Overview of this week

• Debugging tips for ML algorithms

• Graph algorithms
 – A prototypical graph algorithm: PageRank
 • In memory
 • Putting more and more on disk …
 – Sampling from a graph
 • What is a good sample? (graph statistics)
 • What methods work? (PPR/RWR)
 • HW: PageRank-Nibble method + Gephi
Common statistics for graphs

William Cohen
<table>
<thead>
<tr>
<th>network</th>
<th>type</th>
<th>n</th>
<th>m</th>
<th>z</th>
<th>ℓ</th>
<th>α</th>
<th>$C^{(1)}$</th>
<th>$C^{(2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>film actors</td>
<td>undirected</td>
<td>149K</td>
<td>25.5M</td>
<td>112K</td>
<td>3.48</td>
<td>2.3</td>
<td>0.20</td>
<td>0.78</td>
</tr>
<tr>
<td>company directors</td>
<td>undirected</td>
<td>7.6K</td>
<td>55.3K</td>
<td>14.4K</td>
<td>4.60</td>
<td>4.6</td>
<td>0.59</td>
<td>0.88</td>
</tr>
<tr>
<td>math courses</td>
<td>undirected</td>
<td>253K</td>
<td>496K</td>
<td>3.92</td>
<td>7.57</td>
<td>6.19</td>
<td>0.15</td>
<td>0.34</td>
</tr>
<tr>
<td>physics</td>
<td>undirected</td>
<td>62K</td>
<td>245K</td>
<td>9.24</td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.56</td>
</tr>
<tr>
<td>biology coauthorship</td>
<td>undirected</td>
<td>1520K</td>
<td>11.6M</td>
<td>16.5K</td>
<td>3.48</td>
<td>2.1</td>
<td>0.05</td>
<td>0.60</td>
</tr>
<tr>
<td>telephone call graph</td>
<td>undirected</td>
<td>47M</td>
<td>30M</td>
<td>3.16</td>
<td>4.95</td>
<td>1.5/2.0</td>
<td>0.16</td>
<td>0.13</td>
</tr>
<tr>
<td>email messages</td>
<td>directed</td>
<td>59K</td>
<td>86K</td>
<td>1.44</td>
<td>4.95</td>
<td>5.22</td>
<td>0.13</td>
<td>0.001</td>
</tr>
<tr>
<td>student relations</td>
<td>undirected</td>
<td>187K</td>
<td>477K</td>
<td>3.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sexual contacts</td>
<td>undirected</td>
<td>2.8K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWW nd.edu</td>
<td>directed</td>
<td>269K</td>
<td>1.49M</td>
<td>5.55</td>
<td></td>
<td></td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>WWW Altavista</td>
<td>directed</td>
<td>203K</td>
<td>2.13M</td>
<td>10.46</td>
<td>16.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>citation network</td>
<td>directed</td>
<td>783K</td>
<td>67K</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roget’s Thesaurus</td>
<td>undirected</td>
<td>5.1K</td>
<td>5.7K</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>word co-occurrence</td>
<td>undirected</td>
<td>50K</td>
<td>27K</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td>undirected</td>
<td>10K</td>
<td>319K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>power grid</td>
<td>undirected</td>
<td>4K</td>
<td>69K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>train routes</td>
<td>undirected</td>
<td>1K</td>
<td>180K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>software packages</td>
<td>undirected</td>
<td>439K</td>
<td>1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>software classes</td>
<td>undirected</td>
<td>1377</td>
<td>3K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electronic circuits</td>
<td>undirected</td>
<td>240K</td>
<td>53K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peer-to-peer network</td>
<td>undirected</td>
<td>880K</td>
<td>1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metabolic network</td>
<td>undirected</td>
<td>765</td>
<td>765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>protein interactions</td>
<td>undirected</td>
<td>2.1K</td>
<td>2K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>marine food</td>
<td>undirected</td>
<td>135</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>freshwater food</td>
<td>undirected</td>
<td>92</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neural network</td>
<td>undirected</td>
<td>307</td>
<td>307</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **nodes**: Number of nodes in the network.
- **edges**: Number of edges in the network.
- **avg degree**: Average degree of nodes.
- **diameter**: Diameter of the network.
- **clustering coefficient (homophily)**: Clustering coefficient of the network.
- **coefficient of degree curve**: Coefficient of the degree curve of the network.

