders & Magnifiers Thig-Angle Finder C lefs you adjust

o CANON 2882A002'ANGLE FINDERC FOR EOS REBEL® SERIES
PROVIDES AFULL SCREENTMAGE SHOWS EXPOSURE DATA BUILT-IN
DIOPTRIC ADJUSTMENT COMPATIBLE WITH THE CANON® REBEL, EOS
& REBEL EOS SERIES.

36



One solution: Soft (Similarity) joins

* A similarity join of two sets A and B is

—an ordered list of triples (s;,a;b;) such that

ij’
* 3, is from A
* b;is from B
* 5;1s the similarity of a; and b,

* the triples are in descending order

* the list is either the top K triples by s;; or ALL
triples with s;;>L ... or sometimes some
approximation of these....

37



Softjoin Example - 1

FROM top500.hiTech SELECT * WHERE top500.name~hiTech.name

top500:

Abbott Laboratories

Able Telcom Holding Corp.
Access Health, Inc.

Acclaim Entertainment, Inc.
Ace Hardware Corporation
ACS Communications, Inc.
ACT Manufacturing, Inc.
Active Voice Corporation
Adams Media Corporation

Adolph Coors Company

hiTech:

ACC CORP

ADC TELECOMMUNICATION INC
ADELPHIA COMMUNICATIONS CORP
ADT LTD

ADTRAN INC

AIRTOUCH COMMUNICATIONS
AMATI COMMUNICATIONS CORP
AMERITECH CORP

APERTUS TECHNOLOGIES INC
APPLIED DIGITAL ACCESS INC
APPLIED INNOVATION INC

A useful scalable similarity metric: IDF weighting plus cosine distance!




e Input: query

How well does TFIDF work?

e Output: ordered list of documents

1 vooay by

2 v, oa bo Precision at K: G /K
3 X a3 b3 Recall at K: Gk /G
4 v oay by

5 v oas by

6 v ag bg

7 X ar b~

8 v oas bs (G: # good pairings
9 v ag bg G . # good pairings in first K
10 = a0 bio

11 X ail b11

12/ a2 b2

39



-
O

1
0.9
0.8

0.7 |

LI

Table VI. Pairs of Names from the Hoovers and lontech Relatidns

Texas Instruments Incorporated

TEXAS INSTRUMENTS INC

The New York Times Company

NEW YORK TIMES CO

Campo Electronics, Appliances
and Computers, Inc.

CAMPO ELECTRONICS
APPLIANCES

Cascade Communications Corp.

CASCADE COMMUNICATION

The McGraw-Hill Companies, Inc.

MCGRAW-HILL CO

U S WEST Communications Group

U S WEST INC

Silicon Valley Group, Inc.

SILICON VALLEY RESEARCH INC

The Reynolds and Reynolds Company

REYNOLDS & REYNOLDS CO

JX XIS S

InTime Systems International, Inc.

INTIME SYSTEMS INTERNATIONAL 1

40




Table V. Average Precision for Similarity Joins
Domain Relations Joined Average Precision
Movies MovieLink/Review 100.0%
Animals IntFact1/SWFact 100.0%

IntFact2/FWSFact 99.6%

IntFact3/NMFSFact 97.1%

Endanger /ParkAnim 95.2%

Birds IntBirdPicl/DonBirdPic 100.0%
IntBirdPic2/MBRBirdPic 99.1%
IntBirdMap/BirdMap 91.4%

BirdCall/BirdList 95.8%

Businesses Fodor/Zagrat 99.5%
HooverWeb/Iontech 84.9%

National Parks IntPark/Park 95.7%
Computer Games Demo/AgeList 86.1%

There are refinements to TFIDF distance — eg ones that extend with
soft matching at the token level (e.g., soft TFIDF)

41




Lgate Fossil Beds NM
Big Bend NP

Gateway NRZ

Gulf Island NS

Rainkow Bridges NM
Whiskey-Shasta-Trinity NRA
Capital Reef NP

Timpanogas Caves NM

War in Pacific NHP

Chesapeake and Ohio Canal NHP
Saguaro NM

LZniakchak NM
NP of American Samoa

Pu'uohonua O Honaunau NHP
Bering Land Bridge N. Preserve
Yukon-Charley Rivers N. Presexrve

