
Schedule for near future….

Previous
SGD

1

Midterm
•  Will cover all the lectures scheduled through today
•  There are some sample questions up already from

previous years – syllabus is not very different for first
half of course.

•  Problems are mostly going to be harder than the quiz
questions

•  Questions often include material from a homework
–  so make sure you understand a HW if you decided

to drop it
•  Closed book and closed internet
•  You can bring in one sheet

– 8.5x11 or A4 paper front and back

2

Wrap-up on iterative
parameter mixing

3

NAACL 2010

4

Recap

Parallelizing perceptrons – take 2

Instances/labels

Instances/labels –
1

Instances/labels –
2

Instances/labels –
3

w -1 w- 2 w-3

w

Split into example
subsets

Combine by
some sort of

weighted
averaging

Compute local vk’s

w (previous)

5

Recap: Iterative Parameter Mixing

Parallelizing perceptrons – take 2

Instances/labels

Instances/labels –
1

Instances/labels –
2

Instances/labels –
3

w -1 w- 2 w-3

w

Split into example
subsets

Combine by
some sort of

weighted
averaging

Compute local vk’s

w (previous)

6

Recap: Iterative Parameter Mixing

Parallel Perceptrons – take 2

Idea: do the simplest possible thing
iteratively.

•  Split the data into shards
•  Let w = 0
•  For n=1,…

•  Train a perceptron on each
shard with one pass starting
with w
• Average the weight vectors
(somehow) and let w be that
average

Extra communication cost:
•  redistributing the weight vectors
•  done less frequently than if fully
synchronized, more frequently than
if fully parallelized

All-Reduce

7

Recap: Iterative Parameter Mixing

ALL-REDUCE

8

Introduction
•  Common pattern:

– do some learning in parallel
–  aggregate local changes from each processor

•  to shared parameters
– distribute the new shared parameters

•  back to each processor

–  and repeat….

•  AllReduce implemented in MPI, also in VW code (John Langford)
in a Hadoop/compatible scheme

MAP

ALLREDUCE

9

10

11

12

13

14

15

Gory details of VW Hadoop-
AllReduce
•  Spanning-tree server:

– Separate process constructs a spanning tree of
the compute nodes in the cluster and then acts
as a server

•  Worker nodes (“fake” mappers):
– Input for worker is locally cached
– Workers all connect to spanning-tree server
– Workers all execute the same code, which

might contain AllReduce calls:
• Workers synchronize whenever they reach an all-

reduce
16

Hadoop AllReduce

don’t wait for duplicate jobs

17

Second-order method - like Newton’s
method

18

2 24 features

~=100 non-zeros/
example

2.3B examples

example is user/page/
ad and conjunctions of
these, positive if there
was a click-thru on the
ad

19

50M examples

explicitly constructed kernel è 11.7M features

3,300 nonzeros/example

old method: SVM, 3 days: reporting time to get to fixed test error

20

21

Matrix Factorization

22

Recovering latent factors in a
matrix

m columns

v11 …

… …

vij

…

vnm

n
ro

w
s

23

Recovering latent factors in a
matrix

K * m

n
*

K

x1 y1

x2 y2

.. ..

… …

xn yn

a1 a2 .. … am

b1 b2 … … bm
v11 …

… …

vij

…

vnm

~

24

What is this for?

K * m

n
*

K

x1 y1

x2 y2

.. ..

… …

xn yn

a1 a2 .. … am

b1 b2 … … bm
v11 …

… …

vij

…

vnm

~

25

MF for collaborative filtering

26

What is collaborative filtering?

27

What is collaborative filtering?

28

What is collaborative filtering?

29

What is collaborative filtering?

30

31

Recovering latent factors in a
matrix

m movies

v11 …

… …

vij

…

vnm

V[i,j] = user i’s rating of movie j

n
us

er
s

32

Recovering latent factors in a
matrix

m movies

n
us

er
s

m movies

x1 y1

x2 y2

.. ..

… …

xn yn

a1 a2 .. … am

b1 b2 … … bm
v11 …

… …

vij

…

vnm

~

V[i,j] = user i’s rating of movie j

33

34

MF for image modeling

35

36

Data: many copies of an image, rotated and shifted (matrix with one image/row)

Image “prototypes:” a smaller number of row vectors (green=negative)

Reconstructed images : linear combinations of prototypes

MF for images

10,000 pixels

10
00

 im
ag

es

1000 * 10,000,00

x1 y1

x2 y2

.. ..