The image also includes a graph showing the distribution of out-degrees, comparing the original graph and an R-MAT graph.
An important question

• How do you explore a dataset?
 – compute statistics (e.g., feature histograms, conditional feature histograms, correlation coefficients, ...)
 – sample and inspect
 • run a bunch of small-scale experiments

• How do you explore a graph?
 – compute statistics (degree distribution, ...)
 – sample and inspect
 • how do you sample?
Overview of this week

• Debugging tips for ML algorithms
• Graph algorithms
 – A prototypical graph algorithm: PageRank
 • In memory
 • Putting more and more on disk ...
 – Sampling from a graph
 • What is a good sample? (graph statistics)
 • What sampling methods work? (PPR/RWR)
 • HW: PageRank-Nibble method + Gephi
Sampling from Large Graphs

Jure Leskovec
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA
jure@cs.cmu.edu

Christos Faloutsos
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA
christos@cs.cmu.edu

KDD 2006
Brief summary

• Define goals of sampling:
 – “scale-down” – find $G' < G$ with similar statistics
 – “back in time”: for a growing G, find $G' < G$ that is similar (statistically) to an earlier version of G

• Experiment on real graphs with plausible sampling methods, such as
 – RN – random nodes, sampled uniformly
 – ...

• See how well they perform
Brief summary

- Experiment on real graphs with plausible sampling methods, such as
 - RN – random nodes, sampled uniformly
 • RPN – random nodes, sampled by PageRank
 • RDP – random nodes sampled by in-degree
 - RE – random edges
 - RJ – run PageRank’s “random surfer” for n steps
 - RW – run RWR’s “random surfer” for n steps
 - FF – repeatedly pick $r(i)$ neighbors of i to “burn”, and then recursively sample from them
RWR/Personalized PageRank vs PR

• PageRank update:

Let $v^{t+1} = cu + (1-c)Wv^t$

• Personalized PR/RWR update:

Let $v^{t+1} = cs + (1-c)Wv^t$

s is the seed vector or personalization vector in RN it's just a random unit vector
10% sample – pooled on five datasets
d-statistic measures agreement between distributions

- \(D = \max \{|F(x) - F'(x)|\} \) where \(F, F' \) are cdf’s
- max over nine different statistics
<table>
<thead>
<tr>
<th></th>
<th>in-deg</th>
<th>out-deg</th>
<th>wcc</th>
<th>scc</th>
<th>hops</th>
<th>sng-val</th>
<th>sng-vec</th>
<th>clust</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN</td>
<td>0.084</td>
<td>0.145</td>
<td>0.814</td>
<td>0.193</td>
<td>0.231</td>
<td>0.079</td>
<td>0.112</td>
<td>0.327</td>
</tr>
<tr>
<td>RPN</td>
<td>0.062</td>
<td>0.097</td>
<td>0.792</td>
<td>0.194</td>
<td>0.200</td>
<td>0.048</td>
<td>0.081</td>
<td>0.243</td>
</tr>
<tr>
<td>RDN</td>
<td>0.110</td>
<td>0.128</td>
<td>0.818</td>
<td>0.193</td>
<td>0.238</td>
<td>0.041</td>
<td>0.048</td>
<td>0.256</td>
</tr>
<tr>
<td>RE</td>
<td>0.216</td>
<td>0.305</td>
<td>0.367</td>
<td>0.206</td>
<td>0.509</td>
<td>0.169</td>
<td>0.192</td>
<td>0.525</td>
</tr>
<tr>
<td>RNE</td>
<td>0.277</td>
<td>0.404</td>
<td>0.390</td>
<td>0.224</td>
<td>0.702</td>
<td>0.255</td>
<td>0.273</td>
<td>0.709</td>
</tr>
<tr>
<td>HYB</td>
<td>0.273</td>
<td>0.394</td>
<td>0.386</td>
<td>0.224</td>
<td>0.683</td>
<td>0.240</td>
<td>0.251</td>
<td>0.670</td>
</tr>
<tr>
<td>RNN</td>
<td>0.179</td>
<td>0.014</td>
<td>0.581</td>
<td>0.206</td>
<td>0.252</td>
<td>0.060</td>
<td>0.255</td>
<td>0.398</td>
</tr>
<tr>
<td>RJ</td>
<td>0.132</td>
<td>0.151</td>
<td>0.771</td>
<td>0.215</td>
<td>0.264</td>
<td>0.076</td>
<td>0.143</td>
<td>0.235</td>
</tr>
<tr>
<td>RW</td>
<td>0.082</td>
<td>0.131</td>
<td>0.685</td>
<td>0.194</td>
<td>0.243</td>
<td>0.049</td>
<td>0.033</td>
<td>0.243</td>
</tr>
<tr>
<td>FF</td>
<td>0.082</td>
<td>0.105</td>
<td>0.664</td>
<td>0.194</td>
<td>0.203</td>
<td>0.038</td>
<td>0.092</td>
<td>0.244</td>
</tr>
</tbody>
</table>
Goal

