
Common statistics for
graphs

William Cohen

1

Why I’m talking about graphs
•  Lots of large data is graphs

–  Facebook, Twitter, citation data, and other social
networks

–  The web, the blogosphere, the semantic web, Freebase,
Wikipedia, Twitter, and other information networks

–  Text corpora (like RCV1), large datasets with discrete
feature values, and other bipartite networks

•  nodes = documents or words

•  links connect document à word or word à document

–  Computer networks, biological networks (proteins,
ecosystems, brains, …), …

– Heterogeneous networks with multiple types of nodes

•  people, groups, documents

2

A question
•  How do you explore a dataset?

– compute statistics (e.g., feature histograms,
conditional feature histograms, correlation
coefJicients, …)

– sample and inspect

•  run a bunch of small-scale experiments

•  How do you explore a graph?

– compute statistics (degree distribution, …)

– sample and inspect

• how do you sample? non-trivial!

3

4

#vertices #edges
mean
degree

mean distance between
vertices

Degree distribution
•  Plot cumulative degree

–  X axis is degree

–  Y axis is #nodes that have

degree at least k

•  Typically use a log-log scale

–  Straight lines are a power
law; normal curve dives
to zero at some point

–  Left: trust network in
epinions web site from
Richardson & Domingos

5

6

7

Homophily

•  Another def’n: excess edges between
common neighbors of v

∑=

=

v
vCC

V
EVCC

v
vvCC

)(
||

1),(

 toconnected pairs#
 toconnected triangles#)(

graphin paths 3length #
graphin triangles#),(' =EVCC

8

9

An important question
•  How do you explore a dataset?

– compute statistics (e.g., feature histograms,
conditional feature histograms, correlation
coefJicients, …)

– sample and inspect

•  run a bunch of small-scale experiments

•  How do you explore a graph?

– compute statistics (degree distribution, …)

– sample and inspect

• how do you sample?

10

KDD 2006

11

Brief summary
•  DeJine goals of sampling:

–  “scale-down” – Jind G’<G with similar statistics

–  “back in time”: for a growing G, Jind G’<G that is similar

(statistically) to an earlier version of G

•  Experiment on real graphs with plausible sampling methods,

such as

–  RN – random nodes, sampled uniformly

–  …

•  See how well they perform

12

Brief summary
•  Experiment on real graphs with plausible

sampling methods, such as

– RN – random nodes, sampled uniformly

•  RPN – random nodes, sampled by PageRank

•  RDP – random nodes sampled by in-degree

– RE – random edges

– RJ – run PageRank’s “random surfer” for n

steps

– RW – run RWR’s “random surfer” for n steps

– FF – repeatedly pick r(i) neighbors of i to

“burn”, and then recursively sample from them

13

10% sample – pooled on five datasets

14

d-statistic measures disagreement between
distributions
•  D=max{|F(x)-F’(x)|} where F, F’ are cdf’s
•  max over nine different statistics

15

16

FOCS 2006

17

What is Local Graph Partitioning?

Global Local

18

What is Local Graph Partitioning?

19

What is Local Graph Partitioning?

20

What is Local Graph Partitioning?

21

What is Local Graph Partitioning?

Global Local

22

Key idea: a “sweep”
•  Order all vertices in some way vi,1, vi,2, ….

– Say, by personalized PageRank from a
seed

•  Pick a preJix vi,1, vi,2, …. vi,k that is “best”

– ….

23

What is a “good” subgraph?

the edges leaving S

•  vol(S) is sum of deg(x) for x in S
•  for small S: Prob(random edge leaves S)

24

Key idea: a “sweep”
•  Order all vertices in some way vi,1, vi,2, ….

– Say, by personalized PageRank from a seed

•  Pick a preJix S={ vi,1, vi,2, …. vi,k } that is “best”

– Minimal “conductance” ϕ(S)

You can re-compute
conductance
incrementally as you
add a new vertex so
the sweep is fast

25

Main results of the paper

1.  An approximate personalized PageRank computation
that only touches nodes “near” the seed

– but has small error relative to the true PageRank

vector

2.  A proof that a sweep over the approximate PageRank

vector Jinds a cut with conductance sqrt(α ln m)

– unless no good cut exists

•  no subset S contains signiJicantly more pass in the
approximate PageRank than in a uniform distribution

26

Result 2 explains Jure & Christos’s experimental results
with RW sampling:
•  RW approximately picks up a random subcommunity

(maybe with some extra nodes)
•  Features like clustering coefficient, degree should be

representative of the graph as a whole…
•  which is roughly a mixture of subcommunities 27

Main results of the paper

1.  An approximate personalized PageRank
computation that only touches nodes “near”
the seed

– but has small error relative to the true

PageRank vector

This is a very useful technique to know about…

28

Random Walks

avoids messy “dead ends”….

29

Random Walks: PageRank

30

Random Walks: PageRank

31

Flashback: Zeno’s paradox

•  Usain Bolt and the tortoise have a
race

•  Bolt is 10x faster

•  Tortoise has a 1m head start at

time 0

•  So, when Bolt gets to 1m the tortoise
is at 1.1m

•  So, when Bolt gets to 1.1m the
tortoise is at 1.11m …

•  So, when Bolt gets to 1.11m the
tortoise is at 1.111m … and Lance will
never catch up -?

