Common statistics for
graphs

William Cohen

Why I’m talking about graphs

* Lots of large data is graphs

— Facebook, Twitter, citation data, and other social
networks

— The web, the blogosphere, the semantic web, Freebase,
Wikipedia, Twitter, and other information networks

— Text corpora (like RCV1), large datasets with discrete
feature values, and other bipartite networks
* nodes = documents or words
* links connect document 2 word or word 2 document

— Computer networks, biological networks (proteins,
ecosystems, brains, ...), ...

— Heterogeneous networks with multiple types of nodes
* people, groups, documents

A question

* How do you explore a dataset?

—compute statistics (e.g., feature histograms,
conditional feature histograms, correlation
coefficients, ...)

—sample and inspect
 run a bunch of small-scale experiments

* How do you explore a graph?
—compute statistics (degree distribution, ...)

—sample and inspect
* how do you sample? non-trivial!

mean distance between

mean
#vertices #Hedges degree / vertices
network type n m z 4 a | ¢ c®
film actors undirected 449913 25516 482 113.43 3.48 2.3 0.20 0.78
company directors undirected 7673 55392 14.44 4.60 - 0.59 0.88
math coauthorship undirected 253339 496 489 3.92 7.57 - | 0.15 0.34
physics coauthorship undirected 52909 245 300 0.27 6.19 - 0.45 0.56

,—g biology coauthorship undirected 1520251 11803 064 15.53 4.92 — | 0.088 0.60

2 telephone call graph undirected 47000000 80000000 3.16 2.1
email messages directed 59912 86 300 1.44 495 | 1.5/2.0 0.16
email address books directed 16 881 57029 3.38 5.22 — 0.17 0.13
student relationships undirected 573 477 1.66 16.01 — | 0.005 | 0.001
sexual contacts undirected 2810 3.2

= | WWW nd.edu directed 269 504 1497135 5.55 11.27 | 2.1/24 0.11 0.29

.§ WWW Altavista directed 203549046 | 2130000000 10.46 16.18 2.1/2.7

£ | citation network directed 783339 6716 198 8.57 3.0/-

% Roget’s Thesaurus directed 1022 5103 4.99 4.87 - 0.13 0.15
word co-occurrence undirected 460902 17000000 70.13 2.7 0.44
Internet undirected 10697 31992 5.08 3.31 2.5 0.035 | 0.39

= | power grid undirected 49041 6 594 2.67 18.99 - | 0.10 0.080

§° train routes undirected 587 19603 66.79 2.16 — 0.69

S | software packages directed 1439 1723 1.20 2.42 1.6/1.4 0.070 0.082

"§ software classes directed 1377 2213 1.61 1.51 — 0.033 0.012

“ | electronic circuits undirected 24007 53 248 4.34 11.05 3.0 | 0.010 | 0.030
peer-to-peer network | undirected 880 1296 1.47 4.28 2.1 0.012 | 0.011
metabolic network undirected 765 3686 9.64 2.56 2.2 0.090 0.67

E protein interactions undirected 2115 2240 2.12 6.80 2.4 0.072 0.071

E:,D marine food web directed 135 598 4.43 2.05 - | 0.16 0.23

;_,% freshwater food web directed 02 997 10.84 1.90 - 0.20 q.087
neural network directed 307 2359 7.68 3.97 — 0.18 0.28

Degree distribution

Plot cumulative degree
— X axis is degree

— Y axis is #nodes that have
degree at least k

Typically use a log-log scale

— Straight lines are a power
law; normal curve dives
to zero at some point

— Left: trust network in
epinions web site from
Richardson & Domingos

Count

count

100000

10000 }

1000 |

100

10

Qriginal graph
R-MAT graph

| RS - -

10 100 1000
Out-degree

100 T rrrm T 100 LB RRLLL I |l|l|n] LILBLILLLLY LILLRL
10° 10”
4 -4
10 (a) collaborations 10 o)
in mathematics (b) citations (c) World Wide Web
cevnnl ool cood vl vl 0
1 10 100 1 10 100 1000
IOOE UL ELLLLI B L) I R R L I? 100 100_ T T T T T T 13
-1 :— —: -1E - -
10°E E 107 E 10 5
10°F =5 a2l »]
= 3 10 3 10° =
107 = s _ - (D) protein]
E (d) Internet] 10 = (e) power gnd 102 interactions -
10-4_ RTTT EERTIT BRI AN Covoo o E C ol LS
1 10 100 1000 0 10 20 1 10