• An efficient way of running RWR on a large graph
 – can use only “random access”
 • you can ask about the neighbors of a node, you can’t scan thru the graph
 • common situation with APIs
 – leads to a plausible sampling strategy
 • Jure & Christos’s experiments
 • some formal results that justify it....
Local Graph Partitioning using PageRank Vectors

Reid Andersen
University of California, San Diego

Fan Chung
University of California, San Diego

Kevin Lang
Yahoo! Research

FOCS 2006
What is Local Graph Partitioning?

A local graph partitioning algorithm finds a small cut near the given seed(s) with running time depending only on the size of the output.
What is Local Graph Partitioning?

A bidding graph from Yahoo sponsored search

<table>
<thead>
<tr>
<th>Phrases</th>
<th>Advertiser IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g. Margarita Mix</td>
<td>e.g. c8cbfd0bd74ba8cc</td>
</tr>
</tbody>
</table>

On the left are search phrases, on the right are advertisers. Each edge represents a bid by an advertiser on a phrase.

400K phrases, 200K advertisers, and 2 million edges.
What is Local Graph Partitioning?

Submarkets in bidding graph

The bidding graph has submarkets, sets of bidders and phrases that interact mostly with each other.

Phrases about margarita mix Purveyors of margarita mix

These sets of vertices (containing both advertisers and phrases) have small conductance.
What is Local Graph Partitioning?

Submarkets in the bigging graph

The bidding graph has numerous submarkets, related to real estate, flower delivery, hotels, gambling, ...

It is useful to identify these submarkets.

- Find groups of related phrases to suggest to advertisers.
- Find small submarkets for testing and experimentation.
What is Local Graph Partitioning?

A local graph partitioning algorithm finds a small cut near the given seed(s) with running time depending only on the size of the output.
Key idea: a “sweep”

• Order all vertices in some way \(v_{i,1}, v_{i,2}, \ldots \)
 – Say, by personalized PageRank from a seed
• Pick a prefix \(v_{i,1}, v_{i,2}, \ldots v_{i,k} \) that is “best”
 – \ldots
What is a “good” subgraph?

\[\partial(S) = \{ \{x, y\} \in E \mid x \in S, y \notin S \} \]

the edges leaving S

\[\Phi(S) = \frac{|\partial(S)|}{\min (\text{vol}(S), 2m - \text{vol}(S))}. \]

• \(\text{vol}(S) \) is sum of \(\text{deg}(x) \) for \(x \) in \(S \)
• for small \(S \): \(\text{Prob}(\text{random edge leaves } S) \)
Key idea: a “sweep”

• Order all vertices in some way \(v_{i,1}, v_{i,2}, \ldots \)
 – Say, by personalized PageRank from a seed
• Pick a prefix \(S = \{ v_{i,1}, v_{i,2}, \ldots v_{i,k} \} \) that is “best”
 – Minimal “conductance” \(\phi(S) \)

You can re-compute conductance incrementally as you add a new vertex so the sweep is fast
Main results of the paper