1+0.1+0.01+0.001+0.0001+… = ?

unresolved until calculus was invented

0
 1

Zeno: powned by telescoping sums

1

1

1

1322

32

32

)1(
)1(

1
1)1(

)(...)()()1()1(
)1)(...1()1(

...1

−

+

+

+

−≈

−

−
=

−=−

−++−+−+−=−

−+++++=−

+++++=

xy
x
xy

xxy
xxxxxxxxy

xxxxxxy
xxxxy

n

n

nn

n

n

Let x be less than 1. Then

Example: x=0.1, and 1+0.1+0.01+0.001+…. = 1.11111 = 10/9.

33

Graph = Matrix
Vector = Node ! Weight

H

A B C D E F G H I J

A _ 1 1 1

B 1 _ 1

C 1 1 _

D _ 1 1

E 1 _ 1

F 1 1 1 _

G _ 1 1

H _ 1 1

I 1 1 _ 1

J 1 1 1 _

A
B

C

F
D

E

G
I

J

A

A 3

B 2

C 3

D

E

F

G

H

I

J

M

M v

34

Racing through a graph?

1

1(
()

−

+

−≈

−=−

−+−+−=−

−++++=−

++++=

W)(IY
W)IW)Y(I

W)...)(IW)(WW(IW)Y(I
W)...)(IW)(W)(W(IW)Y(I

W)...(W)(W)(WIY

2

32

32

α

αα

ααα

α

α

n

n

αα
αααα

ααα

Let W[i,j] be Pr(walk to j from i)and let α be less than 1. Then:

The matrix (I- αW) is the Laplacian of αW.

Generally the Laplacian is (D- A) where D[i,i] is the degree of i in the
adjacency matrix A.

)|Pr(1],[ij
Z

ji =Y

35

Random Walks: PageRank

36

Approximate PageRank: Key Idea
By definition PageRank
is fixed point of:

Claim:

Proof:

=α I + (1−α)uW u

u=1

∞

∑
$

%
&

'

(
)

=αI + (1−α)W (1−α)tW t

t=0

∞

∑

=αI + (1−α)WRα

define a matrix for the
pr operator:
Rαs=pr(α,s)

37

Approximate PageRank: Key Idea
By definition PageRank
is fixed point of:

Claim:

Proof:

38

Approximate PageRank: Key Idea
By definition PageRank
is fixed point of:

Claim:

Key idea in apr:
•  do this “recursive step” repeatedly
•  focus on nodes where finding PageRank from neighbors

will be useful

Recursively compute PageRank of
“neighbors of s” (=sW), then adjust

39

Approximate PageRank: Key Idea

•  p is current approximation (start at 0)
•  r is set of “recursive calls to make”

•  residual error
•  start with all mass on s

•  u is the node picked for the next call 40

Analysis

linearity

re-group & linearity

pr(α, r - r(u)χu) +(1-α) pr(α, r(u)χuW) = pr(α, r - r(u)χu + (1-α) r(u)χuW)

41

Approximate PageRank: Algorithm

42

Analysis

So, at every point in the apr algorithm:

Also, at each point, |r|1 decreases by α*ε*degree(u), so:
after T push operations where degree(i-th u)=di, we know

which bounds the size of r and p

di ⋅αε
i
∑ ≤1

43

Analysis

With the invariant:

This bounds the error of p relative to the PageRank vector.

44

Comments – API

p,r are hash tables – they are small (1/εα)

push just needs p, r, and neighbors of u

Could implement with API:

•  List<Node> neighbor(Node u)

•  int degree(Node u)

d(v) = api.degree(v)
 45

Comments - Ordering

might pick the largest r(u)/d(u) … or…

46

Comments – Ordering for Scanning

Scan repeatedly through an adjacency-list encoding of the graph

For every line you read u, v1,…,vd(u) such that r(u)/d(u) > ε:

benefit: storage is O(1/εα) for the hash tables, avoids any seeking

47

Possible optimizations?
•  Much faster than doing random access the Jirst few scans, but

then slower the last few

•  …there will be only a few ‘pushes’ per scan

•  Optimizations you might imagine:

–  Parallelize?

–  Hybrid seek/scan:

•  Index the nodes in the graph on the Jirst scan

•  Start seeking when you expect too few pushes to justify a scan

–  Say, less than one push/megabyte of scanning

–  Hotspots:

•  Save adjacency-list representation for nodes with a large r(u)/d(u)

in a separate Jile of “hot spots” as you scan

•  Then rescan that smaller list of “hot spots” until their score drops

below threshold.

48

Putting this together
•  Given a graph

– that’s too big for memory, and/or

– that’s only accessible via API

•  …we can extract a sample in an interesting area

– Run the apr/rwr from a seed node

– Sweep to Jind a low-conductance subset

•  Then

– compute statistics

– test out some ideas

– visualize it…

49