FIG. 6 Cumulative degree distributions for six different networks. The horizontal axis for each panel is vertex degree k (or in-
degree for the citation and Web networks, which are directed) and the vertical axis is the cumulative probability distribution of
degrees, i.e., the fraction of vertices that have degree greater than or equal to k. The networks shown are: (a) the collaboration
network of mathematicians [182]; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific
Information [351]; (¢) a 300 million vertex subset of the World Wide Web, circa 1999 [74]; (d) the Internet at the level of
autonomous systems, April 1999 [86]; (e) the power grid of the western United States [416]; (f) the interaction network of
proteins in the metabolism of the yeast S. Cerevisiae [212|. Of these networks, three of them, (c¢), (d) and (f), appear to have
power-law degree distributions, as indicated by their approximately straight-line forms on the doubly logarithmic scales, and
one (b) has a power-law tail but deviates markedly from power-law behavior for small degree. Network (e) has an exponential
degree distribution (note the log-linear scales used in this panel) and network (a) appears to have a truncated power-law degree
distribution of some type, or possibly two separate power-law regimes with different exponents. 6

network type n m P 4 a || ¢ c®
film actors undirected 449913 25516 482 113.43 3.48 2.3 || 0.20 0.78
company directors undirected 7673 55 392 14.44 4.60 — || 0.59 0.88
math coauthorship undirected 253339 496 489 3.92 7.57 - 0.15 0.34
physics coauthorship undirected 52909 245 300 0.27 6.19 - 0.45 0.56

% biology coauthorship undirected 1520251 11803 064 15.53 4.92 — || 0.088 0.60

F telephone call graph undirected 47000000 80000000 3.16 2.1
email messages directed 599012 86 300 1.44 495 || 1.5/2.0 0.16
email address books directed 16 881 57029 3.38 5.22 - 0.17 0.13
student relationships undirected 573 477 1.66 16.01 — || 0.005 [0.001
sexual contacts undirected 2810 3.2

= | WWW nd.edu directed 269 504 1497135 5.55 11.27 || 2.1/24 || 0.11 0.29

% WWW Altavista directed 203549046 | 2130000000 10.46 16.18 || 2.1/2.7

£ | citation network directed 783339 6716 198 8.57 3.0/-

‘-g Roget’s Thesaurus directed 1022 5103 4.99 4.87 - 0.13 0.15
word co-occurrence undirected 460902 17000000 70.13 2.7 0.44
Internet undirected 10697 31992 5.08 3.31 2.5 0.035 | 0.39

= | power grid undirected 4941 6594 2.67 18.99 - 0.10 0.080

é train routes undirected 587 19603 66.79 2.16 - 0.69

S | software packages directed 1439 1723 1.20 2.42 1.6/1.4 0.070 | 0.082

"g software classes directed 1377 2213 1.61 1.51 - 0.033 0.012

= | electronic circuits undirected 24007 53 248 4.34 11.05 3.0 || 0.010 | 0.030
peer-to-peer network undirected 880 1296 1.47 4.28 2.1 0.012 0.011
metabolic network undirected 765 3686 9.64 2.56 2.2 0.090 0.67

E protein interactions undirected 2115 2240 2.12 6.80 2.4 0.072 0.071

ED marine food web directed 135 598 4.43 2.05 — | 0.16 0.23

;% freshwater food web directed 02 997 10.84 1.90 - 0.20 0.087
neural network directed 307 2359 7.68 3.97 — || 0.18 0.28

— 7

Homophily

* Another def'n: excess edges between
common neighbors of v

#triangles connected to v

CC(v) =
) # pairs connected to v

1
CC(V,E) = T 2 CC(v)

triangles 1n graph

CC'(V,E) =

#length 3 paths in graph

network type n m P 4 a | c™ c®
film actors undirected 449913 25516 482 113.43 3.48 2.3 || 0.20 0.78
company directors undirected 7673 55 392 14.44 4.60 — || 0.59 0.88
math coauthorship undirected 253339 496 489 3.92 7.57 - 0.15 0.34
physics coauthorship undirected 52909 245 300 0.27 6.19 - 0.45 0.56

