Unsupervised Learning on Graphs

Spectral Clustering: Graph = Matrix

	A	B	C	D	E	F	G	H	I	J
A		I		I		I				
B	I		I							
C		I								
D	I					I				
E						I				
F	I			I	I					
G									I	
H							I		I	I
I							I	I		I
J								I	I	

Spectral Clustering: Graph = Matrix Transitively Closed Components = "Blocks"

sometimes called a block-stochastic matrix:

- each node has a latent "block"
- fixed probability qi for links between elements of block i
- fixed probability q 0 for links between elements of different blocks

Of course we can't see the "blocks" unless the nodes are sorted by cluster...

Spectral Clustering: Graph = Matrix Vector $=$ Node \rightarrow Weight

	A	B	C	D	E	F	G	H	I	J		A
A	-	1	I			I					A	3
B	1	-	I								B	2
C	1	1	-								C	3
D				-	1	I					D	
E				1	-	I					E	
F	I			1	1	-					F	
G							-		1	I	G	
H								-	1	1	H	
I							1	1	-	I	I	
J							I	I	1	_	J	

Spectral Clustering: Graph = Matrix $M^{*} v_{1}=v_{2}$ "propogates weights from neighbors"

Spectral Clustering: Graph = Matrix $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"

Spectral Clustering: Graph = Matrix

 $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"$\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v}$ is an eigenvector with eigenvalue λ

Q: How do I pick v to be an eigenvector for a blockstochastic matrix?

Spectral Clustering: Graph = Matrix $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"
$\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v}$ is an eigenvector with eigenvalue λ

How do l pick \mathbf{v} to be an eigenvector for a blockstochastic matrix?

Spectral Clustering: Graph = Matrix $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"
$\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v} \underset{\sim}{\text { is }}$ an eigenvector with eigenvalue λ

Spectral Clustering: Graph = Matrix $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"
$\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v}$ is an eigenvector with eigenvalue λ

[Shi \& Meila, 2002]

Spectral Clustering: Graph = Matrix
$W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"
$\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v}$ is an eigenvector with eigenvalue λ
If W is connected but roughly block diagonal with k blocks then

- the top eigenvector is a constant vector
- the next k eigenvectors are roughly piecewise constant with "pieces" corresponding to blocks

Spectral Clustering: Graph = Matrix $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"
$\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v}$ is an eigenvector with eigenvalue λ

If \mathbf{W} is connected but roughly block diagonal with k blocks then

- the "top" eigenvector is a constant vector
- the next k eigenvectors are roughly piecewise constant with "pieces" corresponding to blocks

Spectral clustering:

- Find the top $k+1$ eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{k}+1}$
- Discard the "top" one
- Replace every node a with k-dimensional vector

$$
x_{a}=\left\langle\mathbf{v}_{2}(a), \ldots, v_{k+1}(a)\right\rangle
$$

- Cluster with k-means

Spectral Clustering: Pros and

Cons

- Elegant, and well-founded mathematically
- Tends to avoid local minima
- Optimal solution to relaxed version of mincut problem (Normalized cut, aka NCut)
- Works quite well when relations are approximately transitive (like similarity, social connections)
- Expensive for very large datasets
- Computing eigenvectors is the bottleneck
- Approximate eigenvector computation not always useful
- Noisy datasets sometimes cause problems
- Picking number of eigenvectors and k is tricky
- "Informative" eigenvectors need not be in top few
- Performance can drop suddenly from good to terrible

Experimental results:

best-case assignment of class labels to clusters

Another way to think about spectral clustering....

Spectral Clustering: Graph = Matrix $\mathbf{W} * \mathbf{v}_{1}=\mathbf{v}_{2}$ "propogates weights from neighbors"
$\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v}$ is an eigenvector with eigenvalue λ

- smallest eigenvecs of D-A are largest eigenvecs of A
- smallest eigenvecs of I-W are largest eigenvecs of W Suppose each $y(i)=+1$ or -1 :
- Then y is a cluster indicator that splits the nodes into two
- what is $\mathbf{y}^{\top}(\mathrm{D}-\mathrm{A}) \mathbf{y}$?

