
Topic models for corpora and for graphs

Network Datasets
• UBMCBlog
• AGBlog
• MSPBlog
• Cora
• Citeseer

2

Motivation

•  Social graphs seem to have
–  some aspects of randomness

•  small diameter, giant connected components,..
–  some structure

•  homophily, scale-free degree dist?

•  How do you model it?

More terms

•  “Stochastic block model”, aka “Block-
stochastic matrix”:
– Draw ni nodes in block i
– With probability pij, connect pairs (u,v) where u

is in block i, v is in block j
–  Special, simple case: pii=qi, and pij=s for all i≠j

•  Question: can you Lit this model to a graph?
–  Lind each pij and latent nodeàblock mapping

Not? football

Not? books

Outline

•  Stochastic block models & inference question
•  Review of text models

–  Mixture of multinomials & EM
–  LDA and Gibbs (or variational EM)

•  Block models and inference
•  Mixed-membership block models
•  Multinomial block models and inference w/ Gibbs

Review – supervised Naïve Bayes
•  Naïve Bayes Model: Compact representation

C

W1 W2 W3 ….. WN

C

W

N

π	

M

M

π	

β	

β	

Review – supervised Naïve Bayes

•  Multinomial Naïve Bayes

C

W1 W2 W3 ….. WN

π	

M

β	

•  For each document d = 1,!, M

•  Generate Cd ~ Mult(| π)

•  For each position n = 1,!, Nd

•  Generate wn ~ Mult(|β,Cd)

Review – supervised Naïve Bayes

•  Multinomial naïve Bayes: Learning
– Maximize the log-likelihood of observed

variables w.r.t. the parameters:

•  Convex function: global optimum
•  Solution:

Review – unsupervised Naïve Bayes

•  Mixture model: unsupervised naïve Bayes
model

C

W

N
M

π	

β	

•  Joint probability of words and classes:

•  But classes are not visible: Z

LDA

Review - LDA

•  Motivation

w

M

θ

N

Assumptions: 1) documents are i.i.d 2) within
a document, words are i.i.d. (bag of words)

• For each document d = 1,!,M

•  Generate θd ~ D1(…)

•  For each word n = 1,!, Nd

• generate wn ~ D2(| θdn
)

Now pick your favorite distributions for D1, D2

•  Latent Dirichlet Allocation

z

w

β	

M

θ

N

α	 •  For each document d = 1,!,M

•  Generate θd ~ Dir(| α)

•  For each position n = 1,!, Nd

•  generate zn ~ Mult(| θd)

•  generate wn ~ Mult(| βzn
)

“Mixed membership”
kk

jj
k nn

n
nnnjz

αα

α
α

+++

+
==

...
),...,,|Pr(

11
,21

K

•  vs Naïve Bayes…

z

w

β	

M

θ

N

α	

K

•  LDA’s view of a document

•  LDA topics

Review - LDA

•  Latent Dirichlet Allocation
– Parameter learning:

• Variational EM
–  Numerical approximation using lower-bounds
–  Results in biased solutions
–  Convergence has numerical guarantees

• Gibbs Sampling
–  Stochastic simulation
–  unbiased solutions
–  Stochastic convergence

Review - LDA

•  Gibbs sampling
–  Applicable when joint distribution is hard to evaluate but

conditional distribution is known
–  Sequence of samples comprises a Markov Chain
–  Stationary distribution of the chain is the joint distribution

Key capability: estimate
distribution of one latent
variables given the
other latent variables
and observed variables.

Why does Gibbs sampling work?

•  What’s the Lixed point?
–  Stationary distribution of the chain is the joint

distribution
•  When will it converge (in the limit)?

– Graph deLined by the chain is connected
•  How long will it take to converge?

– Depends on second eigenvector of that graph

Called “collapsed Gibbs sampling” since
you’ve marginalized away some variables

Fr: Parameter estimation for text analysis - Gregor Heinrich

Review - LDA

•  Latent Dirichlet Allocation

z

w

β	

M

θ

N

α	 •  Randomly initialize each zm,n

•  Repeat for t=1,….

•  For each doc m, word n

•  Find Pr(zmn=k|other z’s)

•  Sample zmn according to that distr.

“Mixed membership”

Outline

•  Stochastic block models & inference question
•  Review of text models

–  Mixture of multinomials & EM
–  LDA and Gibbs (or variational EM)

•  Block models and inference
•  Mixed-membership block models
•  Multinomial block models and inference w/ Gibbs
•  Beastiary of other probabilistic graph models

–  Latent-space models, exchangeable graphs, p1, ERGM

Review - LDA

•  Motivation

w

M

θ

N

Assumptions: 1) documents are i.i.d 2) within
a document, words are i.i.d. (bag of words)

• For each document d = 1,!,M

•  Generate θd ~ D1(…)

•  For each word n = 1,!, Nd

• generate wn ~ D2(| θdn
)

Docs and words are exchangeable.

Stochastic Block models: �
assume 1) nodes w/in a block z and �
2) edges between blocks zp,zq are exchangeable

zp zq

apq

N2

zp	

N

α	

p	

β	

Not? football

Not? books

Another mixed membership block model

Another mixed membership block model
z=(zi,zj) is a pair of block ids

nz = #pairs z

qz1,i = #links to i from block z1

qz1,. = #outlinks in block z1

δ	=	indicator	for	diagonal	

M	=	#nodes	

Experiments

Balasubramanyan, Lin, Cohen, NIPS w/s 2010

Review - LDA
•  Latent Dirichlet Allocation with Gibbs

z

w

β	

M

θ

N

α	
•  Randomly initialize each zm,n

•  Repeat for t=1,….

