Randomized Algorithms
Part 3

William Cohen

Outline

* Randomized methods - so far
— SGD with the hash trick
— Bloom filters
— count-min sketches
* Today:
—Review and discussion
—More on count-min
— Morris counters
—locality sensitive hashing

Locality Sensitive Hashing (LSH)

 Bloom filters:

— set of objects mapped to a bit vector

—allows: add to set, check containment
 Countmin sketch:

— sparse vector, X mapped to small dense matrix

—allows: recover approximate value of x;
especially useful for largest values

* Locality sensitive hash:
— feature vector, x mapped to bit vector, bx

—allows: compute approximate similarity of bx
and by

LSH: key ideas

* Goal:
—map feature vector x to bit vector bx
—ensure that bx preserves “similarity”

Random Projections

at
- L A - -ow

Random projections

A

Random projections

To make those
points “close’” we
need to project to
a direction
orthogonal to the
line between

them

Random projections

So if | pick a random r \

and r.x and r.x’ are
closer than y then

probably x and x’ were
close to start with.

Any other
direction will keep
the distant points
distant.

LSH: key ideas

* Goal:
— map feature vector x to bit vector bx
— ensure that bx preserves “similarity”
* Basicidea: use random projections of X

— Repeat many times:

* Pick a random hyperplane r by picking random weights
for each feature (say from a Gaussian)

* Compute the inner product of r with x

* Record ifxis “close to” r (r.x>=0)
— the next bit in bx

* Theory says that is X’ and x have small cosine distance
then bx and bx’ will have small Hamming distance

Online Generation of Locality
Sensitive Hash Signatures

Benjamin Van Durme and Ashwin Lall

human language technology

eeeeeee f excellence DENISON
7 JOHNS HOPKINS UNIVERSITY

UNTIVER RS SITY

10

y 4

.

.

_BEs |

(...................................

CACACAT At

Hamming Distance := h =

Signature Length := b

>

1
6\

32 bit signatures 256 bit signatures

=
0.5 e

0.0 e

-0.5

Approximate Cosine
Approximate Cosine

00 02 04 06 08 10 00 02 04 06 08 1.0

True Cosine True Cosine

[Cheap} [Accurate j

LSH applications

* Compact storage of data

—and we can still compute similarities
* LSH also gives very fast ...:

—approx nearest neighbor method

* just look at other items with bx'=bx

* also very fast nearest-neighbor methods for
Hamming distance

—approximate clustering/blocking

* cluster = all things with same bx vector

Locality Sensitive Hashing (LSH) and
Pooling Random Values

LSH algorithm

* Naive algorithm:
— Initialization:
* For i=1 to outputBits:
— For each feature £
» Draw r(f,i) ~ Normal(0,1)
— Given an instance x
* Fori=1 to outputBits:
LSH[i] =
sum(x[f]*r[i,f] for fwith non-zero weightinx) >0 ?
* Return the bit-vector LSH

1:0

LSH algorithm

* But: storing the k classifiersis expensive in
high dimensions

—For each of 256 bits, a dense vector of
weights for every feature in the vocabulary

* Storing seeds and random number generators:
—Possible but somewhat fragile

20

LSH: “pooling” (van Durme)

* Better algorithm:
— Initialization:
* Create a pool:
— Pick arandom seed s
— For i=1 to poolSize:
» Draw pool[i] ~ Normal(0,1)
* Fori=1 to outputBits:
— Devise a random hash function hash(i,f):
» E.g.: hash(i,f) = hashcode(f) XOR randomBitString]i]
— Given an instance x
* Fori=1 to outputBits:
LSH[i] = sum(x[f] * pool[hash(i,f) % poolSize] for finx) >07?1:0)
* Return the bit-vector LSH

21

The Pooling Trick

O

LSH: key ideas: pooling

* Advantages:

—with pooling, this is a compact re-encoding
of the data

* you don’t need to store the r’s, just the pool

23

Locality Sensitive Hashing (LSH) in
an On-line Setting

24

LSH: key ideas: online computation

 Common task: distributional clustering

—for a word w, x(w) is sparse vector of words
that co-occur with w

—cluster the w's

25

v € R¢

T ~ N(Ovl)d

. [1 ifv-7 >0,
hi(v) = { 0 otherwise.
if v = ijl_fj

then v - T, — Zj’Uj i

Online h”it (’(7) p— {

Break into local products

1 if Eﬁ-’ﬁ’j .1 > 0,
0 otherwise.

Algorithm 1 STREAMING LSH ALGORITHM

Parameters:
m : size of pool
d : number of bits (size of resultant signature)
s : arandom seed
hi, ..., hq : hash functions mapping (s, f;) to {0,...,m—1}
INITIALIZATION:
1: Initialize floating point array P[0, ..., m — 1]
2: Initialize H, a hashtable mapping words to floating point
arrays of size d
3: fori:=0...m—1do

4: PJi| := random sample from N (0, 1), using s as seed
ONLINE:

1: for each word w in the stream do

2: for each feature f; associated with w do

3: forj:=1...ddo

4: H{w][j] := H[w][j] + P[h;(s, f)]

SIGNATURECOMPUTATION:

1: for eachw € H do

2: for::=1...ddo

3: if H[w][] > O then
4: Sw][i] :=1

5: else

6:

S[w][i] := 0

27

Experiment

* Corpus: 700M+ tokens, 1.1M distinct bigrams

 For each, build a feature vector of words that
co-occur near it, using on-line LSH

 Check results with 50,000 actual vectors

similar to problem we looked at
Tuesday using sketches

28

Experiment

29

Closest based on true cosine

P
pr-
-

/ London & \

Milan g7, Madrid g4, Stockholm g6, Manila g5, Moscow,95]

0> 0s 0> 0 0
Prague;, Vienna,;, suburban;, synchronism;, Copenhagens

/ London \

Milan g7, Madrid g4, Stockholm g, Manila g5, Moscow g5
ASHERq, Champaiena, MANSA, NOBLEQ, comer

Prague;, Vienna,, suburban;, synchronism;, Copenhagens

"";":" 0 “S" c156 ‘.‘..H‘:" A
Prague;2, Stockholmi2, Frankfurt 4, Madrid;4, Manilajq 7
kStockholmzo, Milanss, Madridoy, Taipeios, Frankfurtas J

Closest based on 32 bit 'sig.’s

~
)

[Cheapj 3