$$
\begin{aligned}
\mathbf{y}^{T}(D-A) \mathbf{y} & =\mathbf{y}^{T} D \mathbf{y}-\mathbf{y}^{T} A \mathbf{y}=\sum_{i} d_{i} y_{i}{ }^{2}-\sum_{i, j} a_{i, j} y_{i} y_{j} \\
& =\frac{1}{2}\left[2 \sum_{i} d_{i} y_{i}{ }^{2}-2 \sum_{i, j} a_{i, j} y_{i} y_{j}\right] \\
& =\frac{1}{2}\left[\sum_{i}\left(\sum_{j} a_{i j}\right) y_{i}{ }^{2}+\sum_{j}\left(\sum_{i} a_{i j}\right) y_{j}{ }^{2}-2 \sum_{i, j} a_{i, j} y_{i} y_{j}\right] \\
& =\frac{1}{2}\left[\sum_{i, j} a_{i j} y_{i}{ }^{2}+\sum_{i, j} a_{i j} y_{j}{ }^{2}-2 \sum_{i, j} a_{i, j} y_{i} y_{j}\right] \\
& =\frac{1}{2}\left[\sum_{i, j} a_{i, j}\left(y_{i}-y_{j}\right)^{2}\right]=\operatorname{size} \text { of CUT(y) } \\
\mathbf{y}^{T}(I & -W) \mathbf{y}=\operatorname{size} \text { of NCUT(} \mathbf{y})
\end{aligned}
$$

NCUT: roughly minimize ratio of transitions between classes vs transitions within classes

Spectral Clustering: Graph = Matrix $\mathbf{W}{ }^{*} \mathbf{v}_{1}=\mathbf{v}_{2}$ "propogates weights from neighbors"

$$
\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v} \text { is an eigenvector with eigenvalue } \lambda
$$

- smallest eigenvecs of D-A are largest eigenvecs of A
- smallest eigenvecs of I-W are largest eigenvecs of W Suppose each $y(i)=+1$ or -1 :
- Then y is a cluster indicator that cuts the nodes into two
- what is $y^{\top}(D-A) y$? The cost of the graph cut defined by y
- what is $\mathbf{y}^{\top}(\mathrm{I}-\mathrm{W}) \mathbf{y}$? Also a cost of a graph cut defined by \mathbf{y}
- How to minimize it?
- Turns out: to minimize $\mathbf{y}^{\top} \mathbf{X} \mathbf{y} /\left(\mathbf{y}^{\top} \mathbf{y}\right)$ find smallest eigenvector of X
- But: this will not be $+1 /-1$, so it's a "relaxed" solution

Spectral Clustering: Graph = Matrix $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"
$\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v} \underset{\sim}{\text { is }}$ an eigenvector with eigenvalue λ

Another way to think about spectral clustering....

- Most normal people think about spectral clustering like that - as relaxed optimization
- ...me, not so much
- I like the connection to "averaging"... because....

Spectral Clustering: Graph = Matrix $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"

Repeated averaging with neighbors as a clustering

 method- Pick a vector v^{0} (maybe at random)
- Compute $v^{1}=W v^{0}$
- i.e., replace $v^{0}[x]$ with weighted average of $v^{0}[y]$ for the neighbors y of x
- Plot $v^{1}[x]$ for each x
- Repeat for v^{2}, v^{3}, \ldots
- Variants widely used for semi-supervised learning
- HF/CoEM/wvRN - average + clamping of labels for nodes with known labels
- Without clamping, will converge to constant v^{\dagger}
- What are the dynamics of this process?

Spectral Clustering: Graph = Matrix $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"
$\mathbf{W} \cdot \mathbf{v}=\lambda \mathbf{v}: \mathbf{v} \underset{\sim}{\text { is }}$ an eigenvector with eigenvalue λ

Repeated averaging with neighbors on a sample problem...

Repeated averaging with neighbors on a sample problem...

(a) 3Circles PIC result
(b) Embedding at $t=10$
(c) Embedding at $t=50$
(d) Embedding at $t=100$

Repeated averaging with neighbors on a sample problem...

(e) Embedding at $t=200$
(f) Embedding at $t=400$

Repeated averaging with neighbors on a sample problem...

