
Unsupervised Learning on 
Graphs 



Spectral Clustering: Graph = Matrix 
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A 1 1 1 

B 1 1 
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J 1 1 



Spectral Clustering: Graph = Matrix 
Transitively Closed Components = “Blocks” 
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G 
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A B C D E F G H I J 

A _ 1 1 1 

B 1 _ 1 

C 1 1 _ 

D _ 1 1 

E 1 _ 1 

F 1 1 1 _ 

G _ 1 1 

H _ 1 1 

I 1 1 _ 1 

J 1 1 1 _ 

Of course we can’t see the “blocks” unless the nodes 
are sorted by cluster…  

sometimes called a block-stochastic 
matrix: 
•  each node has a latent “block” 
•  fixed probability qi for links between 

elements of block i 
•  fixed probability q0 for links between 

elements of different blocks 



Spectral Clustering: Graph = Matrix 
Vector = Node ! Weight 
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Spectral Clustering: Graph = Matrix 
M*v1 = v2 “propogates weights from neighbors” 

H

A B C D E F G H I J 

A _ 1 1 1 

B 1 _ 1 

C 1 1 _ 

D _ 1 1 

E 1 _ 1 

F 1 1 _ 

G _ 1 1 

H _ 1 1 

I 1 1 _ 1 

J 1 1 1 _ 
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D 

E 

F 

G 

H 

I 

J 

M 

M v1 

A 2*1+3*1+0*1 

B 3*1+3*1 

C 3*1+2*1 
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v2 * = 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

H

A B C D E F G H I J 

A _ .5 .5 .3 

B .3 _ .5 

C .3 .5 _ 

D _ .5 .3 

E .5 _ .3 

F .3 .5 .5 _ 

G _ .3 .3 

H _ .3 .3 

I .5 .5 _ .3 

J .5 .5 .3 _ 

A
B

C

F
D

E

G
I 

J 

A 3 

B 2 

C 3 

D 

E 

F 

G 

H 

I 

J 

W v1 

A 2*.5+3*.5+0*.3 

B 3*.3+3*.5 

C 3*.33+2*.5 

D 

E 

F 

G 

H 

I 

J 

v2 * = W: normalized so columns sum to 1 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅

Q: How  do I pick v 
to be an eigenvector 

for a block-
stochastic matrix? 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅

How  do I pick v to 
be an eigenvector 

for a block-
stochastic matrix? 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅

[Shi & Meila, 2002] 
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e3 
“eigengap” 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅

[Shi & Meila, 2002] 
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Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

M 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅

If W is connected but roughly 
block diagonal with k blocks 
then 
•  the top eigenvector is a 
constant vector  
•  the next k eigenvectors are 
roughly piecewise constant 
with “pieces” corresponding 
to blocks   



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

M 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅

If W is connected but 
roughly block diagonal with k 
blocks then 
•  the “top” eigenvector is a 
constant vector  
•  the next k eigenvectors are 
roughly piecewise constant 
with “pieces” corresponding 
to blocks   

Spectral clustering: 
•  Find the top k+1 
eigenvectors v1,…,vk+1 
•  Discard the “top” one 
•  Replace every node a 
with k-dimensional vector 
xa = <v2(a),…,vk+1 (a) > 

•  Cluster with k-means 



Spectral Clustering: Pros and 
Cons 

•  Elegant, and well-founded mathematically 
•  Tends to avoid local minima 

–  Optimal solution to relaxed version of mincut problem 
(Normalized cut, aka NCut) 

•  Works quite well when relations are approximately 
transitive (like similarity, social connections) 

•  Expensive for very large datasets 
–  Computing eigenvectors is the bottleneck 
–  Approximate eigenvector computation not always useful 

•  Noisy datasets sometimes cause problems 
–  Picking number of eigenvectors and k is tricky 
–  “Informative” eigenvectors need not be in top few 
–  Performance can drop suddenly from good to terrible 



Experimental results:  
best-case assignment of class labels to clusters 



Another way to think about spectral 
clustering…. 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅
•  smallest eigenvecs of D-A are largest eigenvecs of A 
•  smallest eigenvecs of I-W are largest eigenvecs of W 
Suppose each y(i)=+1 or -1:   
•  Then  y is a cluster indicator that splits the nodes into 
two  
•  what is yT(D-A)y ? 
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NCUT: roughly minimize ratio of transitions between 
classes vs transitions within classes 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅
•  smallest eigenvecs of D-A are largest eigenvecs of A 
•  smallest eigenvecs of I-W are largest eigenvecs of W 
Suppose each y(i)=+1 or -1:   
•  Then  y is a cluster indicator that cuts the nodes into two  
•  what is yT(D-A)y ?  The cost of the graph cut defined by y 
•  what is yT(I-W)y ?  Also a cost of a graph cut defined by y 
•  How to minimize it? 

•  Turns out: to minimize yT X y / (yTy) find smallest eigenvector of X 
•  But: this will not be +1/-1, so it’s a “relaxed” solution 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅

[Shi & Meila, 2002] 
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Another way to think about spectral 
clustering…. 