Wolf Trap Farm Park
Fredericksburg & Spotsylwvania NMP

Great Smoky Mountains NP
Mount Rushmore N. Mem.

distance is '[JaroWinklerxTFIDF:threshold=0.9]"
Pairs: 6806 Correct: 250
Matching time: 0.278
- 1 1.00 | Agate Fossil Beds NM |
+ 2 1.00 | Big Bend NP |
+ 194 1.00 | Gateway NRZ |
+ 195 0.99 | Gulf Islands NS |
+ 1396 0.99 | Rainbow Bridge NM |
+ 197 0.98 | Whiskeytown Shasta Trinity NR& |
+ 198 0.97 | Capitol Reef NP |
+ 199 0.95 | Timpanogos Cave NM |
+ 200 0.94 | War in the Pacific NHP |
+ 201 0.94 | Chesapeake & Ohio Canal NHP |
+ 203 0.92 | Saguaro NP |
+ 210 0.88 | Aniakchak NM & NPRES ]
+ 211 0.86 | National Park Of Zmerican Samoa|
+ 224 0.76 | Pu'uhonua a Honaunau NHP |
+ 225 0.75 | Bexring Land Bridge NPRES |
+ 228 0.75 | Yukon Charley Riwvers NPRES |
+ 241 0.692 | Wolf Trap Farm Park for the Performing Arts
l
+ 242 0.89 | Frederickskburg and Spotsylvania County Battlefields Memorial NMP
l
+ 243 0.69 | Great Smoky Mtn. NP |
+ 245 0.67 | Mount Rushmore NM |
+ 248 0.87 | Chattahoochee NSR |

Chattahoochee River NRL

42



= mnataertnat ] ot et o

William W. Cohen 7 Edit

Carnegie Mellon University

machine learning, information integration, information extraction,
intelligent tutoring, natural language processing

Verified email at cs.cmu.edu - Homepage
My profile is public

Change photo

Titte < Add — More  1-20 Citedby  Year

Fast Effective Rule Induction
WW Cohen 3367 1995
Proceedings of the Twelfth International Conference on Machine Learning ...

A comparison of string metrics for matching names and

records 1488 2003
W Cohen, P Ravikumar, S Fienberg

Kdd workshop on data cleaning and object consolidation 3, 73-78

Recommendation as classification: Using social and content-

based information in recommendation 1064 1998
C Basu, H Hirsh, W Cohen
AAALI/IAAL 714-720 /3



SOFT JOINS WITH TFIDF:
HOW?

44



Rocchio’s algorithm

DF (w) = #different docs w occurs 1n
TF(w,d) = #different times w occurs in doc d
|IDI
DF(w)
u(w,d)=1log(TF(w,d)+1)log(IDF(w))

IDF(w) =

Many variants
of these
formulae

...as long as
u(w,d)=0 for
words not in d!

_ Store only non-zeros in
u(d) = <u(w1’d)"”"u(w|‘/|’d)> u(d), so size is O(|d| )

u-a—r P HD_ g L §

1C |

y deC,

la(d)ll, " |ID-C,I

y ' d'€D-C,

u(d")
la(d" i,

ll(d) . u(y) But size of u(y) is O(|n,| )

f(d)=argmax lu(d)ll, lla(y)ll,

ol = [ Xu

i

45




TFIDF similarity

DF (w) = # different docs w occurs 1n

TF (w,d) = # different times w occurs in doc d
|D |
DF(w)
u(w,d) =log(TF(w,d)+1)-log(IDF(w))
u(d)= <u(wl,d), ..... u(leI,d)>
u(d)
la(d)ll,

sim(v(d,),v(d,))=v(d,) v(d,) = E

IDF(w) =

v(d) =

uw,d,) u(w,d,)
la(d) I, lla(d,) I,

46



Soft TFIDF joins

* A similarity join of two sets of TFIDF-weighted
vectors A and B is

—an ordered list of triples (s;,a;b;) such that
* 3, is from A
* b, is from B
* 5;1s the dot product of a; and b,

* the triples are in descending order

* the list is either the top K triples by s;; or ALL
triples with s;>L ... or sometimes some
approximation of these....



