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Review – Graph Algorithms so far…. 

•  PageRank and how to scale it up
•  Personalized PageRank/Random Walk with 

Restart and
– how to implement it
– how to use it for extracting part of a graph

•  Other uses for graphs?
– not so much
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We might come back to this more 

You can also look at the March 19 
lecture from the spring 2015 
version of this class. 
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Main topics today 

•  Scalable semi-supervised learning on graphs
– SSL with RWR
– SSL with coEM/wvRN/HF

•  Scalable unsupervised learning on graphs
– Power iteration clustering
– …
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Semi-supervised learning 
•  A pool of labeled examples L
•  A (usually larger) pool of unlabeled examples U
•  Can you improve accuracy somehow using U?
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Semi-Supervised Bootstrapped 
Learning/Self-training 
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Semi-Supervised Bootstrapped 
Learning via Label Propagation 
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Semi-Supervised Bootstrapped 
Learning via Label Propagation 

Paris 
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Nodes “near” seeds Nodes “far from” seeds 

Information from 
other categories 
tells you “how 
far” (when to stop 
propagating) 
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traits such as arg1 

denial 
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ASONAM-2010 (Advances in Social 
Networks Analysis and Mining) 
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Network Datasets with Known Classes 

• UBMCBlog 
• AGBlog 
• MSPBlog 
• Cora 
• Citeseer 
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RWR - fixpoint of: 

Seed selection 
1.  order by PageRank, degree, or randomly 
2.  go down list until you have at least k examples/class 
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Results – Blog data 

Random Degree PageRank 

We’ll discuss 
this soon…. 
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Results – More blog data 

Random Degree PageRank 
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Results – Citation data 

Random Degree PageRank 
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Seeding – MultiRankWalk 
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Seeding – HF/wvRN 
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What is HF aka coEM aka wvRN? 
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CoEM/HF/wvRN 
•  One deOinition [MacKassey & Provost, JMLR 2007]:… 

Another definition: A harmonic field – the score of each node 
in the graph is the harmonic (linearly weighted) average of its 
neighbors’ scores; 
 
[X. Zhu, Z. Ghahramani, and J. Lafferty, ICML 2003] 17 



CoEM/wvRN/HF 
•  Another 

justiOication of 
the same 
algorithm….

•  … start with 
co-training 
with a naïve 
Bayes learner
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CoEM/wvRN/HF 
•  One algorithm with 

several 
justiOications….

•  One is to start with 
co-training with a 
naïve Bayes learner

•  And compare to an EM 
version of naïve Bayes
– E: soft-classify unlabeled 

examples with NB 
classiOier 

– M: re-train classiOier 
with soft-labeled 
examples
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CoEM/wvRN/HF 
•  A second experiment

– each + example: concatenate features from two 
documents, one of class A+, one of class B+

– each - example: concatenate features from two 
documents, one of class A-, one of class B-

–  features are preOixed with “A”, “B” è disjoint
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CoEM/wvRN/HF 
•  A second experiment

–  each + example: 
concatenate 
features from two 
documents, one of 
class A+, one of 
class B+

–  each - example: 
concatenate 
features from two 
documents, one of 
class A-, one of class 
B-

–  features are 
preOixed with “A”, 
“B” è disjoint

•  NOW co-training 
outperforms EM
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CoEM/wvRN/HF 

•  Co-training with 
a naïve Bayes 
learner 

•   vs an EM version of naïve Bayes
–  E: soft-classify unlabeled examples with 

NB classiOier 
–  M: re-train classiOier with soft-labeled 

examples



incremental hard assignments 

iterative soft assignments 
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Co-Training Rote Learner 
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Co-EM Rote Learner: equivalent to HF 
on a bipartite graph 
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What is HF aka coEM aka wvRN? 

Algorithmically: 
 
•  HF propagates weights and then resets the seeds to their initial value 
•  MRW propagates weights and does not reset seeds 
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MultiRank Walk vs HF/wvRN/CoEM 

Seeds are marked S 

MRW HF 
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Back to Experiments: Network Datasets with 
Known Classes 

• UBMCBlog 
• AGBlog 
• MSPBlog 
• Cora 
• Citeseer 
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MultiRankWalk vs wvRN/HF/CoEM 
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How well does MWR work? 

29 



Parameter Sensitivity 
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Semi-supervised learning 
•  A pool of labeled examples L
•  A (usually larger) pool of unlabeled examples U
•  Can you improve accuracy somehow using U?

•  These methods are different from EM
– optimizes Pr(Data|Model)

•  How do SSL learning methods (like label 
propagation) relate to optimization?
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SSL as optimization 
slides from Partha Talukdar 
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yet another name for HF/wvRN/coEM 
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match seeds smoothness 
prior 
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How to do this minimization? 
First, differentiate to find min is at  
 
 
Jacobi method: 
•  To solve Ax=b for x 
•  Iterate: 

•  … or: 
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precision-
recall break 
even point 

/HF/… 

42 



/HF/… 
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/HF/… 
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from mining 
patterns like 
“musicians such 
as Bob Dylan” 

from HTML 
tables on the 
web that are 

used for data, 
not formatting 
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More recent work (AIStats 2014) 
•  Propagating labels requires usually small number 

of optimization passes
– Basically like label propagation passes

•  Each is linear in 
– the number of edges 
– and the number of labels being propagated

•  Can you do better?
– basic idea: store labels in a countmin sketch
– which is basically an compact approximation of 

an objectàdouble mapping
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Flashback: CM Sketch Structure 

n  Each string is mapped to one bucket per row 
n  Estimate A[j] by taking mink { CM[k,hk(j)] } 
n  Errors are always over-estimates 
n  Sizes: d=log 1/δ, w=2/ε è error is usually less than ε||A||1 

+c 

+c 

+c 

+c 

h1(s) 

hd(s) 

<s, +c> 

d=log 1/δ	

w = 2/ε	

from: Minos Garofalakis 
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More recent work (AIStats 2014) 
•  Propagating labels requires usually small number of 

optimization passes
– Basically like label propagation passes

•  Each is linear in 
–  the number of edges 
– and the number of labels being propagated
–  the sketch size
–  sketches can be combined linearly without 

“unpacking” them: sketch(av + bw) = a*sketch(v)
+b*sketch(w)

–  sketchs are good at storing skewed distributions
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More recent work (AIStats 2014) 

•  Label distributions are 
often very skewed
– sparse initial labels
– community structure: 

labels from other 
subcommunities have 
small weight 
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More recent work (AIStats 2014) 

Freebase Flick-10k 

“self-injection”: similarity computation 
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More recent work (AIStats 2014) 

Freebase 
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More recent work (AIStats 2014) 

100 Gb available 
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