•  Most normal people think about spectral 
clustering like that - as relaxed optimization


•  …me, not so much

•  I like the connection to “averaging”…

because….




Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

H

A B C D E F G H I J 

A _ .5 .5 .3 

B .3 _ .5 

C .3 .5 _ 

D _ .5 .3 

E .5 _ .3 

F .3 .5 .5 _ 

G _ .3 .3 

H _ .3 .3 

I .5 .5 _ .3 

J .5 .5 .3 _ 

A
B

C

F
D

E

G
I 

J 

A 3 

B 2 

C 3 

D 

E 

F 

G 

H 

I 

J 

W v1 

A 2*.5+3*.5+0*.3 

B 3*.3+3*.5 

C 3*.33+2*.5 

D 

E 

F 

G 

H 

I 

J 

v2 * = W: normalized so columns sum to 1 



Repeated averaging with neighbors as a clustering 
method 

•  Pick a vector v0 (maybe at random) 

•  Compute v1 = Wv0 

–  i.e., replace v0[x] with weighted average of v0[y] for the 
neighbors y of x 

•  Plot v1[x] for each x 
•  Repeat for v2, v3, … 

•  Variants widely used for semi-supervised learning 
–  HF/CoEM/wvRN - average + clamping of labels for nodes with 

known labels 
•  Without clamping, will converge to constant vt 

•  What are the dynamics of this process? 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

λλ  eigenvaluer with eigenvectoan  is  : vvvW =⋅

[Shi & Meila, 2002] 
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Repeated averaging with neighbors on a sample problem… 

•  Create a graph, connecting 
all points in the 2-D initial 
space to all other points 

•  Weighted by distance 
•  Run power iteration 
(averaging) for 10 steps 
•  Plot node id x vs v10(x) 

•  nodes are ordered and 
colored  by actual cluster 
number 

b 

b 

b 

b 

b 

g g 

g 

g 

g 

g g 

g g 
r r r r 

r r r 
… 

blue green ___red___ 



Repeated averaging with neighbors on a sample 
problem… 

blue green ___red___ blue green ___red___ blue green ___red___ 
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Repeated averaging with neighbors on a sample 
problem… 

blue green ___red___ blue green ___red___ blue green ___red___ 

blue green ___red___ blue green ___red___ 



Repeated averaging with neighbors on a sample 
problem… 
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PIC: Power Iteration Clustering 
run power iteration (repeated averaging w/ neighbors) 

with early stopping 

–  V0: random start, or “degree matrix” D, or … 
–  Easy to implement and efficient 
–  Very easily parallelized 

–  Experimentally, often better than traditional spectral methods 

–  Surprising since the embedded space is 1-dimensional! 



Experiments 

•  “Network” problems: natural graph structure 
–  PolBooks: 105 political books, 3 classes, linked by copurchaser 
–  UMBCBlog: 404 political blogs, 2 classes, blogroll links 
–  AGBlog: 1222 political blogs, 2 classes, blogroll links 

•  “Manifold” problems: cosine distance between 
classification instances 
–  Iris: 150 flowers, 3 classes 
–  PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7) 
–  20ngA: 200 docs, misc.forsale vs soc.religion.christian 
–  20ngB: 400 docs, misc.forsale vs soc.religion.christian 
–  20ngC: 20ngB + 200 docs from talk.politics.guns 
–  20ngD: 20ngC + 200 docs from rec.sport.baseball 



Experimental results:  
best-case assignment of class labels to clusters 





Experiments: run time and 
scalability 

Time in millisec 



More experiments 

Varying	the	number	of	clusters	for	PIC	and	PIC4	(starts	with	
random	4-d	point	rather	than	a	random	1-d	point).	



More experiments 

Varying	the	amount	of	noise	for	PIC	and	PIC4	(starts	with	random	
4-d	point	rather	than	a	random	1-d	point).	



More experiments 

More	“real”	network	datasets	from	various	domains	



More experiments 





LEARNING ON GRAPHS FOR NON-
GRAPH DATASETS 



Why I’m talking about graphs 
•  Lots of large data is graphs


–  Facebook, Twitter, citation data, and other social 
networks


–  The web, the blogosphere, the semantic web, Freebase, 
Wikipedia, Twitter, and other information networks


–  Text corpora (like RCV1), large datasets with discrete 
feature values, and other bipartite networks


•  nodes = documents or words

•  links connect document à word or word à document


–  Computer networks, biological networks (proteins, 
ecosystems, brains, …), …


– Heterogeneous networks with multiple types of nodes

•  people, groups, documents




proposal 

CMU 

CALO 

graph 

William 

Simplest Case: Bi-partite 
Graphs 



Outline 
•  Background on spectral clustering

•  “Power Iteration Clustering”


– Motivation

– Experimental results


•  Analysis: PIC vs spectral methods

•  PIC for sparse bipartite graphs


– “Lazy” Distance Computation

– “Lazy” Normalization

– Experimental Results




Motivation: Experimental Datasets 
are… 
•  “Network” problems: natural graph structure


–  PolBooks: 105 political books, 3 classes, linked by copurchaser

–  UMBCBlog: 404 political blogs, 2 classes, blogroll links

–  AGBlog: 1222 political blogs, 2 classes, blogroll links

–  Also: Zachary’s karate club, citation networks, ...


