Randomized Algorithms Part 3

William Cohen

Outline

- Randomized methods so far
 - -SGD with the hash trick
 - -Bloom filters
 - count-min sketches
- Today:
 - Review and discussion
 - More on count-min
 - Morris counters
 - locality sensitive hashing

Locality Sensitive Hashing (LSH)

- Bloom filters:
 - set of objects mapped to a bit vector
 - allows: add to set, check containment
- Countmin sketch:
 - sparse vector, x mapped to small dense matrix
 - allows: recover approximate value of x_i especially useful for largest values
- Locality sensitive hash:
 - feature vector, x mapped to bit vector, bx
 - allows: compute approximate similarity of bx and by

LSH: key ideas

- Goal:
 - map feature vector x to bit vector bx
 - ensure that bx preserves "similarity"

Random Projections

Random projections

Random projections

To make those points "close" we need to project to a direction orthogonal to the line between them

Random projections

8

LSH: key ideas

- Goal:
 - map feature vector x to bit vector bx
 - ensure that bx preserves "similarity"
- Basic idea: use random projections of **x**
 - Repeat many times:
 - Pick a random hyperplane r by picking random weights for each feature (say from a Gaussian)
 - Compute the inner product of r with x
 - Record if **x** is "close to" $\mathbf{r} (\mathbf{r}.\mathbf{x} \ge 0)$
 - the next bit in bx
 - Theory says that is x' and x have small cosine distance then bx and bx' will have small Hamming distance

Online Generation of Locality Sensitive Hash Signatures

Benjamin Van Durme and Ashwin Lall

DENISON UNIVERSITY

$$\cos(\theta) \approx \cos(\frac{h}{b}\pi)$$
$$= \cos(\frac{1}{6}\pi)$$

32 bit signatures

True Cosine

256 bit signatures

Accurate

LSH applications

- Compact storage of data
 - and we can still compute similarities
- LSH also gives very fast ...:
 - approx nearest neighbor method
 - just look at other items with **bx'=bx**
 - also very fast nearest-neighbor methods for Hamming distance
 - approximate clustering/blocking
 - cluster = all things with same bx vector

Locality Sensitive Hashing (LSH) and Pooling Random Values

LSH algorithm

- Naïve algorithm:
 - Initialization:
 - For i=1 to outputBits:
 - For each feature f:

```
» Draw r(f,i) \sim Normal(0,1)
```

- Given an instance x
 - For i=1 to outputBits:

```
LSH[i] =
```

 $sum(\mathbf{x}[f]*r[i,f])$ for f with non-zero weight in \mathbf{x}) > 0? 1:0

Return the bit-vector LSH

LSH algorithm

- But: storing the *k classifiers* is expensive in high dimensions
 - -For each of 256 bits, a dense vector of weights for every feature in the vocabulary
- Storing seeds and random number generators:
 - -Possible but somewhat fragile

LSH: "pooling" (van Durme)

- Better algorithm:
 - Initialization:
 - Create a pool:
 - Pick a random seed s
 - For i=1 to poolSize:
 - » Draw pool[i] ~ Normal(0,1)
 - For i=1 to outputBits:
 - Devise a random hash function hash(i,f):
 - » E.g.: hash(i,f) = hashcode(f) XOR randomBitString[i]
 - Given an instance x
 - For i=1 to outputBits:

```
LSH[i] = sum(x[f] * pool[hash(i,f) % poolSize] for f in x) > 0 ? 1 : 0)
```

Return the bit-vector LSH

The Pooling Trick

LSH: key ideas: pooling

- Advantages:
 - with pooling, this is a compact re-encoding of the data
 - you don't need to store the r's, just the pool

Locality Sensitive Hashing (LSH) in an On-line Setting

LSH: key ideas: online computation

- Common task: distributional clustering
 - for a word w, x(w) is sparse vector of words that co-occur with w
 - -cluster the w's

$$\vec{v} \in \mathbb{R}^d$$

$$\vec{r}_i \sim N(0,1)^d$$

$$h_i(\vec{v}) = \begin{cases} 1 & \text{if } \vec{v} \cdot \vec{r_i} \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

if
$$\vec{v} = \Sigma_j \vec{v}_j$$

then $\vec{v} \cdot \vec{r}_i = \Sigma_j \vec{v}_j \cdot \vec{r}_i$

Break into local products

Online
$$h_{it}(\vec{v}) = \begin{cases} 1 & \text{if } \Sigma_j^t \vec{v}_j \cdot \vec{r}_i \geq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Algorithm 1 STREAMING LSH ALGORITHM

Parameters:

- m: size of pool
- d: number of bits (size of resultant signature)
- s: a random seed
- $h_1, ..., h_d$: hash functions mapping $\langle s, f_i \rangle$ to $\{0, ..., m-1\}$
- **INITIALIZATION:**
 - 1: Initialize floating point array $P[0, \ldots, m-1]$
- 2: Initialize H, a hashtable mapping words to floating point arrays of size d
- 3: **for** $i := 0 \dots m 1$ **do**
- 4: P[i] := random sample from N(0, 1), using s as seed

ONLINE:

- 1: for each word w in the stream do
- 2: **for** each feature f_i associated with w **do**
- 3: **for** $j := 1 \dots d$ **do**
- 4: $H[w][j] := H[w][j] + P[h_j(s, f_i)]$

SIGNATURE COMPUTATION:

- 1: for each $w \in H$ do
- 2: **for** $i := 1 \dots d$ **do**
- 3: **if** H[w][i] > 0 **then**
- 4: S[w][i] := 1
- 5: else
- 6: S[w][i] := 0

Experiment

- Corpus: 700M+ tokens, 1.1M distinct bigrams
- For each, build a feature vector of words that co-occur near it, using on-line LSH
- Check results with 50,000 actual vectors

similar to problem we looked at Tuesday using sketches

Experiment

Closest based on true cosine

London

Milan_{.97}, Madrid_{.96}, Stockholm_{.96}, Manila_{.95}, Moscow_{.95} ASHER₀, Champaign₀, MANS₀, NOBLE₀, come₀ Prague₁, Vienna₁, suburban₁, synchronism₁, Copenhagen₂

London

Milan_{.97}, Madrid_{.96}, Stockholm_{.96}, Manila_{.95}, Moscow_{.95}
ASHER₀, Champaign₀, MANS₀, NOBLE₀, come₀
Prague₁, Vienna₁, suburban₁, synchronism₁, Copenhagen₂
Frankfurt₄, Prague₄, Taszar₅, Brussels₆, Copenhagen₆
Prague₁₂, Stockholm₁₂, Frankfurt₁₄, Madrid₁₄, Manila₁₄
Stockholm₂₀, Milan₂₂, Madrid₂₄, Taipei₂₄, Frankfurt₂₅

Closest based on 32 bit sig.'s

