
Topic models for corpora and for graphs



Network Datasets
• UBMCBlog 
• AGBlog 
• MSPBlog 
• Cora 
• Citeseer 
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Motivation

•  Social graphs seem to have 
–  some aspects of randomness

•  small diameter, giant connected components,..
–  some structure

•  homophily, scale-free degree dist?

•  How do you model it?



More terms

•  “Stochastic block model”, aka “Block-
stochastic matrix”:
– Draw ni nodes in block i
– With probability pij, connect pairs (u,v) where u 

is in block i, v is in block j
–  Special, simple case: pii=qi, and pij=s for all i≠j

•  Question: can you Lit this model to a graph?
–  Lind each pij and latent nodeàblock mapping



Not? football 



Not? books 



Outline

•  Stochastic block models & inference question
•  Review of text models

–  Mixture of multinomials & EM
–  LDA and Gibbs (or variational EM)

•  Block models and inference
•  Mixed-membership block models
•  Multinomial block models and inference w/ Gibbs



Review – supervised Naïve Bayes
•  Naïve Bayes Model: Compact representation
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Review – supervised Naïve Bayes

•  Multinomial Naïve Bayes
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•  For each document d = 1,!, M 

•  Generate Cd ~ Mult(   | π) 

•  For each position n = 1,!, Nd 

•  Generate wn ~ Mult( |β,Cd)    



Review – supervised Naïve Bayes

•  Multinomial naïve Bayes: Learning
– Maximize the log-likelihood of observed 

variables w.r.t. the parameters:

•  Convex function: global optimum
•  Solution: 



Review – unsupervised Naïve Bayes

•  Mixture model: unsupervised naïve Bayes 
model
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•  Joint probability of words and classes: 

•  But classes are not visible: Z 



LDA



Review - LDA

•  Motivation
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Assumptions: 1) documents are i.i.d 2) within 
a document, words are i.i.d. (bag of words) 

• For each document d = 1,!,M 

•  Generate θd ~ D1(…) 

•  For each word  n = 1,!, Nd 

• generate wn ~ D2(   | θdn
) 

Now pick your favorite distributions for D1, D2 



•  Latent Dirichlet Allocation
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α	 •  For each document d = 1,!,M 

•  Generate θd ~ Dir(  | α) 

•  For each position n = 1,!, Nd 

•  generate zn ~ Mult(   | θd) 

•  generate wn ~ Mult(   | βzn
) 

“Mixed membership” 
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•  vs Naïve Bayes…
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•  LDA’s view of a document



•  LDA topics



Review - LDA

•  Latent Dirichlet Allocation
– Parameter learning:

• Variational EM
–  Numerical approximation using lower-bounds
–  Results in biased solutions
–  Convergence has numerical guarantees

• Gibbs Sampling 
–  Stochastic simulation
–  unbiased solutions
–  Stochastic convergence



Review - LDA

•  Gibbs sampling
–  Applicable when joint distribution is hard to evaluate but 

conditional distribution is known
–  Sequence of samples comprises a Markov Chain
–  Stationary distribution of the chain is the joint distribution

Key capability: estimate 
distribution of one latent 
variables given the 
other latent variables 
and observed variables. 



Why does Gibbs sampling work?

•  What’s the Lixed point?
–  Stationary distribution of the chain is the joint 

distribution
•  When will it converge (in the limit)?

– Graph deLined by the chain is connected
•  How long will it take to converge?

– Depends on second eigenvector of that graph





Called “collapsed Gibbs sampling” since 
you’ve marginalized away some variables  

Fr: Parameter estimation for text analysis - Gregor Heinrich 



Review - LDA

•  Latent Dirichlet Allocation
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α	 •  Randomly initialize each zm,n 

•  Repeat for t=1,…. 

•  For each doc m, word n 

•  Find Pr(zmn=k|other z’s) 

•  Sample zmn according to that distr. 

“Mixed membership” 



Outline

•  Stochastic block models & inference question
•  Review of text models

–  Mixture of multinomials & EM
–  LDA and Gibbs (or variational EM)

•  Block models and inference
•  Mixed-membership block models
•  Multinomial block models and inference w/ Gibbs
•  Beastiary of other probabilistic graph models

–  Latent-space models, exchangeable graphs, p1, ERGM



Review - LDA

•  Motivation
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Assumptions: 1) documents are i.i.d 2) within 
a document, words are i.i.d. (bag of words) 

• For each document d = 1,!,M 

•  Generate θd ~ D1(…) 

•  For each word  n = 1,!, Nd 

• generate wn ~ D2(   | θdn
) 

Docs and words are exchangeable. 



Stochastic Block models: �
assume 1) nodes w/in a block z and �
2) edges between blocks zp,zq are exchangeable 
 

zp zq 

apq 

N2 

zp	

N 

α	

p	

β	



Not? football 



Not? books 



Another mixed membership block model



Another mixed membership block model
z=(zi,zj) is a pair of block ids 

nz = #pairs z 

qz1,i = #links to i from block z1 

qz1,. = #outlinks in block z1 

δ	=	indicator	for	diagonal	

M	=	#nodes	



Experiments 

Balasubramanyan, Lin, Cohen, NIPS w/s 2010 



Review - LDA
•  Latent Dirichlet Allocation with Gibbs
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•  Randomly initialize each zm,n 

•  Repeat for t=1,…. 

•  For each doc m, word n 

•  Find Pr(zmn=k|other z’s) 

•  Sample zmn according to that distr. 



