Efficient Logistic Regression
with Stochastic Gradient
Descent
William Cohen

SGD FOR LOGISTIC REGRESSION

SGD for Logistic regression

Start with Rocchio-like j} _ Sign(X ‘W)
linear classifier:

Replace sign(...) with y=0(X"W)=p
something differentiable: i
— Also scale from 0-1 not o(s)= —
Ato +1 lye” 0

Decide to optimize: 1cr(y1w,x)=- logo(w-x) y=1

logl-o(w-:x)) y=0

Differentiate.... = log (U (w-x) (I-o(w- X))l_y)

. o B | logp if y =1
s P =yl =) = { log(1—p) ifty=0

p=0(X"W)

Magically, when we differentiate, we end up with
something very simple and elegant.....

0

—L(wly,x)=(y-p)x
0w

0

ow

- L(w1y,x)=(y-p)x’
The update for gradient descent with rate A is just:

witth = w1 \(y — p)x

An observation: sparsity!

9 _log P(Y = y|X = x,w) = (y — p)a’
ow’

Key computational point:

* if ¥=0then the gradient of W is zero

* so when processing an example you
only need to update weights for the
non-zero features of an example.

SGD for logistic regression
 The algorithm: wi D = wl) L \(y — p)x

1. Initialize a hashtable W

2. Fort=1,...,T
e For each example x;., v;: - do this in random order
— Compute the prediction for x;:

1
1+ exp(— 22750 zlwi)

Pi

— For each non-zero feature of x; with index 5 and value 7:
x If j is not in W, set W[j] = 0.
x Set W[j] = Wj] + My — pi)a?

3. Output the hash table WW.

Adding regularization

* Replace LCL

‘ o B) logp ify=1
logP(Y =yl X =x,w) = { log(1—p) ify=0
« with LCL + penalty for d o
large weights, eg LCL — p Z(w])
J=1
* So: O .
log P(Y = y|X =x,w) = (y — p)2’
ow’
* becomes:
O LI . .
D log P(Y = y|X =x,w) —p > _(v')* = (y — p)a’ — 2pu’
w _

J=1

Regularized logistic regression

* Replace LCL
log ify=1
logP(Y:y|X:x,w):{ lgi‘(pl—p) ;f’Z:O
« with LCL + penalty for large d o
weights, eg LCL — p Z(w])

7=1

* So the update for wj becomes:

w! =w + MN(y —p)a? — 2pw?)

w! = w! + Ny — p)a? — \2uw’

Naively this is not a sparse update

* Algorithm: w! = w! + XNy — p)a? — N2uw?

T Ti from O(nT) to O(mVT
1. Initialize a hashtable W I3 el AL N AT,

where
* n = number of non-zero entries,
2. Fort=1,...,T * m = number of examples

* V = number of features
e For each example x;, y;: * T = number of passes over data

— Compute the prediction for x;:

1
1+ exp(— 22750 zlwi)

Pi

— For each non-ze10 feature of x; with index j and value 27:
x If 7 is not in W, set W[j] = 0.

« Set Wil = Wil + Ny — p)a? — AN2pw?
3. Output the hash table W.

Sparse regularized logistic regression

* Final algorithm: w! = w! + Ay — p)r? — A2puw?
e Initialize hashtables W, A and set k=0
¢ FOI‘ eaCh iteration t=1,T * k=*“clock” reading
* AJj] = clock reading last
— For eaCh example (Xpy,-) time feature j was
“active”
* p.= ...; k++ » we implement the
» For each non-zero feature W/jj | “eightdecay” update
using a “lazy” strategy:
_ 1] k— _ k-Afj] weights are decayed in
W[]] (1 /12’”) one shot when a feature
— W[]]= W[]] + /'{(}/I _pI)Xj is “active

—Alj] =k

Sparse regularized logistic regression

(v2)

e [Initialize hashtables W, A and set k=0
 For each iteration t=1,...T

— For each example (x,,y,)

e k++ * k ="“clock” reading
* For each non-zero feature W[j] ° ﬁ‘[’] ; C't°Ck reading last
, e ime feature j was
* D= ... * we implement the
) “weight decay” update
* For each non-zero feature WJj/ using 2 “lazy” strategy:
— W[]] — W[]] 4+ }{(v, - pl) X] weights are decayed in
—A[] — k one shot when a feature
I = is “active”
* Finally:

— Before you write out each WJj] do **

Summary

 What’s happened here:

— Our update involves a sparse partand a dense part
* Sparse: empirical loss on this example
* Dense: regularization loss — not affected by the example

— We remove the dense part of the update

* Old example update:
— for each feature { do something example-independent}
— For each active feature { do something example-dependent}

* New example update:
— For each active feature :
» {simulate the prior example-independent updates}
» {do something example-dependent}

Summary

 We can separate the LCL update and weight
decay updates but remember:

—we need to apply “weight decay” to just the
active features in an example x;before we
compute the prediction p,

—we need to apply “weight decay” to all
features before we save the classifier

—my suggestion:
* an abstraction for a logistic regression classifier

A possible SGD implementation

class SGDLogistic Regression {
/** Predict using current weights **/
double predict(Map features);
/** Apply weight decay to a single feature and record when in A[[**/
void regularize(string feature, int currentK);
/** Regularize all features then save to disk **/
void save(string fileName,int currentK);
/** Load a saved classifier **/
static SGDClassifier load(String fileName);
/** Train on one example **/
void train1(Map features, double trueLabel, int k) {
// regularize each feature
// predict and apply update

}
}

// main ‘train’ program assumes a stream of randomly-ordered examples and
outputs classifier to disk; main ‘test’ program prints predictions for each
test case in input.

A possible SGD implementation

class SGDLogistic Regression {

}

// main ‘train’ program assumes a stream of randomly-ordered
examples and outputs classifier to disk; main ‘test’ program prints
predictions for each test case in input.

<100 lines (in python)

Other mains:
e A “shuffler:”
— stream thru a training file T times and output instances

— output is randomly ordered, as much as possible, given a buffer
of size B

* Something to collect predictions + true labels and produce error
rates, etc.

A possible SGD implementation

* Parameter settings:
— W[j] *= (1 - A2p)A0
— W= W] + A(y; - p)x;

* [didn't tune especially but used
—u=0.1
— A=n*E* where F'is “epoch”, n=1%5

* epoch: number of times you've iterated over the
dataset, starting at E=1

BOUNDED-MEMORY LOGISTIC
REGRESSION

Outline

* Logistic regression and SGD

— Learning as optimization
— Logistic regression:

* a linear classifier optimizing P(y|x)
—Stochastic gradient descent

* “streaming optimization” for ML problems
—Regularized logistic regression
—Sparse regularized logistic regression

—Memory-saving logistic regression

Question

* In text classification most words are
a. rare
not correlated with any class
given low weights in the LR classifier
. unlikely to affect classification

©C oo o

not very interesting

Question

* In text classification most bigrams are
a. rare
not correlated with any class
given low weights in the LR classifier
. unlikely to affect classification

©C oo o

not very interesting

Question

* Most of the weights in a classifier are
—Iimportant

—not important

21

How can we exploit this?

* Oneidea: combine uncommon words together randomly
 Examples:

— replace all occurrances of “humanitarianism” or “biopsy” with
“humanitarianismOrBiopsy”

— replace all occurrances of “schizoid” or “duchy” with
“schizoidOrDuchy”

— replace all occurrances of “gynecologist” or “constrictor” with
“gynecologistOrConstrictor”

* For Naive Bayes this breaks independence assumptions
— it's not obviously a problem for logistic regression, though
* Icould combine
— two low-weight words (won’t matter much)
— alow-weight and a high-weight word (won’t matter much)
— two high-weight words (not very likely to happen)
* How much of this can I get away with?
— certainly a little

— is it enough to make a difference? how much memory does it save?
22

How can we exploit this?

* Another observation:
— the values in my hash table are weights

— the keys in my hash table are strings for the feature
names

e We need them to avoid collisions

 But maybe we don’t care about collisions?