1. An *approximate* personalized PageRank computation that only touches nodes “near” the seed
 – but has small error relative to the true PageRank vector

2. A proof that a sweep over the approximate PageRank vector finds a cut with conductance $\sqrt{\alpha \ln m}$
 – unless no good cut exists
 • no subset S contains significantly more pass in the approximate PageRank than in a uniform distribution
Result 2 explains Jure & Christos’s experimental results with RW sampling:

- RW approximately picks up a *random subcommunity* (maybe with some extra nodes)
- Features like clustering coefficient, degree should be representative of the graph as a whole…
- which is roughly a mixture of subcommunities
Main results of the paper

1. An *approximate* personalized PageRank computation that only touches nodes “near” the seed
 – but has small error relative to the true PageRank vector

This is a very useful technique to know about...
Random Walks

G : a graph

P : transition probability matrix

$$P(u, v) = \begin{cases}
\frac{1}{d_u} & \text{if } u : v, \\
0 & \text{otherwise.}
\end{cases}$$

d_u := the degree of u.

A lazy walk:

$$W = \frac{I + P}{2}$$

avoids messy “dead ends”….
Random Walks: PageRank

A (bored) surfer

- either surf a random webpage with probability α
- or surf a linked webpage with probability $1 - \alpha$

α: the jumping constant

$$p = \alpha \left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n} \right) + (1 - \alpha) \, pW$$
Random Walks: PageRank

Two equivalent ways to define PageRank $p = pr(\alpha, s)$

(1) $p = \alpha s + (1-\alpha) p W$

(2) $p = \alpha \sum_{t=0}^{\infty} (1-\alpha)^t (s W^t)$

$s = \left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ → the (original) PageRank

$s = \text{some "seed"}, \text{ e.g., } (1, 0, \ldots, 0)$ → personalized PageRank
Flashback: Zeno’s paradox

• Lance Armstrong and the tortoise have a race
• Lance is 10x faster
• Tortoise has a 1m head start at time 0
• So, when Lance gets to 1m the tortoise is at 1.1m
• So, when Lance gets to 1.1m the tortoise is at 1.11m …
• So, when Lance gets to 1.11m the tortoise is at 1.111m … and Lance will *never* catch up -?

\[1 + 0.1 + 0.01 + 0.001 + 0.0001 + \ldots = ?\]

unresolved until calculus was invented
Zeno: powned by telescoping sums

Let x be less than 1. Then

$$y = 1 + x + x^2 + x^3 + ... + x^n$$

$$y(1 - x) = (1 + x + x^2 + x^3 + ... + x^n)(1 - x)$$

$$y(1 - x) = (1 - x) + (x - x^2) + (x^2 - x^3) + ... + (x^n - x^{n+1})$$

$$y(1 - x) = 1 - x^{n+1}$$

$$y = \frac{1 - x^{n+1}}{(1 - x)}$$

$$y \approx (1 - x)^{-1}$$

Example: $x=0.1$, and $1+0.1+0.01+0.001+... = 1.11111 = 10/9$.
Graph = Matrix
Vector = Node \rightarrow Weight

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[V = \begin{pmatrix} A \ 3 \\ B \ 2 \\ C \ 3 \\ D \\ E \\ F \\ G \\ H \\ I \\ J \end{pmatrix} \]

\[M = \begin{pmatrix}
 & A & B & C & D & E & F & G & H & I & J \\
 A & _ & 1 & 1 & _ & & & & & & \\
 B & 1 & _ & 1 & & & & & & & \\
 C & 1 & 1 & _ & & & & & & & \\
 D & _ & _ & _ & _ & _ & & & & & \\
 E & _ & 1 & _ & _ & & & & & & \\
 F & _ & _ & _ & _ & _ & _ & _ & & & \\
\end{pmatrix} \]
Let $W[i,j]$ be $\text{Pr}(\text{walk to } j \text{ from } i)$ and let α be less than 1. Then:

\[
Y = I + \alpha W + (\alpha W)^2 + (\alpha W)^3 + ... (\alpha W)^n
\]

\[
Y(I - \alpha W) = (I + \alpha W + (\alpha W)^2 + (\alpha W)^3 + ...)(I - \alpha W)
\]

\[
Y(I - \alpha W) = (I - \alpha W) + (\alpha W - (\alpha W)^2 + ...)(I - \alpha W)
\]

\[
Y(I - \alpha W) = I - (\alpha W)^{n+1}
\]

\[
Y \approx (I - \alpha W)^{-1}
\]

\[
Y[i, j] = \frac{1}{Z} \Pr(j | i)
\]

The matrix $(I - \alpha W)$ is the Laplacian of αW.