(a) 3Circles PIC result

(e) Embedding at $t=200$
(f) Embedding at $t=400$
(g) Embedding at $t=600$
(h) Embedding at $t=1000$

PIC: Power Iteration Clustering

run power iteration (repeated averaging w/ neighbors)
with early stopping

1. Pick an initial vector v^{0}.
2. Set $\mathbf{v}^{\mathbf{t}+1} \leftarrow \frac{W \mathbf{v}^{\mathrm{t}}}{\left\|W \mathbf{v}^{\mathrm{t}}\right\|_{1}}$ and $\delta^{t+1} \leftarrow\left|\mathbf{v}^{\mathbf{t}+1}-\mathrm{v}^{\mathrm{t}}\right|$.
3. Increment t and repeat above step until $\left|\delta^{t}-\delta^{t-1}\right| \simeq 0$.
4. Use k-means to cluster points on $\mathbf{v}^{\mathbf{t}}$ and return clusters $C_{1}, C_{2}, \ldots, C_{k}$.

- Vo: random start, or "degree matrix" D, or ...
- Easy to implement and efficient
- Very easily parallelized
- Experimentally, often better than traditional spectral methods
- Surprising since the embedded space is 1-dimensional!

Experiments

- "Network" problems: natural graph structure
- PolBooks: 105 political books, 3 classes, linked by copurchaser
- UMBCBlog: 404 political blogs, 2 classes, blogroll links
- AGBlog: 1222 political blogs, 2 classes, blogroll links
- "Manifold" problems: cosine distance between classification instances
- Iris: 150 flowers, 3 classes
- PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7)
- 20ngA: 200 docs, misc.forsale vs soc.religion.christian
- 20ngB: 400 docs, misc.forsale vs soc.religion.christian
- 20ngC: $20 \mathrm{ng} \mathrm{B}+200$ docs from talk.politics.guns
- 20ngD: $20 n g C+200$ docs from rec.sport.baseball

Experimental results: best-case assignment of class labels to clusters

	NCut				NJW		PIC	
Dataset	\mathbf{k}	Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1	
Iris	3	0.673	0.570	0.807	0.806	0.980	0.980	
PenDigits01	2	1.000	1.000	1.000	1.000	1.000	1.000	
PenDigits17	2	0.755	0.753	0.755	0.754	0.755	0.753	
UBMCBlog	2	0.953	0.953	0.953	0.953	0.948	0.948	
AGBlog	2	0.520	0.342	0.520	0.342	0.957	0.957	
20ngA	2	0.955	0.955	0.955	0.955	0.960	0.960	
20ngB	2	0.505	0.344	0.550	0.436	0.905	0.904	
20ngC	3	0.613	0.621	0.635	0.639	0.737	0.730	
20ngD	4	0.469	0.432	0.535	0.534	0.580	0.570	
Average	-	0.716	0.663	0.746	0.713	0.869	0.867	

Table 1: Clustering performance of PIC and spectral clustering algorithms on several real datasets.

(a) Iris, PenDigits, UBMCBlog \& AGBlog

Experiments: run time and scalability

		NCut	NJW	PIC	
Dataset	Size	Runtime	Runtime	Runtime	Iterations
Iris	150	589	242	59	6
PenDigits01	200	965	326	56	6
PenDigits17	200	1197	528	62	6
UBMCBlog	404	4205	1589	85	21
AGBlog	1222	114821	58145	211	34
20ngA	200	1113	355	72	15
20ngB	400	4085	1864	139	13
20ngC	600	13070	6383	190	13
20ngD	800	33191	16295	278	11

Time in millisec

More experiments

Varying the number of clusters for PIC and PIC4 (starts with random 4-d point rather than a random 1-d point).

More experiments

Varying the amount of noise for PIC and PIC4 (starts with random 4 -d point rather than a random 1-d point).

More experiments

Table 1: Dataset Statistics (N/E/C indicates Nodes / Edges / Clusters)
(a) Social network
(b) Author disambiguation

Dataset	N/E/C	Dataset	N/E/C
karate	$34 / 156 / 2$	umbc	$404 / 4764 / 2$
polbooks	$105 / 882 / 3$	mgemail	$280 / 1344 / 55$
dolphin	$62 / 318 / 2$	citeseer	$2114 / 7396 / 6$
football	$115 / 1226 / 10$	cora	$2485 / 10138 / 7$
msp	$4324 / 37254 / 2$		
ag	$1222 / 33428 / 2$		
senate	$98 / 9506 / 2$		