% biology coauthorship undirected 1520251 11803 064 15.53 4.92 — || 0.088 0.60

F telephone call graph undirected 47000000 80000000 3.16 2.1
email messages directed 599012 86 300 1.44 495 | 1.5/2.0 0.16
email address books directed 16 881 57029 3.38 5.22 - 0.17 0.13
student relationships undirected 573 477 1.66 16.01 — || 0.005 [0.001
sexual contacts undirected 2810 3.2

= | WWW nd.edu directed 269 504 1497135 5.55 11.27 | 2.1/24 || 0.11 0.29

% WWW Altavista directed 203549046 | 2130000000 10.46 16.18 | 2.1/2.7

£ | citation network directed 783339 6716 198 8.57 3.0/-

‘-g Roget’s Thesaurus directed 1022 5103 4.99 4.87 - 0.13 0.15
word co-occurrence undirected 460902 17000000 70.13 2.7 0.44
Internet undirected 10697 31992 5.08 3.31 2.5 0.035 | 0.39

= | power grid undirected 4941 6594 2.67 18.99 - 0.10 0.080

é train routes undirected 587 19603 66.79 2.16 - 0.69

S | software packages directed 1439 1723 1.20 2.42 1.6/1.4 0.070 | 0.082

"g software classes directed 1377 2213 1.61 1.51 - 0.033 0.012

= | electronic circuits undirected 24007 53 248 4.34 11.05 3.0 || 0.010 | 0.030
peer-to-peer network undirected 880 1296 1.47 4.28 2.1 0.012 0.011
metabolic network undirected 765 3686 9.64 2.56 2.2 0.090 0.67

E protein interactions undirected 2115 2240 2.12 6.80 2.4 0.072 0.071

ED marine food web directed 135 598 4.43 2.05 — | 0.16 0.23

;% freshwater food web directed 02 997 10.84 1.90 - 0.20 0.087
neural network directed 307 2359 7.68 3.97 — || 0.18 0.28

) o

An important question

* How do you explore a dataset?

—compute statistics (e.g., feature histograms,
conditional feature histograms, correlation
coefficients, ...)

—sample and inspect
 run a bunch of small-scale experiments

* How do you explore a graph?
—compute statistics (degree distribution, ...)

—sample and inspect
* how do you sample?

Sampling from Large Graphs

Jure Leskovec
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA

jure@cs.cmu.edu

Christos Faloutsos
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA

christos@cs.cmu.edu

KDD 2006

Brief summary

* Define goals of sampling:
— “scale-down” - find G’<G with similar statistics

— “back in time”: for a growing G, find G’<G that is similar
(statistically) to an earlier version of G

* Experiment on real graphs with plausible sampling methods,
such as

— RN - random nodes, sampled uniformly

* See how well they perform

Brief summary

* Experiment on real graphs with plausible
sampling methods, such as

— RN - random nodes, sampled uniformly
* RPN - random nodes, sampled by PageRank
* RDP - random nodes sampled by in-degree

—RE - random edges

— R]J - run PageRank’s “random surfer” for n
steps

—RW - run RWR’s “random surfer” for n steps

— FF - repeatedly pick r(i) neighbors of i to
“burn”, and then recursively sample from them

Count

RW, RJ, RDN

Clustering Coefficient
o

i

10 10 10 10 10’ 10° 10°
In-degree Degree

(a) S1: In-degree (b) S9: Clustering coef.