Generally the Laplacian is $(D - A)$ where $D[i,i]$ is the degree of i in the adjacency matrix A.

Racing through a graph?
Random Walks: PageRank

Two equivalent ways to define PageRank $p = \text{pr}(\alpha, s)$

(1) $p = \alpha s + (1 - \alpha) pW$

(2) $p = \alpha \sum_{t=0}^{\infty} (1 - \alpha)^t (sW^t)$

$s = \left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n} \right)$ \quad \text{the (original) PageRank}$

$s = \text{some "seed", e.g.,} (1, 0, \ldots, 0) \quad \text{personalized PageRank}$
Approximate PageRank: Key Idea

By definition PageRank is fixed point of:

$$pr(\alpha, s) = \alpha s + (1 - \alpha)pr(\alpha, s)W,$$

Claim:

$$pr(\alpha, s) = \alpha s + (1 - \alpha)pr(\alpha, sW).$$

Proof:

define a matrix for the pr operator:
$$R_\alpha s = pr(\alpha, s)$$

$$R_\alpha = \alpha \sum_{t=0}^{\infty} (1 - \alpha)^t W^t$$

$$= \alpha \left(I + \sum_{u=1}^{\infty} (1 - \alpha)^u W^u \right)$$

$$= \alpha I + (1 - \alpha)W \sum_{t=0}^{\infty} (1 - \alpha)^t W^t$$

$$= \alpha I + (1 - \alpha)WR_\alpha$$
Approximate PageRank: Key Idea

By definition PageRank is fixed point of:

\[
pr(\alpha, s) = \alpha s + (1 - \alpha) pr(\alpha, s) W, \\
pr(\alpha, s) = \alpha s + (1 - \alpha) pr(\alpha, sW).
\]

Claim:

Proof:

\[
R_\alpha = \alpha \sum_{t=0}^{\infty} (1 - \alpha)^t W^t \\
= \alpha I + (1 - \alpha) W R_\alpha.
\]

\[
pr(\alpha, s) = s R_\alpha \\
= \alpha s + (1 - \alpha) sW R_\alpha \\
= \alpha s + (1 - \alpha) pr(\alpha, sW).
\]
Approximate PageRank: Key Idea

By definition PageRank is fixed point of:

\[\text{pr}(\alpha, s) = \alpha s + (1 - \alpha) \text{pr}(\alpha, s) \cdot W, \]

Claim:

\[\text{pr}(\alpha, s) = \alpha s + (1 - \alpha) \text{pr}(\alpha, s \cdot W). \]

Recursively compute PageRank of “neighbors of s” (=sW), then adjust

Key idea in apr:

- do this “recursive step” repeatedly
- focus on nodes where finding PageRank from neighbors will be useful
Approximate PageRank: Key Idea

\[pr(\alpha, s) = \alpha s + (1 - \alpha) pr(\alpha, sW). \quad W = \frac{I + P}{2} \]

\[\text{push}_u(p, r): \]

1. Let \(p' = p \) and \(r' = r \), except for the following changes:

 (a) \(p'(u) = p(u) + \alpha r(u) \).

 (b) \(r'(u) = (1 - \alpha) r(u)/2 \).

 (c) For each \(v \) such that \((u, v) \in E \): \(r'(v) = r(v) + (1 - \alpha) r(u)/(2d(u)) \).

