
Schedule for near future…. 

Previous 
SGD 
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Midterm 
•  Will cover all the lectures scheduled through today 
•  There are some sample questions up already from 

previous years – syllabus is not very different for first 
half of course. 

•  Problems are mostly going to be harder than the quiz 
questions 

•  Questions often include material from a homework 
–  so make sure you understand a HW if you decided 

to drop it 
•  Closed book and closed internet 
•  You can bring in one sheet  

– 8.5x11 or A4 paper front and back 
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Wrap-up on iterative 
parameter mixing 
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NAACL 2010 
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Recap 



Parallelizing perceptrons – take 2 
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Recap: Iterative Parameter Mixing 
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Recap: Iterative Parameter Mixing 



Parallel Perceptrons – take 2 

Idea: do the simplest possible thing 
iteratively. 
 
•  Split the data into shards 
•  Let w = 0 
•  For n=1,… 

•  Train a perceptron on each 
shard with one pass starting 
with w 
• Average the weight vectors 
(somehow) and let w be that 
average  

Extra communication cost:  
•  redistributing the weight vectors 
•  done less frequently than if fully 
synchronized, more frequently than 
if fully parallelized 
 

All-Reduce 
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Recap: Iterative Parameter Mixing 



ALL-REDUCE 
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Introduction 
•  Common pattern: 

– do some learning in parallel  
–  aggregate local changes from each processor 

•  to shared parameters 
– distribute the new shared parameters  

•  back to each processor 

–  and repeat…. 

•  AllReduce implemented in MPI, also in VW code (John Langford) 
in a Hadoop/compatible scheme 

MAP 

ALLREDUCE 
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Gory details of VW Hadoop-
AllReduce 
•  Spanning-tree server: 

– Separate process constructs a spanning tree of 
the compute nodes in the cluster and then acts 
as a server 

•  Worker nodes (“fake” mappers): 
– Input for worker is locally cached 
– Workers all connect to spanning-tree server 
– Workers all execute the same code, which 

might contain AllReduce calls: 
• Workers synchronize whenever they reach an all-

reduce 
16 



Hadoop AllReduce 

don’t wait for duplicate jobs 
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Second-order method - like Newton’s 
method 
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2 24 features 
 
~=100 non-zeros/
example 
 
2.3B examples 
 
example is user/page/
ad and conjunctions of 
these, positive if there 
was a click-thru on the 
ad 
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50M examples 
 
explicitly constructed kernel è 11.7M features 
 
3,300 nonzeros/example 
 
old method: SVM, 3 days:   reporting time to get to fixed test error 
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Matrix Factorization 
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Recovering latent factors in a 
matrix 
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Recovering latent factors in a 
matrix 
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What is this for? 
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MF for collaborative filtering 
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What is collaborative filtering? 
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What is collaborative filtering? 
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What is collaborative filtering? 
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What is collaborative filtering? 
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Recovering latent factors in a 
matrix 
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Recovering latent factors in a 
matrix 
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MF for image modeling 
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Data: many copies of an image, rotated and shifted (matrix with one image/row) 

Image “prototypes:” a smaller number of row vectors (green=negative)  

Reconstructed images : linear combinations of prototypes 



MF for images
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MF for modeling text 
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•  The Neatest Little Guide to Stock Market Investing 
•  Investing For Dummies, 4th Edition 
•  The Little Book of Common Sense Investing: The Only 

Way to Guarantee Your Fair Share of Stock Market 
Returns 

•  The Little Book of Value Investing 
•  Value Investing: From Graham to Buffett and Beyond 
•  Rich Dad’s Guide to Investing: What the Rich Invest in, 

That the Poor and the Middle Class Do Not! 
•  Investing in Real Estate, 5th Edition 
•  Stock Investing For Dummies 
•  Rich Dad’s Advisors: The ABC’s of Real Estate 

Investing: The Secrets of Finding Hidden Profits Most 
Investors Miss 

https://technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-lsa-tutorial/ 
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https://technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-lsa-tutorial/ 
 

TFIDF counts would be better 
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Recovering latent factors in a 
matrix 

m terms 
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= 
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Investing for 
real estate 

Rich Dad’s 
Advisor’s:  

The ABCs of 
Real Estate 

Investment … 
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The little book 
of common 

sense 
investing: … 

Neatest Little 
Guide to Stock 

Market 
Investing 
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MF is like clustering 
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k-means as MF
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How do you do it? 
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talk pilfered from 
à ….. 

KDD 2011 
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Recovering latent factors in a 
matrix 
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for image denoising 
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Matrix factorization as SGD 

step size why does this work? 
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Matrix factorization as SGD - why 
does this work?  Here’s the key 

claim: 
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Checking the claim 

Think for SGD for logistic regression 
•  LR loss = compare y and ŷ = dot(w,x) 
•  similar but now update w (user weights) and x (movie weight) 
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What loss functions are possible? 

N1, N2 - diagonal 
matrixes, sort of like IDF 

factors for the users/
movies 

“generalized” KL-divergence
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What loss functions are possible? 
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What loss functions are possible? 
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ALS = alternating least 
squares 
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talk pilfered from 
à ….. 

KDD 2011 
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Like McDonnell et al with 
perceptron learning 
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Slow convergence….. 
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More detail…. 

•  Randomly permute rows/cols of matrix 
•  Chop V,W,H into blocks of size d x d 

– m/d blocks in W, n/d blocks in H 
•  Group the data: 

– Pick a set of blocks with no overlapping rows 
or columns (a stratum) 

– Repeat until all blocks in V are covered 
•  Train the SGD 

– Process strata in series 
– Process blocks within a stratum in parallel 
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More detail…. 

Z was V 
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More detail…. 
•  Initialize W,H randomly 

– not at zero J 
•  Choose a random ordering (random sort) of the 

points in a stratum in each “sub-epoch” 
•  Pick strata sequence by permuting rows and columns 

of M, and using M’[k,i] as column index of row i in 
subepoch k  

•  Use “bold driver” to set step size: 
–  increase step size when loss decreases (in an 

epoch) 
– decrease step size when loss increases 

•  Implemented in Hadoop and R/Snowfall 

M= 
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Wall Clock Time 
8 nodes, 64 cores, R/snow 
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Number of Epochs 
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Varying rank 
100 epochs for all  
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Hadoop scalability 

Hadoop process 
setup  time starts 

to dominate 
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Hadoop scalability 
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