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Why I’m talking about graphs 
•  Lots of large data is graphs


–  Facebook, Twitter, citation data, and other social 
networks


–  The web, the blogosphere, the semantic web, Freebase, 
Wikipedia, Twitter, and other information networks


–  Text corpora (like RCV1), large datasets with discrete 
feature values, and other bipartite networks


•  nodes = documents or words

•  links connect document à word or word à document


–  Computer networks, biological networks (proteins, 
ecosystems, brains, …), …


– Heterogeneous networks with multiple types of nodes

•  people, groups, documents
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A question 
•  How do you explore a dataset?


– compute statistics (e.g., feature histograms, 
conditional feature histograms, correlation 
coefJicients, …)


– sample and inspect

•  run a bunch of small-scale experiments


•  How do you explore a graph?

– compute statistics (degree distribution, …)

– sample and inspect


• how do you sample? non-trivial!
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Degree distribution 
•  Plot cumulative degree


–  X axis is degree 

–  Y axis is #nodes that have 

degree at least k

•  Typically use a log-log scale


–  Straight lines are a power 
law; normal curve dives 
to zero at some point


–  Left: trust network in 
epinions web site from 
Richardson & Domingos
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Homophily 

•  Another def’n: excess edges between 
common neighbors of v
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An important question 
•  How do you explore a dataset?


– compute statistics (e.g., feature histograms, 
conditional feature histograms, correlation 
coefJicients, …)


– sample and inspect

•  run a bunch of small-scale experiments


•  How do you explore a graph?

– compute statistics (degree distribution, …)

– sample and inspect


• how do you sample?
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KDD 2006 
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Brief summary 
•  DeJine goals of sampling:


–  “scale-down” – Jind G’<G with similar statistics

–  “back in time”: for a growing G, Jind G’<G that is similar 

(statistically) to an earlier version of G

•  Experiment on real graphs with plausible sampling methods, 

such as

–  RN – random nodes, sampled uniformly

–  …


•  See how well they perform
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Brief summary 
•  Experiment on real graphs with plausible 

sampling methods, such as

– RN – random nodes, sampled uniformly


•  RPN – random nodes, sampled by PageRank

•  RDP – random nodes sampled by in-degree


– RE – random edges

– RJ – run PageRank’s “random surfer” for n 

steps

– RW – run  RWR’s “random surfer” for n steps

– FF – repeatedly pick r(i) neighbors of i to 

“burn”, and then recursively sample from them
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10% sample – pooled on five datasets 
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d-statistic  measures disagreement between 
distributions 
•  D=max{|F(x)-F’(x)|} where F, F’ are cdf’s 
•  max over nine different statistics 
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FOCS 2006 
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What is Local Graph Partitioning? 

Global Local 
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What is Local Graph Partitioning? 
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What is Local Graph Partitioning? 
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What is Local Graph Partitioning? 
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What is Local Graph Partitioning? 

Global Local 
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Key idea: a “sweep” 
•  Order all vertices in some way vi,1, vi,2, ….


– Say, by personalized PageRank from a 
seed


•  Pick a preJix vi,1, vi,2, …. vi,k that is “best”

– ….
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What is a “good” subgraph? 

the edges leaving S 

•  vol(S) is sum of deg(x) for x in S 
•  for small S: Prob(random edge leaves S) 
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Key idea: a “sweep” 
•  Order all vertices in some way vi,1, vi,2, ….


– Say, by personalized PageRank from a seed

•  Pick a preJix S={ vi,1, vi,2, …. vi,k } that is “best”


– Minimal “conductance” ϕ(S)


You can re-compute 
conductance 
incrementally as you 
add a new vertex so 
the sweep is fast 
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Main results of the paper 

1.  An approximate personalized PageRank computation 
that only touches nodes “near” the seed

– but has small error relative to the true PageRank 

vector

2.  A proof that a sweep over the approximate PageRank 

vector Jinds a cut with conductance sqrt(α ln m)

– unless no good cut exists


•  no subset S contains signiJicantly more pass in the 
approximate PageRank than in a uniform distribution
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Result 2 explains Jure & Christos’s experimental results 
with RW sampling: 
•  RW approximately picks up a random subcommunity 

(maybe with some extra nodes) 
•  Features like clustering coefficient, degree should be 

representative of the graph as a whole… 
•  which is roughly a mixture of subcommunities 27 



Main results of the paper 

1.  An approximate personalized PageRank 
computation that only touches nodes “near” 
the seed

– but has small error relative to the true 

PageRank vector


This is a very useful technique to know about…
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Random Walks 

avoids messy “dead ends”…. 