0% sample — pooled on five datasets

D-statistic

0.5

0.4r

o
(*)

. , . : 0.4 — : ,
\ 03s| | /" _ RE, RNE, HYB
RE, RNE, HYB 0.3} /
o 0.25} ’
°
S 02
: RW, RJ, RDN
FF, RN, RPN Q 0.15}
0.1} FF, RPN, RN
RW, RJ, RDN
0.05
_ . ‘ ‘) | | ‘ |
0 20 40 60 80 100 0 20 %0 = -

Sample size [%] Sample size [%]

(a) Scale-down (b) Back-in-time

d-statistic measures disagreement between
distributions

* D=max{|F(x)-F'(x)|} where F, F’ are cdf’s
* max over nine different statistics

100

Static graph patterns

in-deg | out-deg | wcc sce hops | sng-val | sng-vec | clust
RN 0.084 0.145 0.814 | 0.193 | 0.231 0.079 0.112 0.327
RPN | 0.062 | 0.097 | 0.792 | 0.194 | 0.200 | 0.048 0.081 0.243
RDN || 0.110 0.128 0.818 | 0.193 | 0.238 0.041 0.048 0.256
RE 0.216 0.305 | 0.367 | 0.206 | 0.509 0.169 0.192 0.525
RNE || 0.277 0.404 0.390 | 0.224 | 0.702 0.255 0.273 0.709
HYB || 0.273 0.394 0.386 | 0.224 | 0.683 0.240 0.251 0.670
RNN || 0.179 0.014 0.581 | 0.206 | 0.252 0.060 0.255 0.398
RJ 0.132 0.151 0.771 | 0.215 | 0.264 | 0.076 0.143 | 0.235
RW 0.082 0.131 0.685 | 0.194 | 0.243 0.049 0.033 | 0.243
FF 0.082 0.105 0.664 | 0.194 | 0.203 | 0.038 0.092 | 0.244

Local Graph Partitioning using PageRank Vectors

Reid Andersen Fan Chung Kevin Lang

University of California, San Diego University of California, San Diego Yahoo! Research

FOCS 2006

What is Local Graph Partitioning?

A local graph partitioning algorithm finds a small
cut near the given seed(s) with running time

depending only on the size of the output.

Global Local

What is Local Graph Partitioning?

A bidding graph from Yahoo sponsored search

Phrases Advertiser 1Ds
e.g. Margarita Mix e.g. c8cbfdObd74ba8cc

On the left are search phrases, on the right are advertisers.
Each edge represents a bid by an advertiser on a phrase.

400K phrases, 200K advertisers, and 2 million edges.

What is Local Graph Partitioning?
Submarkets in bidding graph

The bidding graph has submarkets, sets of bidders and phrases
that interact mostly with each other.

Phrases about margarita mix Purveyors of margarita mix

These sets of vertices (containing both advertisers and phrases)

20
have small conductance.

What is Local Graph Partitioning?

Submarkets in the bigging graph
The bidding graph has numerous submarkets, related to real
estate, flower delivery, hotels, gambling, ...

It is useful to identify these submarkets.
» Find groups of related phrases to suggest to advertisers.

» Find small submarkets for testing and experimentation.

21

What is Local Graph Partitioning?

A local graph partitioning algorithm finds a small
cut near the given seed(s) with running time

depending only on the size of the output.

Global Local

22

Key idea: a ““sweep”

* Order all vertices in some way v, ;, Vi,

— Say, by personalized PageRank from a
seed

* Pickaprefixv,,, v;,, ... v;, that is “best”

vu‘ .ﬂ-'& .
]% “ .i.pﬂ ‘»

R =

Vit ’ﬁﬁi«“, Y
AL . fL

..... je

E.-.g } 23

What is a ‘“‘good” subgraph?

0(S)={{zr,yl e E|lze S ye&S)

the edges leaving S

9(3)
min (vol(S), 2m — vol(S))

B(S) =

* vol(S) is sum of deg(x) for x in S
* for small S: Prob(random edge leaves YS)

24

Key idea: a ““sweep”

* Order all vertices in some way v, ;, v;,,
— Say, by personalized PageRank from a seed
Pick a prefix S={ v;,, v,, v;; } that is “best”
— Minimal “conductance” ¢(S)

4‘-&} . ®
6 '.f;a.-.-*-'

o e
You can re-compute ;_a(‘n mf* T
conductance ;“ 3
incrementally as you i ,&z
add a new vertex so g.'.
th is fast ‘*‘5}';* - e
e sweep is fas oAy,

S... ,."‘ .
e .,. ey p
t o3
et
S, i
1 1 1 1 | = 0’