PARALLEL SOFT JOINS

48



Efficient Parallel Set-Similarity Joins Using MapReduce

Rares Vernica Michael J. Carey Chen Li
Department of Computer Department of Computer Department of Computer
Science Science Science
University of California, Irvine  University of California, Irvine  University of California, Irvine
rares@ics.uci.edu mjcarey@ics.uci.edu chenli@ics.uci.edu

SIGMOD 2010

49



TFIDF similarity: variant for joins

DF(A,w) = # different docs w occurs 1n from A
DF(B,w) = # different docs w occurs in from B
TF(w,d) = # different times w occurs 1n doc d
IC, |
DF(C,,w)
u(w,d)=1log(TF(w,d)+1)log(IDF(w,d))

u(d) = <u(w1,d), ..... u(w,V|,d)>
u(d)
llua(d)ll,

sim(v(d,),v(d,))=v(d,) v(d,)= E

IDF(w,d) =

, where C, €{A,B}

v(d) =

uw,d,) u(w,d,)
la(d) Il la(d,) I,

50



Parallel Inverted Index Softjoin - 1

#compute document frequency

docFreq = Group(data, by=lambda(rel,docid,term):(rel,term), reducingTo=ReduceTolountl)1) \
ReplaceEach(by=lambda((rel,term),df):(rel, term,df)) .
| Rep Y want this to

#find total number of docs per relation
ndoc = ReplaceEach(data, by=lambda(rel,docid,term):(rel,docid)) \ \A/C)r1(>ft)r'|()l1§;
| Distinct() | Group(by=lambda(rel,docid):rel, reducingTo=ReduceToCoun documents or

#unweighted document vectors
udocvec = Join( Jin(data,by=lambda(rel,docid,term):(rel,term)), ShOl’t ones.. ‘and
Jin(docFreq,by=1lambda(rel, term,df):(rel,term)) ) \ kee the
ReplaceEach(by=lambda((rel,doc,term), (rel_,term_,df)):(rel,doc, term,df) F)
JoinTo( Jin(ndoc,by=lambda(rel, relCount):rel), by=lambda(rel,doc,term,d

I
| L] L]
| ReplaceEach(by=1lambda((rel,doc,term,df), (rel_,relCount)):(rel,doc,term, relatlons Slmple
| ReplaceEach(by=lambda(rel,doc,term,df,relCount):(rel,doc,term,termWeight(relCount,df)))

#normalizers
sumSquareWeights = ReduceTo(float, lambda accum, (rel,doc,term,weight): accum+weightxweight)
norm = Group( udocvec,
by=lambda(rel,doc,term,weight): (rel,doc),
retaining = lambda (rel,doc,term,weight): weight,
reducingTo=ReduceToSum() ) \
| ReplaceEach( by=lambda((rel,doc),z):(rel,doc,z))

#normalized document vector
docvec = Join( Jin(norm,by=lambda(rel,doc,z):(rel,doc)),
Jin(udocvec, by=1lambda(rel,doc,term,weight):(rel,doc)) ) \
| ReplaceEach( by=lambda((rel,doc,z),(rel_,doc_,term,weight)): (rel,doc,term,weight/math.sqrt(z)) )

Statistics for computing TFIDF with IDFs local to each relation’




Parallel Inverted Index Softjoin - 2

# naive algorithm: use all pairs for finding matches
rellDocs = Filter(docvec, by=lambda(rel,doc,term,weight):rel== )
rel2Docs = Filter(docvec, by=lambda(rel,doc,term,weight):rel== )
softjoin = Join( Jin(rellDocs,by=lambda(rel,doc,term,weight):term),
Jin(rel2Docs,by=1lambda(rel,doc,term,weight):term)) \
| ReplaceEach(by=1lambda((rell,docl,term,weightl), (rel2,doc2,term2,weight2)): (docl,doc2,weightlxweight2)) \
| Group(by=lambda(docl,doc2,p):(docl,doc2), \
retaining=1lambda(docl,doc2,p):p, \
reducingTo=ReduceToSum()) \
| ReplaceEach(by=1lambda((docl,doc2),sim):(docl,doc2,sim))

simpairs = Filter(softjoin, by=lambda(docl,doc,sim):sim>0.75)