Dataset	N/E/C	Dataset	N/E/C
jsmith	$4120 / 21452 / 30$	jrobinson	$686 / 2846 / 12$
akumar	$801 / 2476 / 14$	ktanaka	$827 / 2758 / 10$
cchen	$424 / 1558 / 16$	mbrown	$579 / 2112 / 13$
djohnson	$1381 / 5344 / 15$	mmiller	$2106 / 9918 / 12$
jmartin	$424 / 1558 / 16$	jlee	$5820 / 23110 / 100$
agupta	$2485 / 10208 / 26$	ychen	$5472 / 25584 / 71$
mjones	$961 / 3450 / 13$	slee	$5963 / 23086 / 86$

More "real" network datasets from various domains
(c) Best alignment: Social networks

Dataset	PSK	PIC $_{\mathrm{D}}$	PIC $_{\mathrm{R}}$	PIC $_{\mathrm{R}} 4$	NCut	NJW
Karate	$\mathbf{1 . 0 0}$	0.91	0.93	0.95	0.95	0.95
Dolphin	0.90	$\mathbf{0 . 9 8}$	0.98	$\mathbf{0 . 9 8}$	$\mathbf{0 . 9 8}$	$\mathbf{0 . 9 8}$
UMBC	0.95	0.93	0.95	0.95	0.95	$\mathbf{0 . 9 6}$
AG	$\mathbf{0 . 9 5}$	0.91	0.94	0.94	0.52	0.51
MSP	$\mathbf{0 . 8 8}$	0.63	0.63	0.63	0.63	0.64
Senate	0.98	$\mathbf{0 . 9 9}$				
PolBook	0.78	0.80	0.81	$\mathbf{0 . 8 3}$	0.82	0.80
Football	$\mathbf{0 . 7 6}$	0.47	0.51	0.66	0.72	0.67
MGEmail	0.28	0.39	0.40	$\mathbf{0 . 6 4}$	0.59	0.56
CiteSeer	0.33	0.51	0.48	$\mathbf{0 . 5 5}$	0.48	0.52
Cora	$\mathbf{0 . 4 7}$	0.46	0.40	0.45	0.29	0.42
Average	0.75	0.73	0.73	$\mathbf{0 . 7 8}$	0.72	0.73

(d) Best alignment: Author disambiguation

Dataset	PSK	PIC $_{\mathrm{D}}$	PIC $_{\mathrm{R}}$	PIC $_{\mathrm{R} 4}$	NCut	NJW
AGupta	0.13	0.26	0.24	$\mathbf{0 . 3 7}$	0.26	0.34
AKumar	0.20	0.29	0.31	0.37	0.35	$\mathbf{0 . 4 0}$
CChen	0.30	0.43	0.44	$\mathbf{0 . 5 3}$	0.24	0.50
DJohnson	0.15	0.24	0.33	0.46	$\mathbf{0 . 4 7}$	0.35
JLee	0.11	0.20	0.23	$\mathbf{0 . 4 1}$	0.17	0.39
JMartin	0.28	0.42	0.43	$\mathbf{0 . 5 3}$	0.25	0.49
JRobinson	0.26	0.37	0.42	$\mathbf{0 . 4 9}$	0.26	0.48
JSmith	0.11	0.22	0.21	0.41	0.31	$\mathbf{0 . 4 2}$
KTanaka	0.19	0.36	0.41	0.45	$\mathbf{0 . 4 5}$	0.43
MBrown	0.21	0.35	0.41	$\mathbf{0 . 5 2}$	0.47	0.50
MJones	0.19	0.29	0.34	0.38	$\mathbf{0 . 3 8}$	0.35
MMiller	0.14	0.30	0.41	0.52	0.52	$\mathbf{0 . 5 3}$
SLee	0.08	0.19	0.23	$\mathbf{0 . 4 1}$	0.23	0.39
YChen	0.10	0.23	0.28	$\mathbf{0 . 4 7}$	0.23	0.46
Average	0.18	0.30	0.34	$\mathbf{0 . 4 5}$	0.33	0.43