Main results of the paper

1. An approximate personalized PageRank computation
that only touches nodes “near” the seed

— but has small error relative to the true PageRank
vector

2. A proof that a sweep over the approximate PageRank
vector finds a cut with conductance sqrt(a In m)

— unless no good cut exists

* no subset S contains significantly more pass in the
approximate PageRank than in a uniform distribution

26

Static graph patterns

in-deg | out-deg | wcc sce hops | sng-val | sng-vec | clust
RN 0.084 0.145 0.814 | 0.193 | 0.231 0.079 0.112 0.327
RPN || 0.062 | 0.097 | 0.792 | 0.194 | 0.200 | 0.048 0.081 0.243
RDN || 0.110 0.128 0.818 | 0.193 | 0.238 0.041 0.048 0.256
RE 0.216 0.305 | 0.367 | 0.206 | 0.509 0.169 0.192 0.525
RNE || 0.277 0.404 0.390 | 0.224 | 0.702 0.255 0.273 0.709
HYB || 0.273 0.394 0.386 | 0.224 | 0.683 0.240 0.251 0.670
RNN || 0.179 0.014 0.581 | 0.206 | 0.252 0.060 0.255 0.398
RJ 0.132 0.151 0.771 | 0.215 | 0.264 | 0.076 0.143 | 0.235
RW 0.082 0.131 0.685 | 0.194 | 0.243 0.049 0.033 | 0.243
FF 0.082 0.105 0.664 | 0.194 | 0.203 | 0.038 0.092 | 0.244

Result 2 explains Jure & Christos’s experimental results

with RW sampling:

RW approximately picks up a random subcommunity
(maybe with some extra nodes)
Features like clustering coefficient, degree should be
representative of the graph as a whole...

* which is roughly a mixture of subcommunities

27

Main results of the paper

1. An approximate personalized PageRank
computation that only touches nodes “near”
the seed

—but has small error relative to the true
PageRank vector

This is a very useful technique to know about...

28

Random Walks

G : a graph

P : transition probability matrix

1
— ifu: v, d:=thedegree of u.
P(u,v)= d / 4 ?

0 otherwise.

u

A lazy walk: J+ P
==

avoids messy “dead ends’....

29

Random Walks: PageRank

A (bored) surfer

- either surf a random webpage
with probability a

» or surf a linked webpage
with probability /- a

a . the jumping constant

p=a(, L, . Dt (-a)pW :

Random Walks: PageRank

Two equivalent ways to define PageRank p=pr(a,s)
(1) p=as+(l-a)pW

(2) pzai(l—a)’(sWt)

S = (ysyreeny) = the (original) PageRank

s = some "seed”, e.q., (1,0,....,0)

—=> personalized PageRank

ﬂlashback Zeno’s paradox

14+0.14+0.014+0.0014+0.0001+...
Usain Bolt and the tortoise have a

race
 Boltis 10x faster

* Tortoise has a 1m head start at
time O

0 1

* So, when Bolt gets to 1m the tortoise
isat1.1m

® S0, when Bolt gets to 1.1m the
tortoiseisat1.11m ...

® S0, when Bolt gets to 1.11m the
tortoiseisat 1.111m ... and Lance will
never catch up -?

unresolved until calculus was invented

@o: powned by telescoping sums\

Let x be less than 1. Then

y=l+x+x"+X +...+x"
y1-x)=l+x+x" +x +...+x")(1-x)

y1-x)=1—F+ x=x)+(x* - x)+..+(x" =x"")
y(l-x)=1-x""

~ l_xn+l
T
y=(1-x)"

K Example: x=0.1, and 1+0.1+0.01+0.001+.... = 1.11111 = 10/9. J
33

Graph = Matrix
Vector = Node = Weight

M
-ﬂﬂ-ﬂﬂﬂﬂﬂﬂﬂ -ﬂ
A E
n 2

_ - zlolm mo0 >
-
| —
—|-[Tjo/m/moj0
(08

34

ﬂ:ing through a graph? \

Let W[i,j] be Pr(walk to j from /)and let a be less than 1. Then:
Y =1+ aW +(aW)* + (aW)’ +...(aW)"
Y(I-aW) =T+ aW +(aW)* +(aW)’ +..)(I-aW)

Y(I-aW) = (I- W) + (oW - (aW)’ +...)1 - aW)

Y(I-aW)=1I-(aW)""
]

Y=({-aW)" Y[i, j]= - Pr(j |)

The matrix (I- aW) is the Laplacian of aW.