What's the algorithm?
* Step 1: create document vectors as (C, d, term, weight)
tuples
» Step 2: join the tuples from A and B: one sort and reduce
* Gives you tuples (a, b, term, w(a,term)*w(b,term))
» Step 3: group the common terms by (a,b) and reduce to

aggregate the components of the sum -



class TFIDF(Planner):

An alternative TFIDF pipeline

def loadDictView(view):
result = {}
for (key,val) in GPig.rowsOf(view):
result[key] = val
return result

D = GPig.getArgvParams()
data = ReadLines(D.get('corpus’', 'idcorpus.txt')) \
| Map(by=lambda line:line.strip().split("\t")) \
| Map(by=lambda (docid,doc): (docid,doc.lower().split())) \
| FlatMap(by=lambda (docid,words): map(lambda w:(docid,w),words))

#compute document frequency and inverse doc freq
docFreq = Distinct(data) \
| Group(by=lambda (docid,term):term, retaining=lambda(docid,term):docid, reducingTo=ReduceToCount())

ndoc = Map(data, by=lambda (docid,term):docid) \
| Distinct() \
| Group(by=lambda row: 'ndoc', reducingTo=ReduceToCount())

inverseDocFreq = Augment(docFreq, sideview=ndoc, loadedBy=lambda v:GPig.onlyRowOf(v)) \
| Map(by=lambda((term,df), (dummy,ndoc)): (term,math.log(ndoc/df)))

#compute unweighted document vectors
udocvec = Augment(data, sideview=inverseDocFreq, loadedBy=1loadDictView) \
| Map(by=lambda ((docid,term),idfDict):(docid,term,idfDict[term]))

#normalize

norm = Group( udocvec, by=lambda(docid,term,weight):docid,
retaining=1lambda(docid, term,weight) :weight*weight,
reducingTo=ReduceToSum() )

docvec = Augment(udocvec, sideview=norm, loadedBy=1loadDictView) \ 53
| Map( by=lambda ((docid,term,weight),normDict): (docid,term,weight/math.sqrt(normDict[docid])))



Inverted Index Softjoin - PIG 1/3

-- invoke as: pig --param input=id-park --param rel=icepark ... phirl.pig
%$default output sim

%sdefault rel a

%$default def_par 10

SET default_parallel $def_par;

-- load and tokenize the data as data:{rel,id,str,term}

raw = LOAD 'phirl/$input' AS (rel,docid, keyid,str);
data = FOREACH raw GENERATE rel,docid, FLATTEN(TOKENIZE(LOWER(str))) AS term;

-— compute relation-dependent document frequencies as docfreq:{rel,term,df:int}
docfreq =

FOREACH (GROUP data by (rel,term))

GENERATE group.rel AS rel, group.term as term, COUNT(data) as df;

-— find the total number of documents in each relation as ndoc:{rel,c:long}

ndocl = DISTINCT(FOREACH data GENERATE rel,docid);
ndoc = FOREACH (GROUP ndocl by rel) GENERATE group AS rel, COUNT(ndocl) AS c;

54



Inverted Index Softjoin - 2/3

-— find the un-normalized document vectors as udocvec:{rel.docid,term,weight}
udocvecl = JOIN data BY (rel,term), docfreq BY (rel,term);
udocvec? JOIN udocvecl BY data::rel, ndoc BY rel;
udocvec =
FOREACH udocvec?2
GENERATE data::rel, data::docid, data::term,
LOG(2.0)*L0G(ndoc::c/(double)docfreq::df) AS weight;

-— find the square of the normalizer for each document: norm:{rel,docid,z2:double}

norml = FOREACH udocvec GENERATE rel,docid,term,weightxweight as w2;
norm =

FOREACH (GROUP norml BY (rel,docid))