— Allowing “schizoid” & “duchy” to collide is
equivalent to replacing all occurrences of “schizoid”
or “duchy” with “schizoidOrDuchy”

23

Learning as optimization for
regularized logistic regression

* Algorithm:

Initialize hashtables W, A and set k=0
For each iteration t=1,...T
— For each example (x,y,)
* D= ...; kK++
* For each feature j: x/>0:
» W[j] *= (1 - A2u)<All
» Wil = Wi + A(y; - Px;
»Alj] =k

w! = w? + Ny — p)x? — \N2puw’

24

Learning as optimization for
regularized logistic regression

° Algorlthm 'U,.’j — "l.l,.’j +)\(y — [)).’I_fj — /\2/.L"U,.’j
* Initialize arrays W, A of size Rand set k=0
 For each iteration t=1,...T

— For each example (x,y;)
* Let V be hash table so that V[/] = E x]
*p.=..; k++ jihash(x!)% R=h
* For each hash value h: V/h[>0:
» WIh] *= (1 - A2u)*All
» Wlh]= W[h] + A(y;- p)V[h]
»Alj] =k

25

Learning as optimization for
regularized logistic regression

° Algorlthm ’U)j — ’U/‘j + /\(y — p).’lfj — /\2/1,’U,-‘j
* Initialize arrays W, A of size Rand set k=0
 For each iteration t=1,...T

— For each example (x,y;) |
+ Let Vbe hash tablesothat V[/1] = E x;
q . p.=]_ j jihash(j)%R ==h
1
[_1-1-(:> p_l_l_e—V'W

26

SOME EXPERIMENTS

27

Feature Hashing for Large Scale Multitask Learning

Kilian Weinberger KILIAN @ YAHOO-INC.COM
Anirban Dasgupta ANIRBAN @ YAHOO-INC.COM
John Langford JL@HUNCH.NET
Alex Smola ALEX @SMOLA.ORG
Josh Attenberg JOSH@CIS.POLY.EDU

Yahoo! Research, 2821 Mission College Blvd., Santa Clara, CA 95051 USA

ICML 2009

28

An interesting example

* Spam filtering for Yahoo mail
— Lots of examples and lots of users

— Two options:
* one filter for everyone—but users disagree

* one filter for each user—but some users are lazy
and don’t label anything

— Third option:
* classify (msguser) pairs
* features of message iare words w; ..., w;
* feature of user is his/her id u
* features of pair are: w, ;... w;;;and uew;, ,,..,u°w;;;
* based on an idea by Hal Daumé

29

An example

* E.g., this email to wcohen

Dear Madam/Sir,

My name is Mohammed Azziz an investment Broker with SouthCoast Plc a
company based in London United Kingdom our major activity is in the

area of managing customers funds with targetted interest rates through
provision and acquisition of loans to interested borrowers with the

basic requisite. Our periodic checks on people and Companies located

 features:

— dear, madam, sir,.... investment, broker,..., wcohenedear,
wcohen*madam, wcohen,...,

* idea: the learner will figure out how to personalize
my spam filter by using the wcoheneX features

30

An example

Lo =

b J €T NEU NEU
: Votre Apotheke en | Votre USER123_NEU
Apotheke Votre 0
110 pilu x 100 mg + Ciia USER123_Votre 0
Apotheke -1
raison gratuite USER123_Apotheke 0
itéme de commande sOf 1
= — 0
text document (email) bag of words bag of words hashed,
(personalized) sparse vector
b0 () +du(x)
\ }
|

Compute personalized features and multiple hashes on-the-fly:
a great opportunity to use several processors and speed up i/o

Experiments

e 3.2M emails
e 40M tokens

* 430Kk users
* 16T unique features - after personalization

32

8bytes/weight

< 1.20 1.12
£
§ 1.00
£
2 0.80
Q
2
= 0.60 ' ~#&-global-hashed
g 0.68 0.67 ,
Y =4—personalized
£ 0.40
g =—haseline
(7)]
€ 0.20
£
a 0.00 I [' ; .
(7,]
18 20 22 24 26
2726 entries = | Gb
b bits in hash-table @

Figure 2. The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification threshold was
chosen to keep the not-spam misclassification fixed at 1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion error €4 vanishes. The personal-
ized classifier results in an average improvement of up to 30%.

33

1.4

5

= 1.2

% -0—[0]

e 1 -

o | —#-[1]

¢ 08 “=[2,3]

& . — —[4,7

® 0.6 e [4,7]

s, — ~-[8,15]

g : I ~0-[16,31]

(7,]

g 0.2 ~[32,64]

g 0 T T T T | [64,°°)

@ 18 20 22 24 26 ==haseline
b bits in hash-table

Figure 3. Results for users clustered by training emails. For ex-
ample, the bucket [8, 15] consists of all users with eight to fifteen
training emails. Although users in buckets with large amounts of
training data do benefit more from the personalized classifier (up-
to 65% reduction in spam), even users that did not contribute to
the training corpus at all obtain almost 20% spam-reduction.

34