2. Return \((p', r') \).

- \(p \) is current approximation (start at 0)
- \(r \) is set of “recursive calls to make”
 - residual error
 - start with all mass on \(s \)
- \(u \) is the node picked for the next call
Lemma 1. Let \(p' \) and \(r' \) be the result of the operation \(\text{push}_u \) on \(p \) and \(r \). Then

\[
p' + \text{pr}(\alpha, r') = p + \text{pr}(\alpha, r).
\]

Proof of Lemma 1. After the push operation, we have

\[
p' = p + \alpha r(u) \chi_u.
\]
\[
r' = r - r(u) \chi_u + (1 - \alpha) r(u) \chi_u W.
\]

Using equation (5),

\[
p + \text{pr}(\alpha, r) = p + \text{pr}(\alpha, r - r(u) \chi_u) + \text{pr}(\alpha, r(u) \chi_u)
\]
\[
= p + \text{pr}(\alpha, r - r(u) \chi_u) + \underbrace{\alpha r(u) \chi_u + (1 - \alpha) \text{pr}(\alpha, r(u) \chi_u W)}_{\text{linearity}}
\]
\[
= [p + \alpha r(u) \chi_u] + \text{pr}(\alpha, [r - r(u) \chi_u + (1 - \alpha) r(u) \chi_u W])
\]
\[
= p' + \text{pr}(\alpha, r').
\]

\[
\text{pr}(\alpha, r - r(u) \chi_u) + (1-\alpha) \text{pr}(\alpha, r(u) \chi_u W) = \text{pr}(\alpha, r - r(u) \chi_u + (1-\alpha) r(u) \chi_u W)
\]

\[
\text{pr}(\alpha, s) = \alpha s + (1 - \alpha) \text{pr}(\alpha, sW).
\]
Approximate PageRank: Algorithm

ApproximatePageRank \((v, \alpha, \epsilon)\):

1. Let \(p = \vec{0}\), and \(r = \chi_v\).

2. While \(\max_{u \in V} \frac{r(u)}{d(u)} \geq \epsilon\):

 (a) Choose any vertex \(u\) where \(\frac{r(u)}{d(u)} \geq \epsilon\).

 (b) Apply \(\text{push}_u\) at vertex \(u\), updating \(p\) and \(r\).

3. Return \(p\), which satisfies \(p = \text{apr}(\alpha, \chi_v, r)\) with \(\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon\).

\(\text{push}_u(p, r)\):

1. Let \(p' = p\) and \(r' = r\), except for the following changes:

 (a) \(p'(u) = p(u) + \alpha r(u)\).

 (b) \(r'(u) = (1 - \alpha)r(u)/2\).

 (c) For each \(v\) such that \((u, v) \in E\): \(r'(v) = r(v) + (1 - \alpha)r(u)/(2d(u))\).

2. Return \((p', r')\).
Analysis

Lemma 1. Let \(p' \) and \(r' \) be the result of the operation \(\text{push}_u \) on \(p \) and \(r \). Then

\[
p' + \text{pr}(\alpha, r') = p + \text{pr}(\alpha, r).
\]

So, at every point in the \(apr \) algorithm:

\[
p + \text{pr}(\alpha, r) = \text{pr}(\alpha, \chi_v),
\]

Also, at each point, \(|r|_1 \) decreases by \(\alpha \cdot \varepsilon \cdot \text{degree}(u) \), so:

after \(T \) push operations where \(\text{degree}(i\text{-th } u) = d_i \), we know

\[
\sum_i d_i \cdot \alpha \varepsilon \leq 1 \quad \Rightarrow \quad \sum_{i=1}^{T} d_i \leq \frac{1}{\varepsilon \alpha}.
\]

which bounds the size of \(r \) and \(p \)
Analysis

Theorem 1. ApproximatePageRank\((v, \alpha, \epsilon)\) runs in time \(O\left(\frac{1}{\epsilon \alpha}\right)\), and computes an approximate PageRank vector \(p = \text{apr}(\alpha, \chi_v, r)\) such that the residual vector \(r\) satisfies \(\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon\), and such that \(\text{vol}(\text{Supp}(p)) \leq \frac{1}{\epsilon \alpha}\).