GENERATE group.rel AS rel, group.docid AS docid, SUM(norml.w2) AS z2;

-— compute the TFIDF weighted document vectors as: docvec:{rel,docid,term,weight:double}
docvec =
FOREACH (JOIN udocvec BY (rel,docid), norm BY (rel,docid))
GENERATE data::rel AS rel, data::docid AS docid, data::term AS term,
weight/SQRT(z2) as weight;

55



Inverted Index Softjoin - 3/3

-— naive algorithm: use all terms for finding potentil matches

docsA = FILTER docvec BY rel=='$rel';
docsB = FILTER docvec BY rel!='$rel’;
softjoinl = JOIN docsA BY term, docsB BY term;
softjoin2

FOREACH softjoinl

GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weightxdocsB::weight AS p;
softjoin =

FOREACH (GROUP softjoin2 BY (idA,idB))

GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;

-— diagnostic output: look: {sim, [01],idA,idB,strl,str2}

lookl = JOIN topSimPairs BY idA, raw BY docid;
look2 = JOIN lookl BY idB, raw BY docid;
look =

FOREACH look2
GENERATE sim, (lookl::raw::keyid==raw::keyid ? 1 : @),
ddA,idB, lookl::raw::str AS strl,raw::str AS str2;

STORE look INTO 'phirl/$output’'; 56



QOO0 oG

.99436717611623
.9937688379278058
.9920648281782544
.9914077975044103
.9881961852455996
.9878514547862078
.9422676645498852
.92307133361005
.8914304226443976
.890829830425262
.8873463623037525
.8838421147370781
.8838421147370781
.8700042867436217
.8684330615122184
.8680495192463105
.8660286476353838
.8593112749780314
.8500226387429363
.8424859579540737
.8398407018438242
.8395526626941698
.8390553468895996
.8344604123961857
.8313853772986841
.8301435671019225
.82492593280652
.8202902347497227
.8202902347497227
.7965479702996782
.7835432589199314
.7835432589199314

RRRPRRPRRPRRPRRPRORRPRRPRPRPRPRPRPRPRPRRPRRPRRPRORRLPREPRERERERERERE R

dovess
dee354
d00286
deo274
d00ee9
dee154
dee376
dee323
d00292
d00200
dee283
d0e342
deeoll
d00026
dee157
dee339
d00267
d00210
d00208
d00222
dee187
d00230
doe349
d00259
dee353
deee71
doeo19
d0e212
d0009s8
doeo13
doee31
d00028

Results.....

dov436
dee61l
dees73
d00566
dee399
doe500
dee623
dees594
dees77
dees532
dees7e
d00606
dee401
dee413
dee643
doe6e3
dees61
does538
doe536
do0646
dees23
does548
doo610
dee559
dee61l
dee444
dee4e7
doo644
doo464
d0e402
dee417
dee41s

Carl Sandburg Home NHS Carl Sandburg Home NHS

Theodore Roosevelt NP Theodore Roosevelt NP

Oregon Caves NM Oregon Caves NM

New River Gorge NR New River Gorge NR

American Memorial Park American Memorial Park

George Washington Memorial Parkway George Washington Me
War in the Pacific NHP War in Pacific NHP

Saguaro NP Saguaro NM
Pea Ridge NHS Pea Ridge NMP
Jean Lafitte NHP & NPRES

Obed Wild and Scenic River
Sitka NHS Sitka NHP
Andersonville NHS Andersonville NHP

Bering Land Bridge NPRES Bering Land Bridge N. Preser
Glacier Bay NP & NPRES Glacier Bay NP & Preserve
Sequoia and Kings Canyon NP Sequoia & Kings Canyon NP
National Park Of American Samoa NP of American Samoa
Kalaupapa NHP  Kalaupapa NHS

Johnstown Flood NM Johnstown Flood N. Mem.

Lake Clark NP & NPRES Lake Clark NP & Preserve

Homestead National Monument of America Homestead NM of Amer
Lincoln Boyhood NM Lincoln Boyhood N. Mem.