LEARNING ON GRAPHS FOR NONGRAPH DATASETS

Why l'm talking about graphs

- Lots of large data is graphs
- Facebook, Twitter, citation data, and other social networks
- The web, the blogosphere, the semantic web, Freebase, Wikipedia, Twitter, and other information networks
- Text corpora (like RCV1), large datasets with discrete feature values, and other bipartite networks
- nodes = documents or words
- links connect document \rightarrow word or word \rightarrow document
- Computer networks, biological networks (proteins, ecosystems, brains, ...), ...
- Heterogeneous networks with multiple types of nodes
- people, groups, documents

Simplest Case: Bi-partite

Graphs

Outline

- Background on spectral clustering
- "Power Iteration Clustering"
-Motivation
-Experimental results
- Analysis: PIC vs spectral methods
- PIC for sparse bipartite graphs
- "Lazy" Distance Computation
- "Lazy" Normalization
-Experimental Results

Motivation: Experimental Datasets are...

- "Network" problems: natural graph structure
- PolBooks: 105 political books, 3 classes, linked by copurchaser
- UMBCBlog: 404 political blogs, 2 classes, blogroll links
- AGBlog: 1222 political blogs, 2 classes, blogroll links
- Also: Zachary's karate club, citation networks, ...
- "Manifold" problems: cosine distance between all pairs of classification instances

Gets expensive fast

- Iris: 150 flowers, 3 classes
- PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7)
- 20ngA: 200 docs, misc.forsale vs soc.religion.christian
- 20ngB: 400 docs, misc.forsale vs soc.religion.christian
- ...

Spectral Clustering: Graph = Matrix $A^{*} v_{1}=v_{2}$ "propogates weights from neighbors"

	A	B	C	D	E	F	G	H	I	I					
A	-	I	I			I					A	3	A	$2 * \mid+3 * 1+0 * 1$	
B	I	-	I								B	2			A
C	I	I	-								C	3	B	3*1+3*1	B
D				-	I	I					D		C	3*1+2*I	
E				I	-	I					E		D		
F				I	I	-					F		E		(D)
G							-		I	I	G		F		
H								-	I	I	H		G		
\|							I	I	-	I	I		H		
J							I	I	I	_	J		\|		
													J		

Spectral Clustering: Graph = Matrix $W^{*} v_{1}=v_{2}$ "propogates weights from neighbors"

$W=D^{-1 *} A$
$D[i, i]=1 /$ degree (i)

Lazy computation of distances and normalizers

- Recall PIC's update is
$-\mathrm{v}^{\mathrm{t}}=\mathrm{W}^{*} \mathrm{v}^{\mathrm{t}-1}=\mathrm{D}^{-1} \mathrm{~A} * \mathrm{v}^{\mathrm{t}-1}$

1 is a column vector of 1's

- ...where D is the [diagonal] degree matrix: $D=A^{*} 1$
- My favorite distance metric for text is length-
normalized TFIDF:
- Def'n: A $(\mathrm{i}, \mathrm{j})=<\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}>/\left\|\mathrm{v}_{\mathrm{i}}| |^{*}| | \mathrm{v}_{\mathrm{j}}\right\|$
- Let $N(i, i)=\left\|v_{i}\right\| \ldots$ and $N(i, j)=0$ for $\mathrm{i}!=j$
- Let $\mathrm{F}(\mathrm{i}, \mathrm{k})=$ TFIDF weight of word w_{k} in document v_{i}
-Then: $A=N^{-1} \mathrm{~F}^{\mathrm{T}} \mathrm{FN}^{-1}$

Lazy computation of distances and normalizers

- Recall PIC’s update is
$-\mathrm{v}^{\mathrm{t}}=\mathrm{W}^{*} \mathrm{v}^{\mathrm{t}-1}=\mathrm{D}^{-1} \mathrm{~A}^{*} \mathrm{v}^{\mathrm{t}-1}$

Equivalent to using TFIDF/ cosine on all pairs of examples but requires only sparse matrices