Way way more detail 



More detail 







What gets learned….. 



In A Math-ier Notation 

N[*,k] N[d,k] 

M[w,k] N[*,*]=V 



for each document d and word position j in d 
•  z[d,j] = k,  a random topic 
•  N[d,k]++ 
•  W[w,k]++ where w = id of j-th word in d 



for each document d and word position j in d 
•  z[d,j] = k,  a new random topic 
•  update N, W to reflect the new assignment of z: 

•  N[d,k]++; N[d,k’] - - where k’ is old z[d,j] 
•  W[w,k]++; W[w,k’] - - where w is w[d,j] 

for each pass t=1,2,…. 



p(Zd, j = k | ..)∝Pr(Zd, j = k | "d")*Pr(Wd,k = w | Zd, j = k,...)

=
N[k,d]−Cd, j,k +α

Z
⋅
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z=1 

z=2 

z=3 

… 

… 

unit height random 

1.  You spend a lot of time sampling 
2.  There’s a loop over all topics here 

in the sampler 



JMLR 2009 



Observation 

•  How much does the choice of z depend on the 
other z’s in the same document?
– quite a lot

•  How much does the choice of z depend on the 
other z’s in elsewhere in the corpus?
– maybe not so much
– depends on Pr(w|t) but that changes slowly 

•  Can we parallelize Gibbs and still get good 
results?



Question 

•  Can we parallelize Gibbs sampling?
– formally, no: every choice of z depends on 

all the other z’s
– Gibbs needs to be sequential

•  just like SGD



What if you try and parallelize? 
Split document/term matrix randomly and distribute to p 
processors .. then run “Approximate Distributed LDA” 



What if you try and parallelize? 

D=#docs W=#word(types) K=#topics N=words in corpus 









Update c. 2014 
•  Algorithms:

– Distributed variational EM
– Asynchronous LDA (AS-LDA)
– Approximate Distributed LDA (AD-LDA)
– Ensemble versions of LDA: HLDA, DCM-LDA

•  Implementations:
– GitHub Yahoo_LDA

•  not Hadoop, special-purpose communication code for 
synchronizing the global counts

•  Alex Smola, YahooàCMU
– Mahout LDA

•  Andy Schlaikjer, CMUàTwitter



KDD 09 



z=s+r+q 



z=s+r+q 

•  If U<s: 
•  lookup U on line segment with tic-marks 

at α1β/(βV + n.|1), α2β/(βV + n.|2), …
•  If s<U<r:

•  lookup U  on line segment for r Only need 
to check t 
such that 
nt|d>0 



z=s+r+q 

•  If U<s: 
•  lookup U on line segment with tic-marks 

at α1β/(βV + n.|1), α2β/(βV + n.|2), …
•  If s<U<s+r:

•  lookup U  on line segment for r
•  If s+r<U:

•  lookup U on line segment for q
Only need 
to check t 
such that 
nw|t>0 



z=s+r+q 

Only need 
to check t 
such that 
nw|t>0 

Only need 
to check t 
such that 
nt|d>0 

Only need to check 
occasionally (< 10% 
of the time) 



z=s+r+q 

Need to 
store nw|t 
for each 
word, 
topic pair 
…??? 

Only need 
to store nt|d 
for current d 

Only need to store 
(and maintain) total 
words per topic and 
α’s,β,V 

Trick; count up nt|d for 
d when you start 
working on d  and 
update incrementally 



z=s+r+q 

Need to 
store nw|t 
for each 
word, 
topic pair 
…??? 

1. Precompute, for each t,

Most (>90%) of the 
time and space is 
here… 

2. Quickly Jind t’s such that nw|t is large for w



Need to 
store nw|t 
for each 
word, 
topic pair 
…??? 

1. Precompute, for each t,

Most (>90%) of the 
time and space is 
here… 

2. Quickly Jind t’s such that nw|t is large for w

•  map w to an int array
•  no larger than frequency w
•  no larger than #topics

•  encode (t,n) as a bit vector
•  n in the high-order bits
•  t in the low-order bits

•  keep ints sorted in descending order





Outline 

•  LDA/Gibbs algorithm details
•  How to speed it up by parallelizing
•  How to speed it up by faster sampling

– Why sampling is key
– Some sampling ideas for LDA

• The Mimno/McCallum decomposition 
(SparseLDA)

• Alias tables (Walker 1977; Li, Ahmed, Ravi, 
Smola KDD 2014)



Alias tables 

http://www.keithschwarz.com/darts-dice-coins/ 

Basic problem: how can we sample from a biased coin quickly? 

If the distribution changes slowly maybe we can do some preprocessing and then sample 
multiple times.  Proof of concept: generate r~uniform and use a binary tree 

r in (23/40,7/10]

O(K) 

O(log2K) 



Alias tables 

http://www.keithschwarz.com/darts-dice-coins/ 

Another idea… 

Simulate the dart 
with two drawn 
values:

rx è int(u1*K)
ry è u1*pmax

keep throwing till 
you hit a stripe



Alias tables 

http://www.keithschwarz.com/darts-dice-coins/ 

An even more clever idea: minimize the brown space (where the dart “misses”) by 
sizing the rectangle’s height to the average probability, not the maximum probability, and  
cutting and pasting a bit. 

You can always do this using only two 
colors in each column of the final alias 
table and the dart never misses! 

mathematically speaking… 


