Randomized Algorithms
Part 3
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Outline

* Randomized methods - so far
— SGD with the hash trick
— Bloom filters
— count-min sketches
* Today:
—Review and discussion
—More on count-min
— Morris counters
—locality sensitive hashing



Locality Sensitive Hashing (LSH)

 Bloom filters:

— set of objects mapped to a bit vector

—allows: add to set, check containment
 Countmin sketch:

— sparse vector, X mapped to small dense matrix

—allows: recover approximate value of x;
especially useful for largest values

* Locality sensitive hash:
— feature vector, x mapped to bit vector, bx

—allows: compute approximate similarity of bx
and by




LSH: key ideas

* Goal:
—map feature vector x to bit vector bx
—ensure that bx preserves “similarity”



Random Projections
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Random projections

To make those
points “close’” we
need to project to
a direction
orthogonal to the
line between

them




Random projections

So if | pick a random r \

and r.x and r.x’ are
closer than y then

probably x and x’ were
close to start with.

Any other
direction will keep
the distant points
distant.




LSH: key ideas

* Goal:
— map feature vector x to bit vector bx
— ensure that bx preserves “similarity”
* Basicidea: use random projections of X

— Repeat many times:

* Pick a random hyperplane r by picking random weights
for each feature (say from a Gaussian)

* Compute the inner product of r with x

* Record ifxis “close to” r (r.x>=0)
— the next bit in bx

* Theory says that is X’ and x have small cosine distance
then bx and bx’ will have small Hamming distance



Online Generation of Locality
Sensitive Hash Signatures

Benjamin Van Durme and Ashwin Lall
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32 bit signatures 256 bit signatures
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LSH applications

* Compact storage of data

—and we can still compute similarities
* LSH also gives very fast ...:

—approx nearest neighbor method

* just look at other items with bx'=bx

* also very fast nearest-neighbor methods for
Hamming distance

—approximate clustering/blocking

* cluster = all things with same bx vector



Locality Sensitive Hashing (LSH) and
Pooling Random Values



LSH algorithm

* Naive algorithm:
— Initialization:
* For i=1 to outputBits:
— For each feature £
» Draw r(f,i) ~ Normal(0,1)
— Given an instance x
* Fori=1 to outputBits:
LSH[i] =
sum(x[f]*r[i,f] for fwith non-zero weightinx) >0 ?
* Return the bit-vector LSH

1:0



LSH algorithm

* But: storing the k classifiersis expensive in
high dimensions

—For each of 256 bits, a dense vector of
weights for every feature in the vocabulary

* Storing seeds and random number generators:
—Possible but somewhat fragile
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LSH: “pooling” (van Durme)

* Better algorithm:
— Initialization:
* Create a pool:
— Pick arandom seed s
— For i=1 to poolSize:
» Draw pool[i] ~ Normal(0,1)
* Fori=1 to outputBits:
— Devise a random hash function hash(i,f):
» E.g.: hash(i,f) = hashcode(f) XOR randomBitString]i]
— Given an instance x
* Fori=1 to outputBits:
LSH[i] = sum(x[f] * pool[hash(i,f) % poolSize] for finx) >07?1:0)
* Return the bit-vector LSH
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The Pooling Trick
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LSH: key ideas: pooling

* Advantages:

—with pooling, this is a compact re-encoding
of the data

* you don’t need to store the r’s, just the pool
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Locality Sensitive Hashing (LSH) in
an On-line Setting
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LSH: key ideas: online computation

 Common task: distributional clustering

—for a word w, x(w) is sparse vector of words
that co-occur with w

—cluster the w's
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v € R¢

T ~ N(Ovl)d

. [ 1 ifv-7 >0,
hi(v) = { 0 otherwise.
if v = ijl_fj

then v - T, — Zj’Uj i

Online h”it (’(7) p— {

Break into local products

1 if Eﬁ-’ﬁ’j .1 > 0,
0 otherwise.



Algorithm 1 STREAMING LSH ALGORITHM

Parameters:
m : size of pool
d : number of bits (size of resultant signature)
s : arandom seed
hi, ..., hq : hash functions mapping (s, f;) to {0,...,m—1}
INITIALIZATION:
1: Initialize floating point array P[0, ..., m — 1]
2: Initialize H, a hashtable mapping words to floating point
arrays of size d
3: fori:=0...m—1do

4:  PJi| := random sample from N (0, 1), using s as seed
ONLINE:

1: for each word w in the stream do

2:  for each feature f; associated with w do

3: forj:=1...ddo

4: H{w][j] := H[w][j] + P[h;(s, f)]

SIGNATURECOMPUTATION:

1: for eachw € H do

2: for::=1...ddo

3: if H[w][] > O then
4: Sw][i] :=1

5: else

6:

S[w][i] := 0
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Experiment

* Corpus: 700M+ tokens, 1.1M distinct bigrams

 For each, build a feature vector of words that
co-occur near it, using on-line LSH

 Check results with 50,000 actual vectors

similar to problem we looked at
Tuesday using sketches
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Experiment
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