Sunset Crater NM Sunset Crater Volcano NM

Mount Rushmore NM Mount Rushmore N. Mem.

Theodore Roosevelt Island Theodore Roosevelt NP
Chesapeake & Ohio Canal NHP Chesapeake and Ohio Canal NH
Arkansas Post NM Arkansas Post N. Mem.

Katmai NP & NPRES Katmai NP & Preserve

Denali NP & NPRES Denali NP & Preserve

Aniakchak NM & NPRES Aniakchak NM

Big Thicket NPRES Big Thicket N. Preserve

Big Cypress NPRES Big Cypress N. Preserve 57

Jean Lafitte NHP & Preserve
Obed Wild & Scenic River



raw = LOAD 'phirl/$input' AS (rel,docid,keyid,str);
data = FOREACH raw GENERATE rel,docid, FLATTEN(TOKENIZE(LOWER(str))) AS term;

—-- compute relation-dependent document frequencies as docfreq:{rel,term,df:int}
docfreq =

FOREACH (GROUP data by (rel,term))

GENERATE group.rel AS rel, group.term as term, COUNT(data) as df;

-— find the total number of documents in each relation as ndoc:{rel,c:long}

ndocl = DISTINCT(FOREACH data GENERATE rel,docid);
ndoc = FOREACH (GROUP ndocl by rel) GENERATE group AS rel, COUNT(ndocl) AS c;

-— find the un-normalized document vectors as udocvec:{rel.docid,term,weight}

udocvecl = JOIN data BY (rel,term), docfreq BY (rel,term);
udocvec2 = JOIN udocvecl BY data::rel, ndoc BY rel;
udocvec =

FOREACH udocvec?2
GENERATE data::rel, data::docid, data::term,
L0OG(2.0)*L0G(ndoc::c/(double)docfreq::df) AS weight;

-— find the square of the normalizer for each document: norm:{rel,docid,z2:double}

norml = FOREACH udocvec GENERATE rel,docid,term,weightxweight as w2;
norm =

FOREACH (GROUP norml BY (rel,docid))

GENERATE group.rel AS rel, group.docid AS docid, SUM(norml.w2) AS z2;

-— compute the TFIDF weighted document vectors as: docvec:{rel,docid,term,weight:double}
docvec =
I FOREACH (JOIN udocvec BY (rel,docid), norm BY (rel,docid))
GENERATE data::rel AS rel, data::docid AS docid, data::term AS term,
weight/SQRT(z2) as weight;

fs —rmr phirl/docvec
STORE docvec INTO 'phirl/docvec';

-- naive algorithm: use all terms for finding potentil matches

docsA = FILTER docvec BY rel=='$rel’;
docsB = FILTER docvec BY rel!='$rel’;
softjoinl = JOIN docsA BY term, docsB BY term;
softjoin2 =
FOREACH softjoinl
GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weightxdocsB::weight AS p;
softjoin =
FOREACH (GROUP softjoin2 BY (idA,idB))
GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;

58



Making the algorithm smarter....



Inverted Index Softjoin - 2

-— naive algorithm: use all terms for finding potentil matches

docsA = FILTER docvec BY rel=='$rel';
docsB = FILTER docvec BY rel!='$rel’;
softjoinl = JOIN docsA BY term, docsB BY term;
softjoin2 =
FOREACH softjoinl
GENERATE docsA::docid AS idA, docsB::docid AS idB, docsA::weightxdocsB::weight AS p;
softjoin =
FOREACH (GROUP softjoin2 BY (idA,idB))
GENERATE group.idA, group.idB, SUM(softjoin2.p) AS sim;

we should make a smart choice about which terms to use

60



Adding heuristics to the soft join - 1

-— compute maximum weight for rel2docs as: maxweight2:{term,weight}

maxweightB =
FOREACH (GROUP docsB BY (rel,term))
GENERATE group.term AS term, MAX(docsB.weight) AS weight;