29 



Random Walks: PageRank 
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Random Walks: PageRank 
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Flashback: Zeno’s paradox 

•  Usain Bolt and the tortoise have a 
race


•  Bolt is 10x faster

•  Tortoise has a 1m head start at 

time 0

•   So, when Bolt gets to 1m the tortoise 
is at 1.1m


•   So, when Bolt gets to 1.1m the 
tortoise is at 1.11m …


•   So, when Bolt gets to 1.11m the 
tortoise is at 1.111m … and Lance will 
never catch up -?


1+0.1+0.01+0.001+0.0001+… = ?


unresolved until calculus was invented 

0
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Zeno: powned by telescoping sums 
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Let x be less than 1.  Then 

Example: x=0.1, and 1+0.1+0.01+0.001+…. = 1.11111 = 10/9. 
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Graph = Matrix 
Vector = Node ! Weight 

H 
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Racing through a graph? 
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Let W[i,j] be Pr(walk to j from i)and let α be less than 1.  Then: 

The matrix (I- αW) is the Laplacian of αW.   
 
Generally the Laplacian is (D- A) where D[i,i] is the degree of i in the 
adjacency matrix A. 

)|Pr(1],[ ij
Z

ji =Y
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Random Walks: PageRank 
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Approximate PageRank:  Key Idea 
By definition PageRank 
is fixed point of: 

Claim: 

Proof: 
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define a matrix for the 
pr operator: 
Rαs=pr(α,s) 
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Approximate PageRank:  Key Idea 
By definition PageRank 
is fixed point of: 

Claim: 

Proof: 
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Approximate PageRank:  Key Idea 
By definition PageRank 
is fixed point of: 

Claim: 

Key idea in apr: 
•  do this “recursive step” repeatedly 
•  focus on nodes where finding PageRank from neighbors 

will be useful 

Recursively compute PageRank of 
“neighbors of s” (=sW), then adjust 
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Approximate PageRank:  Key Idea 

•  p is current approximation (start at 0) 
•  r is set of “recursive calls to make” 

•  residual error 
•  start with all mass on s 

•  u is the node picked for the next call 40 



Analysis 

linearity 

re-group & linearity 

pr(α, r - r(u)χu) +(1-α) pr(α, r(u)χuW) = pr(α, r - r(u)χu + (1-α)  r(u)χuW) 
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Approximate PageRank:  Algorithm 
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Analysis 

So, at every point in the apr algorithm: 

Also, at each point, |r|1 decreases by α*ε*degree(u), so:  
after T push operations where degree(i-th u)=di, we know 

which bounds the size of r and p 

di ⋅αε
i
∑ ≤1
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Analysis 

With the invariant: 

This bounds the error of p relative to the PageRank vector.    
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Comments – API 

p,r are hash tables – they are small (1/εα) 


push just needs p, r, and neighbors of u


Could implement with API:

•  List<Node> neighbor(Node u)

•  int degree(Node u)


d(v) = api.degree(v)
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Comments - Ordering 

might pick the largest r(u)/d(u) … or…


46 



Comments – Ordering for Scanning 

Scan repeatedly through an adjacency-list encoding of the graph 
 
For every line you read u, v1,…,vd(u) such that r(u)/d(u) > ε: 

benefit: storage is O(1/εα) for the hash tables, avoids any seeking
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Possible optimizations? 
•  Much faster than doing random access the Jirst few scans, but 

then slower the last few

•  …there will be only a few ‘pushes’ per scan


•  Optimizations you might imagine:

–  Parallelize?

–  Hybrid seek/scan:


•  Index the nodes in the graph on the Jirst scan

•  Start seeking when you expect too few pushes to justify a scan


–  Say, less than one push/megabyte of scanning


–  Hotspots:

•  Save adjacency-list representation for nodes with a large r(u)/d(u) 

in a separate Jile of “hot spots” as you scan

•  Then rescan that smaller list of “hot spots” until their score drops 

below threshold.
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Putting this together 
•  Given a graph


– that’s too big for memory, and/or

– that’s only accessible via API


•  …we can extract a sample in an interesting area

– Run the apr/rwr from a seed node

– Sweep to Jind a low-conductance subset


•  Then

– compute statistics

– test out some ideas

– visualize it…
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