Generally the Laplacian is (D- A) where DJ[j,i] is the degree of i in the
adjacency matrix A.
35

Random Walks: PageRank

Two equivalent ways to define PageRank p=pr(a,s)
(1) p=as+(l-a)pW

(2) pzai(l—a)’(sWt)

S = (ysyreeny) = the (original) PageRank

s = some "seed”, e.q., (1,0,....,0)

—=> personalized PageRank

Approximate PageRank: Key Idea

By definition PageRank

w(a,s) = as+ (1 —a)pr(a, s)W,
is fixed point of: pr(c) (pr{a,)WV

Claim: pr(a,s) = as+ (1 — a)pr(a, sW).
oo
Proof: R, = « Z(l — (}')t["""’t
t=0
define a matrix for the *
pr operator: =o|l+ E(l — O!)MW”
Raszpr(o ,S) u=1

=al +(1- a)Wi(l —a)W'

=al+(1-a)WR,

37

Approximate PageRank: Key Idea

By definition PageRank

w(a,s) =as+ (1 — a)pr(a, s)W,
is fixed point of: pr(c, 5) (Jpr{e, ¢

C|a|m: pr((_y’ S) — ('S + (1 _ (l‘)pl‘(a', bur)
PI‘OOf: RQ. e Z(l . (l,)t‘[,‘ﬂ,rt
t=0

= al+ (1 —-a)WR,.

pr(a,s) = sR,
= as+ (1 —a)sWR,
= as+ (1 —a)pr(a, sW).

38

Approximate PageRank: Key Idea

By definition PageRank

w(e. s) = as + (1 —a)pr(a. s)W,
is fixed point of: pr(e, s) = as + (1 = ajpria,)

Claim: pr(a,s) = as+ (1 — a)pr(a, sW).

Recursively compute PageRank of
“neighbors of s” (=sW), then adjust

Key idea in apr:
* do this “recursive step” repeatedly

* focus on nodes where finding PageRank from neighbors
will be useful

39

Approximate PageRank: Key Idea

pr(a,s) =as+ (1 —a)pr(a, sW). W= I+P

push,,(p,7):
1. Let p’ = p and r’ = r, except for the following changes:
(a) p'(u) = p(u) + ar(u).
(b) r'(u) = (1 — a)r(u)/2.
(¢) For each v such that (u,v) € E: r'(v) =r(v) + (1 — a)r(u)/(2d(u)).
2. Return (p/,r").

* pis current approximation (start at 0)

e ris set of “recursive calls to make”
e residual error

e start with all mass on s
* uis the node picked for the next call

40

Analysis

Lemma 1. Let p’ and ' be the result of the operation push, on p and r. Then

p' +pr(a,r’) = p+ pr(a,r).

Proof of Lemma 1. After the push operation, we have

p= p+ar(u)xu
o= r—ru)x.+ (1 —a)r(u)x.W.
Using equation (5),
linearity
p+opr(a,r) = p+pr(a,r—r(u)x.) + pr(o, r(u)x.)

»= p+pr(a,r—r(u)xy) + [or(u)x, + (1 — a)pr(a, r(uw)x, W)
— [+ ar(u)x] + pr(as [r = (@) xu + (1 — a)r(u)xa W)
= p +pr(a,). re-group & linearity
pr(a, r-r(wy,) +(1-a) pr(a, r(wx,W) = pr(e, r - r(wx, + (1-&) rx,W)
pr(a,s) = as+ (1 — a)pr(a, sW). 41 (5)

Approximate PageRank: Algorithm

ApproximatePageRank (v, a,€):
1. Let p=0, and 7 = y,.

2. While max,cv ;(TZ% > €:

(a) Choose any vertex u where % > €.

(b) Apply push, at vertex u, updating p and r.