-— augment the docvecs for rell with maxweight2 and docfreq information to get
-- augdocsA: {rel,docid,term, w,df,maxw,score}

docfreqB = FILTER docfreq BY rel!='$rel';
augdocsAl = JOIN docsA BY term, docfreqB BY term, maxweightB BY term;
augdocsA =
FOREACH augdocsAl
GENERATE docsA::rel, docsA::docid, docsA::term, docsA::weight AS w,
docfregB::df AS df, maxweightB::weight AS maxw,
docsA: :weightxmaxweightB: :weight AS score;

—-— filter out useful terms to join on, using the infollin augdocsA.
-— the heuristics used here are:

--— (1) only use top K by maxscore w/in each document;

-—— (2) filter by df<=maxDF

—-—— (3) filter by score>=minscore

usefulTermsl =
FOREACH (GROUP augdocsA BY (rel,docid))
GENERATE group, TOP($top_k,6,augdocsA) AS top;
usefulTerms2 =
FOREACH usefulTermsl {
filteredTop = FILTER top BY (df<=$max_df) AND score>$min_sim;
topTerms = FOREACH filteredTop GENERATE term;
GENERATE flatten(topTerms);
b
usefulTerms = DISTINCT usefulTerms2;

61



Adding heuristics to the soft join - 2

-— use the restricted sets of terms to get candidate pairs

pairsl = JOIN usefulTerms BY term, docsA BY term, docsB BY term;

pairs2 = FOREACH pairsl GENERATE docsA::docid AS idA, docsB::docid AS idB;
pairs = DISTINCT pairs2;

—— STORE pairs INTO 'phirl/pairs';

softjoinl = JOIN pairs BY idA, docsA by docid;
softjoin2 = JOIN softjoinl BY (idB,term), docsB by (docid,term);
softjoin3 =

FOREACH softjoin2

GENERATE idA, idB, docsA::term AS term, docsA::weightxdocsB::weight AS p;
softjoin =

FOREACH (GROUP softjoin3 BY (idA, idB))

GENERATE group.idA, group.idB, SUM(softjoin3.p) AS sim;

62



FILTER docvec BY rel=='$rel';
FILTER docvec BY rel!='$rel';

docsA
docsB

—-— compute maximum weight for rel2docs as: maxweight2:{term,weight}

maxweightB =
FOREACH (GROUP docsB BY (rel,term))
GENERATE group.term AS term, MAX(docsB.weight) AS weight;

-— augment the docvecs for rell with maxweight2 and docfreq information to get
—-- augdocsA: {rel,docid,term, w,df,maxw,score}

docfreqB = FILTER docfreq BY rel!='$rel';
augdocsAl = JOIN docsA BY term, docfreqB BY term, maxweightB BY term;
augdocsA =
FOREACH augdocsAl
GENERATE docsA::rel, docsA::docid, docsA::term, docsA::weight AS w,
docfreqB::df AS df, maxweightB::weight AS maxw,
docsA: :weight*maxweightB::weight AS score;

usefulTermsl =
FOREACH (GROUP augdocsA BY (rel,docid))
GENERATE group, TOP($top_k,6,augdocsA) AS top;
usefulTerms2 =
FOREACH usefulTermsl {
filteredTop = FILTER top BY (df<=$max_df) AND score>$min_sim;
topTerms = FOREACH filteredTop GENERATE term;
GENERATE flatten(topTerms);
}
usefulTerms = DISTINCT usefulTerms2;

pairsl JOIN usefulTerms BY term, docsA BY term, docsB BY term;

pairs2 FOREACH pairsl GENERATE docsA::docid AS idA, docsB::docid AS idB;
pairs = DISTINCT pairs2;

—— STORE pairs INTO 'phirl/pairs';

softjoinl = JOIN pairs BY idA, docsA by docid;
softjoin2 = JOIN softjoinl BY (idB,term), docsB by (docid,term);
softjoin3 =

FOREACH softjoin2

GENERATE idA, idB, docsA::term AS term, docsA::weightxdocsB::weight AS p;
softjoin =

FOREACH (GROUP softjoin3 BY (idA,idB))

GENERATE group.idA, group.idB, SUM(softjoin3.p) AS sim;

63