- ...where D is the [diagonal] degree matrix: $D=A^{*} 1$
- Let $\mathrm{F}(\mathrm{i}, \mathrm{k})=$ TFIDF weight of word w_{k} in document v_{i}
- Compute $N(i, i)=\left\|v_{i}\right\| \ldots$ and $N(i, j)=0$ for $i!=j$
- Don't compute $\mathrm{A}=\mathrm{N}^{-1} \mathrm{~F}^{\mathrm{T}} \mathrm{FN}^{-1}$
- Let $\mathrm{D}(\mathrm{i}, \mathrm{i})=\mathrm{N}^{-1} \mathrm{~F}^{\mathrm{T}} \mathrm{FN}^{-1 *} 1$ where 1 is an all- 1 's vector
- Computed as $\mathrm{D}=\mathrm{N}^{-1}\left(\mathrm{~F}^{\mathrm{T}}\left(\mathrm{F}\left(\mathrm{N}^{-1}{ }^{*} 1\right)\right)\right.$) for efficiency
- New update:
$\cdot \mathrm{v}^{\mathrm{t}}=\mathrm{D}^{-1} \mathrm{~A}^{*} \mathrm{v}^{\mathrm{t}-1}=\mathrm{D}^{-1} \mathrm{~N}^{-1} \mathrm{~F}^{\mathrm{T}} \mathrm{FN}^{-1 *} \mathrm{v}^{\mathrm{t}-1}$

Experimental results

- RCV1 text classification dataset
- 800k + newswire stories
- Category labels from industryvocabulary
- Took single-label documents and categories with at least 500 instances
- Result: 193,844 documents, 103 categories
- Generated 100 random category pairs
- Each is all documents from two categories
- Range in size and difficulty
- Pick category 1, with m_{1} examples
- Pick category 2 such that $0.5 \mathrm{~m}_{1}<\mathrm{m}_{2}<2 \mathrm{~m}_{1}$

Results

ACC-Avg NMI-Avg

baseline	57.59	-
k-means	69.43	0.2629
NCUTevd	$\mathbf{7 7 . 5 5}$	$\mathbf{0 . 3 9 6 2}$
NCUTiram	61.63	0.0943
PIC	$\mathbf{7 6 . 6 7}$	$\mathbf{0 . 3 8 1 8}$

-NCUTevd: Ncut with exact eigenvectors
-NCUTiram: Implicit restarted Arnoldi method

- No stat. signif. diffs between NCUTevd and PIC

Results

Results

ccuracy of NCUTiram vs PIC

Results

Results

- Linear run-time implies constant number of iterations
- Number of iterations to "accelerationconvergence" is hard to analyze:
-Faster than a single complete run of power iteration to convergence
-On our datasets
-10-20 iterations is typical
- 30-35 is exceptional

Size vs PIC Iterations

Dataset Size
(a) $R^{2}=0.0424$

Size vs PIC/NCUT Accuracy

(c) $R^{2}=0.0007$

Dataset Size
(b) $R^{2}=0.0552$

PIC Iterations vs PIC Accuracy

(d) $R^{2}=0.0134$

From SemiSupervised to Unsupervised Learning ... and back again

- Implicit manifolds work for unsupervised learning (PIC)
- But PIC is so close to SSL methods

PIC: Power Iteration Clustering

run power iteration (repeated averaging w/ neighbors)
with early stopping

1. Pick an initial vector \mathbf{v}^{0}.
2. Set $\mathbf{v}^{\mathbf{t}+1} \leftarrow \frac{W \mathbf{v}^{\mathbf{t}}}{\left\|W \mathbf{v}^{\mathrm{t}}\right\|_{1}}$ and $\delta^{t+1} \leftarrow\left|\mathbf{v}^{\mathbf{t}+1}-\mathbf{v}^{\mathbf{t}}\right|$.
3. Increment t and repeat above step until $\left|\delta^{t}-\delta^{t-1}\right| \simeq 0$.
4. Use k-means to cluster points on $\mathbf{v}^{\mathbf{t}}$ and return clusters $C_{1}, C_{2}, \ldots, C_{k}$.

Harmonic Functions/CoEM/wvRN

1. Pick an initial vector \mathbf{v}^{0}.
2. Set $\mathbf{v}^{\mathbf{t + 1}} \leftarrow \frac{W \mathbf{v}^{\mathbf{t}}}{\left\|W \mathbf{v}^{\mathbf{t}}\right\|_{1}}$ then replace $\mathbf{v}^{\mathrm{t}+1}(\mathrm{i})$ with seed values $+1 /-1$ for labeled data
3. Increment t and repeat above step for 5-10 iterations
4. Classify data using final values from \mathbf{v}