… …

xn yn

a1 a2 .. … am

b1 b2 … … bm
v11 … … …

… …

vij

…

vnm

~

V[i,j] = pixel j in image i

2 prototypes

PC1

PC2

37

MF for modeling text

38

•  The Neatest Little Guide to Stock Market Investing
•  Investing For Dummies, 4th Edition
•  The Little Book of Common Sense Investing: The Only

Way to Guarantee Your Fair Share of Stock Market
Returns

•  The Little Book of Value Investing
•  Value Investing: From Graham to Buffett and Beyond
•  Rich Dad’s Guide to Investing: What the Rich Invest in,

That the Poor and the Middle Class Do Not!
•  Investing in Real Estate, 5th Edition
•  Stock Investing For Dummies
•  Rich Dad’s Advisors: The ABC’s of Real Estate

Investing: The Secrets of Finding Hidden Profits Most
Investors Miss

https://technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-lsa-tutorial/

39

https://technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-lsa-tutorial/

TFIDF counts would be better

40

Recovering latent factors in a
matrix

m terms

n
do

cu
m

en
ts

doc term matrix

x1 y1

x2 y2

.. ..

… …

xn yn

a1 a2 .. … am

b1 b2 … … bm
v11 …

… …

vij

…

vnm

~

V[i,j] = TFIDF score of term j in
doc i

41

=

42

Investing for
real estate

Rich Dad’s
Advisor’s:

The ABCs of
Real Estate

Investment …

43

The little book
of common

sense
investing: …

Neatest Little
Guide to Stock

Market
Investing

44

MF is like clustering

45

k-means as MF

cluster means

n
ex

am
pl

es

0 1

1 0

.. ..

… …

xn yn

a1 a2 .. … am

b1 b2 … … bm
v11 …

… …

vij

…

vnm

~

original data set
indicators for r

clusters

Z

M

X

46

How do you do it?

K * m

n
*

K

x1 y1

x2 y2

.. ..

… …

xn yn

a1 a2 .. … am

b1 b2 … … bm
v11 …

… …

vij

…

vnm

~

47

talk pilfered from
à …..

KDD 2011

48

49

Recovering latent factors in a
matrix

m movies

n
us

er
s

m movies

x1 y1

x2 y2

.. ..

… …

xn yn

a1 a2 .. … am

b1 b2 … … bm
v11 …

… …

vij

…

vnm

~

V[i,j] = user i’s rating of movie j

r

W

H

V

50

51

52

53

for image denoising

54

Matrix factorization as SGD

step size why does this work?
55

Matrix factorization as SGD - why
does this work? Here’s the key

claim:

56

Checking the claim

Think for SGD for logistic regression
•  LR loss = compare y and ŷ = dot(w,x)
•  similar but now update w (user weights) and x (movie weight)

57

What loss functions are possible?

N1, N2 - diagonal
matrixes, sort of like IDF

factors for the users/
movies

“generalized” KL-divergence

58

What loss functions are possible?

59

What loss functions are possible?

60

ALS = alternating least
squares

61

talk pilfered from
à …..

KDD 2011

62

63

64

65

Like McDonnell et al with
perceptron learning

66

Slow convergence…..

67

68

69

70

71

72

73

More detail….

•  Randomly permute rows/cols of matrix
•  Chop V,W,H into blocks of size d x d

– m/d blocks in W, n/d blocks in H
•  Group the data:

– Pick a set of blocks with no overlapping rows
or columns (a stratum)

– Repeat until all blocks in V are covered
•  Train the SGD

– Process strata in series
– Process blocks within a stratum in parallel

74

More detail….

Z was V

75

More detail….
•  Initialize W,H randomly

– not at zero J
•  Choose a random ordering (random sort) of the

points in a stratum in each “sub-epoch”
•  Pick strata sequence by permuting rows and columns

of M, and using M’[k,i] as column index of row i in
subepoch k

•  Use “bold driver” to set step size:
–  increase step size when loss decreases (in an

epoch)
– decrease step size when loss increases

•  Implemented in Hadoop and R/Snowfall

M=

76

77

Wall Clock Time
8 nodes, 64 cores, R/snow

78

79

80

81

82

Number of Epochs

83

84

85

86

87

Varying rank
100 epochs for all

88

Hadoop scalability

Hadoop process
setup time starts

to dominate

89

Hadoop scalability

90

91