3. Return p, which satisfies p = apr(«, xv,) with max,cy ;—%% < €.

push,,(p,7):

1. Let p’ = p and r’ = r, except for the following changes:

(a) p'(u) = p(u) + ar(u).
(b) (u) = (1 = a)r(u)/2.
(¢) For each v such that (u,v) € E: r'(v) =r(v)+ (1 — a)r(u)/(2d(u)).

2. Return (p',r').

42

Analysis

Lemma 1. Let p’ and r' be the result of the operation push, on p and r. Then

p' +pr(a,r) =p+ pr(a,r).
So, at every point in the apr algorithm:
p+pr(a,r) = pr(a, x,).

Also, at each point, |r|, decreases by o * € *degree(u), so:
after T push operations where degree(i-th u)=d, we know

T |
d-ae<l mu) ;o]
Z 1 UE = ;(’, S ;

which bounds the size of rand p s

Analysis

Theorem 1. ApproximatePageRank(v,«,¢€) runs in time ()(%), and computes an approximate

PageRank vector p = apr(a, x,,r) such that the residual vector r satisfies max,cy %% < €, and

such that vol(Supp(p)) < %

With the invariant: p+ pr(a,r) = pr(a, x,),

This bounds the error of p relative to the PageRank vector.

44

Comments - API

ApproximatePageRank (v, a,€):

p,rare hash tables - they are small (1/ca)

1. Let p=0, and 7 = Xw. Could implement with API:

2. While max,cy d(; > e e List<Node> neighbor(Node u)
* intdegree(Node u)

r(u)

(a) Choose any vertex u where) = €
(b) Apply push, at vertex u, updating p and r.

r(u)

3. Return p, which satisfies p = apr(«, xu,) with max,cy) < €

push, (p,7): push just needs p, r, and neighbors of u

1. Let p’ = p and ' = r, except for the following changes:

(a) p'(u) = pu) + ar(u).
(b) '(u) = (1 — a)r(u)/2.
(¢) For each v such that (u,v) € E: r'(v) =r(v)+ (1 — a)r(u)/(2d(u)).

2. Return (p’,7"). d(v) = api.degree(v) 45

Comments - Ordering

ApproximatePageRank (v, a,€):

1. Let p=0, and 7 = y,.
might pick the largest r(u)/d(u) ... or...

2. While max,cv II(TZ% > €:

(a) Choose any vertex u where % > €.

(b) Apply push, at vertex u, updating p and r.

3. Return p, which satisfies p = apr(«, xv,) with max,cy ;—%% < €.

push,,(p,7):

1. Let p’ = p and r’ = r, except for the following changes:

(a) p'(u) = p(u) + ar(u).
(b) (u) = (1 = a)r(u)/2.
(¢) For each v such that (u,v) € E: r'(v) =r(v)+ (1 — a)r(u)/(2d(u)).

2. Return (p',r').

46

Comments - Ordering for Scanning

ApproximatePageRank (v, a,€):

1. Let p= 6 and r = Y.

2. While max,cv 27%% > €:

Scan repeatedly through an adjacency-list encoding of the graph

For every line you read u, v,,...,vy,, such that r(u)/d(u) > &:

(b) Apply push, at vertex u, updating p and r.

p . e . r{w
3. Return p, which satisfies p = apr(«, x,,r) with max,cy ﬁ < €.

benefit: storage is O(1/ca) for the hash tables, avoids any seeking

47

Possible optimizations?

* Much faster than doing random access the first few scans, but
then slower the last few

» ..there will be only a few ‘pushes’ per scan
* Optimizations you might imagine:

— Parallelize?

— Hybrid seek/scan:

* Index the nodes in the graph on the first scan

 Start seeking when you expect too few pushes to justify a scan
— Say, less than one push/megabyte of scanning

— Hotspots:

» Save adjacency-list representation for nodes with a large r(u)/d(u)
in a separate file of “hot spots” as you scan

* Then rescan that smaller list of “hot spots” until their score drops
below threshold.

48

Putting this together

* Given a graph
—that’s too big for memory, and/or
—that's only accessible via API
* ...we can extract a sample in an interesting area
— Run the apr/rwr from a seed node
— Sweep to find a low-conductance subset
 Then
— compute statistics
—test out some ideas
—visualize it...

49