With the invariant: \(p + \text{pr}(\alpha, r) = \text{pr}(\alpha, \chi_v)\),

This bounds the error of \(p\) relative to the PageRank vector.
ApproximatePageRank \((v, \alpha, \epsilon)\):

1. Let \(p = \overrightarrow{0} \), and \(r = \chi_v \).
2. While \(\max_{u \in V} \frac{r(u)}{d(u)} \geq \epsilon \):

 (a) Choose any vertex \(u \) where \(\frac{r(u)}{d(u)} \geq \epsilon \).

 (b) Apply \text{push}_u \) at vertex \(u \), updating \(p \) and \(r \).

3. Return \(p \), which satisfies \(p = \text{apr}(\alpha, \chi_v, r) \) with \(\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon \).

\text{push}_u(p, r):

1. Let \(p' = p \) and \(r' = r \), except for the following changes:

 (a) \(p'(u) = p(u) + \alpha r(u) \).

 (b) \(r'(u) = (1 - \alpha) r(u) / 2 \).

 (c) For each \(v \) such that \((u, v) \in E\): \(r'(v) = r(v) + (1 - \alpha) r(u) / (2d(u)) \).

2. Return \((p', r')\).

\(p, r \) are hash tables – they are small \((1/\epsilon \alpha)\)

Could implement with API:
- \text{List\{Node\}} \text{neighbor}(\text{Node} \ u)
- \text{int degree}(\text{Node} \ u)

\(d(v) = \text{api.degree}(v) \)

push just needs \(p, r \), and neighbors of \(u \)
ApproximatePageRank \((v, \alpha, \epsilon)\):

1. Let \(p = 0\), and \(r = \chi_v\).
2. While \(\max_{u \in V} \frac{r(u)}{d(u)} \geq \epsilon\):

 (a) Choose any vertex \(u\) where \(\frac{r(u)}{d(u)} \geq \epsilon\).

 (b) Apply \(\text{push}_u\) at vertex \(u\), updating \(p\) and \(r\).
3. Return \(p\), which satisfies \(p = \text{apr}(\alpha, \chi_v, r)\) with \(\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon\).

\(\text{push}_u(p, r)\):

1. Let \(p' = p\) and \(r' = r\), except for the following changes:

 (a) \(p'(u) = p(u) + \alpha r(u)\).

 (b) \(r'(u) = \frac{(1 - \alpha)r(u)}{2}\).

 (c) For each \(v\) such that \((u, v) \in E\): \(r'(v) = r(v) + \frac{(1 - \alpha)r(u)}{2d(u)}\).
2. Return \((p', r')\).
ApproximatePageRank \((v, \alpha, \epsilon)\):

1. Let \(p = 0\), and \(r = \chi_v\).
2. While \(\max_{u \in V} \frac{r(u)}{d(u)} \geq \epsilon\):
 - Scan \textbf{repeatedly} through an adjacency-list encoding of the graph
 - For every line you read \(u, v_1, \ldots, v_{d(u)}\) such that \(r(u)/d(u) > \epsilon\):
 - Apply \texttt{push}_u at vertex \(u\), updating \(p\) and \(r\).
3. Return \(p\), which satisfies \(p = \text{apr}(\alpha, \chi_v, r)\) with \(\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon\).

\textbf{benefit:} storage is \(O(1/\epsilon \alpha)\) for the hash tables, avoids any \textit{seeking}
Possible optimizations?

- Much faster than doing random access the first few scans, but then slower the last few
 - …there will be only a few ‘pushes’ per scan
- Optimizations you might imagine:
 - Parallelize?
 - Hybrid seek/scan:
 - Index the nodes in the graph on the first scan
 - Start seeking when you expect too few pushes to justify a scan
 - Say, less than one push/megabyte of scanning
 - Hotspots:
 - Save adjacency-list representation for nodes with a large $r(u)/d(u)$ in a separate file of “hot spots” as you scan
 - Then rescan that smaller list of “hot spots” until their score drops below threshold.
Putting this together

• Given a graph
 – that’s too big for memory, and/or
 – that’s only accessible via API
• ...we can extract a sample in an interesting area
 – Run the apr/rwr from a seed node
 – Sweep to find a low-conductance subset
• Then
 – compute statistics
 – test out some ideas
 – visualize it...