Implicit Manifolds on the NELL datasets

Using the Manifold Trick for SSL

Name	20 NG	RCV1	City	44 Cat
Instances	19 K	194 K	88 K	$9,846 \mathrm{~K}$
Features	61 K	47 K	99 K	$8,622 \mathrm{~K}$
NZF	2 M	11 M	21 M	121 M
Cats	20	103	1	44
Type	doc	doc	NP	NP
Manifold	cosine	cosine	bipart	bipart
Input Size	39 MB	198 MB	330 MB	2 GB
IM Size	40 MB	207 MB	335 MB	2.4 GB
EM Size	5.6 GB	$* 540 \mathrm{~GB}$	$* 80 \mathrm{~GB}$	$* 4 \mathrm{~TB}$

Table 1: Dataset comparison. $N Z F$ is the total number of nonzero feature values and Cats is the number of categories. Type is the dataset type, where $d o c$ and $N P$ correspond to document collection and noun phrase-context data, respectively. Manifold is the choice of manifold for the dataset, where cosine and bipart refers to cosine similarity and bipartite graph walk, respectively. Input Size is the MATLAB memory requirement for the original sparse feature matrix; IM Size is the total memory requirement for using the implicit manifold, including the feature matrix; EM Size is the memory requirement for constructing a explicit manifold. * indicates that the memory requirement is estimated using random sampling and extrapolation.

Using the Manifold Trick for SSL

Figure 1: F1 scores on the 20NG and RCV1 datasets. The x axis indicates the number of labeled instances and the y-axis indicates the macro-averaged F1 score. Vertical lines indicate standard deviation (over 20 trials for 20NG and 10 for RCV1) using randomly selected seed labels.

Using the Manifold Trick for SSL

Figure 2: F1 scores on the 20NG and RCV1 datasets using preferred (high feature weight sum) seeds. Subscript HFS indicates result using high feature-sum seeds and R indicates result using random seeds-included for comparison.

Using the Manifold Trick for SSL

Method Manifold	SVM -	HF inner	MRW inner	HF bipart	MRW bipart
NDCG	0.0263	0.0402	0.0405	0.0406	$\mathbf{0 . 0 4 0 8}$
AP	0.0208	0.6728	0.7067	0.7130	$\mathbf{0 . 7 3 8 9}$
P@10\%	0.0123	0.8732	0.8926	0.8796	$\mathbf{0 . 9 0 9 4}$
P@20\%	0.0143	0.8698	0.8991	0.8941	$\mathbf{0 . 9 1 6 2}$
P@30\%	0.0168	0.8773	0.9093	0.9036	$\mathbf{0 . 9 1 1 6}$
P@40\%	0.0199	0.8574	0.8957	0.9118	$\mathbf{0 . 9 1 7 9}$
P@50\%	0.0210	0.8227	0.8647	0.8832	$\mathbf{0 . 9 0 3 8}$
P@60\%	0.0236	0.7591	0.7990	0.8093	$\mathbf{0 . 8 3 0 7}$
P@70\%	0.0265	0.6337	0.6743	0.6805	$\mathbf{0 . 7 1 8 9}$
P@ 80\%	0.0267	0.4131	0.4533	0.5087	$\mathbf{0 . 5 2 9 7}$
P@90\%	0.0272	0.1927	0.2155	0.2521	$\mathbf{0 . 2 9 2 6}$
P@100\%	0.0274	0.0275	0.0279	0.0280	$\mathbf{0 . 0 2 8 9}$

Table 2: City dataset result. Boldfaced font indicates the highest number in a row. inner refers to the inner product manifold and bipart refers to the bipartite graph walk manifold. Note that HF with bipart is equivalent to co-EM as used in [11]

Using the Manifold Trick for SSL

Figure 4: Sampled per-category accuracies of the top 1000 retrieved NPs on the 44Cat dataset. The categories are ordered from left to right according to the difference between the MRW accuracy and HF accuracy, from the high to low.

Using the Manifold Trick for SSL

A smoothing trick:

$$
V^{t+1} \leftarrow(1-\alpha-\beta) S D^{-1} V^{t}+\alpha R+\beta(\mathbf{1} / n)
$$

Using the Manifold Trick for SSL

Figure 3: Parameter sensitivity. The x-axis correspond to parameter values and the \mathbf{y}-axis shows average precisions. α ranges from 0.05 to $0.65, \beta$ ranges from 0.0001 to 0.01 ; the number of iterations T are indicated below x-axes.