•  For each doc m, word n

•  Find Pr(zmn=k|other z’s)

•  Sample zmn according to that distr.

Way way more detail

More detail

What gets learned…..

In A Math-ier Notation

N[*,k] N[d,k]

M[w,k] N[*,*]=V

for each document d and word position j in d
•  z[d,j] = k, a random topic
•  N[d,k]++
•  W[w,k]++ where w = id of j-th word in d

for each document d and word position j in d
•  z[d,j] = k, a new random topic
•  update N, W to reflect the new assignment of z:

•  N[d,k]++; N[d,k’] - - where k’ is old z[d,j]
•  W[w,k]++; W[w,k’] - - where w is w[d,j]

for each pass t=1,2,….

p(Zd, j = k | ..)∝Pr(Zd, j = k | "d")*Pr(Wd,k = w | Zd, j = k,...)

=
N[k,d]−Cd, j,k +α

Z
⋅

W[w,k]−Cd, j,k +β

(W[*,k]−Cd, j,k)+βN[*,*]

Cd, j,k =
1 Zd, j = k

0 else

!
"
#

$#

z=1

z=2

z=3

…

…

unit height random

1.  You spend a lot of time sampling
2.  There’s a loop over all topics here

in the sampler

JMLR 2009

Observation

•  How much does the choice of z depend on the
other z’s in the same document?
– quite a lot

•  How much does the choice of z depend on the
other z’s in elsewhere in the corpus?
– maybe not so much
– depends on Pr(w|t) but that changes slowly

•  Can we parallelize Gibbs and still get good
results?

Question

•  Can we parallelize Gibbs sampling?
– formally, no: every choice of z depends on

all the other z’s
– Gibbs needs to be sequential

•  just like SGD

What if you try and parallelize?
Split document/term matrix randomly and distribute to p
processors .. then run “Approximate Distributed LDA”

What if you try and parallelize?

D=#docs W=#word(types) K=#topics N=words in corpus

Update c. 2014
•  Algorithms:

– Distributed variational EM
– Asynchronous LDA (AS-LDA)
– Approximate Distributed LDA (AD-LDA)
– Ensemble versions of LDA: HLDA, DCM-LDA

•  Implementations:
– GitHub Yahoo_LDA

•  not Hadoop, special-purpose communication code for
synchronizing the global counts

•  Alex Smola, YahooàCMU
– Mahout LDA

•  Andy Schlaikjer, CMUàTwitter

KDD 09

z=s+r+q

z=s+r+q

•  If U<s:
•  lookup U on line segment with tic-marks

at α1β/(βV + n.|1), α2β/(βV + n.|2), …
•  If s<U<r:

•  lookup U on line segment for r Only need
to check t
such that
nt|d>0

z=s+r+q

•  If U<s:
•  lookup U on line segment with tic-marks

at α1β/(βV + n.|1), α2β/(βV + n.|2), …
•  If s<U<s+r:

•  lookup U on line segment for r
•  If s+r<U:

•  lookup U on line segment for q
Only need
to check t
such that
nw|t>0

z=s+r+q

Only need
to check t
such that
nw|t>0

Only need
to check t
such that
nt|d>0

Only need to check
occasionally (< 10%
of the time)

z=s+r+q

Need to
store nw|t
for each
word,
topic pair
…???

Only need
to store nt|d
for current d

Only need to store
(and maintain) total
words per topic and
α’s,β,V

Trick; count up nt|d for
d when you start
working on d and
update incrementally

z=s+r+q

Need to
store nw|t
for each
word,
topic pair
…???

1. Precompute, for each t,

Most (>90%) of the
time and space is
here…

2. Quickly Jind t’s such that nw|t is large for w

Need to
store nw|t
for each
word,
topic pair
…???

1. Precompute, for each t,

Most (>90%) of the
time and space is
here…

2. Quickly Jind t’s such that nw|t is large for w

•  map w to an int array
•  no larger than frequency w
•  no larger than #topics

•  encode (t,n) as a bit vector
•  n in the high-order bits
•  t in the low-order bits

•  keep ints sorted in descending order

Outline

•  LDA/Gibbs algorithm details
•  How to speed it up by parallelizing
•  How to speed it up by faster sampling

– Why sampling is key
– Some sampling ideas for LDA

• The Mimno/McCallum decomposition
(SparseLDA)

• Alias tables (Walker 1977; Li, Ahmed, Ravi,
Smola KDD 2014)

Alias tables

http://www.keithschwarz.com/darts-dice-coins/

Basic problem: how can we sample from a biased coin quickly?

If the distribution changes slowly maybe we can do some preprocessing and then sample
multiple times. Proof of concept: generate r~uniform and use a binary tree

r in (23/40,7/10]

O(K)

O(log2K)

Alias tables

http://www.keithschwarz.com/darts-dice-coins/

Another idea…

Simulate the dart
with two drawn
values:

rx è int(u1*K)
ry è u1*pmax

keep throwing till
you hit a stripe

Alias tables

http://www.keithschwarz.com/darts-dice-coins/

An even more clever idea: minimize the brown space (where the dart “misses”) by
sizing the rectangle’s height to the average probability, not the maximum probability, and
cutting and pasting a bit.

You can always do this using only two
colors in each column of the final alias
table and the dart never misses!

mathematically speaking…