•  “Manifold” problems: cosine distance between all pairs of 
classi^ication instances

–  Iris: 150 ^lowers, 3 classes

–  PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7)

–  20ngA: 200 docs, misc.forsale vs soc.religion.christian

–  20ngB: 400 docs, misc.forsale vs soc.religion.christian

–  … 

Gets expensive fast 



Spectral Clustering: Graph = Matrix 
A*v1 = v2 “propogates weights from neighbors” 

H

A B C D E F G H I J 

A _ 1 1 1 

B 1 _ 1 

C 1 1 _ 

D _ 1 1 

E 1 _ 1 

F 1 1 _ 

G _ 1 1 

H _ 1 1 

I 1 1 _ 1 

J 1 1 1 _ 
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B

C

F
D
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G
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A 3 

B 2 

C 3 
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M 

A v1 

A 2*1+3*1+0*1 

B 3*1+3*1 

C 3*1+2*1 
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F 

G 

H 

I 

J 

v2 * = 



Spectral Clustering: Graph = Matrix 
W*v1 = v2 “propogates weights from neighbors” 

H

A B C D E F G H I J 

A _ .5 .5 .3 

B .3 _ .5 

C .3 .5 _ 

D _ .5 .3 

E .5 _ .3 

F .3 .5 .5 _ 

G _ .3 .3 

H _ .3 .3 

I .5 .5 _ .3 

J .5 .5 .3 _ 

A
B

C

F
D

E

G
I 

J 

A 3 

B 2 

C 3 

D 

E 

F 

G 

H 

I 

J 

W v1 

A 2*.5+3*.5+0*.3 

B 3*.3+3*.5 

C 3*.33+2*.5 

D 

E 

F 

G 

H 

I 

J 

v2 * = W: normalized so columns sum to 1 

W = D-1*A D[i,i]=1/degree(i) 



Lazy computation of distances and 
normalizers 

•  Recall PIC’s update is

–  vt = W * vt-1 = = D-1A * vt-1


–  …where D is the [diagonal] degree matrix: D=A*1

•  My favorite distance metric for text is length-

normalized TFIDF:

–  Def’n: A(i,j)=<vi,vj>/||vi||*||vj||

–  Let N(i,i)=||vi|| … and N(i,j)=0 for i!=j

–  Let F(i,k)=TFIDF weight of word wk in document vi


– Then: A = N-1FTFN-1


<u,v>=inner product 
||u|| is L2-norm 

1 is a column 
vector of 1’s 



Lazy computation of distances and 
normalizers 

•  Recall PIC’s update is

–  vt = W * vt-1 = = D-1A * vt-1


–  …where D is the [diagonal] degree matrix: D=A*1

–  Let F(i,k)=TFIDF weight of word wk in document vi


–  Compute N(i,i)=||vi|| … and N(i,j)=0 for i!=j

–  Don’t compute A = N-1FTFN-1


–  Let D(i,i)= N-1FTFN-1*1 where 1 is an all-1’s vector

•  Computed as D=N-1(FT(F(N-1*1))) for ef^iciency


– New update:

• vt = D-1A * vt-1 = D-1 N-1FTFN-1 *vt-1


Equivalent to using TFIDF/
cosine on all pairs of 

examples but requires only 
sparse matrices 



Experimental results 

•  RCV1 text classi^ication dataset

–  800k + newswire stories

–  Category labels from industry vocabulary

–  Took single-label documents and categories with at least 

500 instances

–  Result: 193,844 documents, 103 categories


•  Generated 100 random category pairs

–  Each is all documents from two categories

–  Range in size and dif^iculty

–  Pick category 1, with m1 examples

–  Pick category 2 such that 0.5m1<m2<2m1




Results 

• NCUTevd: Ncut with exact eigenvectors 
• NCUTiram: Implicit restarted Arnoldi method 
• No stat. signif.  diffs between NCUTevd and PIC 



Results 



Results 



Results 



Results 
•  Linear run-time implies constant number of 

iterations

•  Number of iterations to “acceleration-

convergence” is hard to analyze:

– Faster than a single complete run of power 

iteration to convergence

– On our datasets


• 10-20 iterations is typical

• 30-35 is exceptional






From SemiSupervised to Unsupervised 
Learning … and back again 

•  Implicit manifolds work for unsupervised 
learning (PIC)


•  But PIC is so close to SSL methods




PIC: Power Iteration Clustering 
run power iteration (repeated averaging w/ neighbors) 

with early stopping 



Harmonic Functions/CoEM/wvRN 

then replace vt+1(i) with seed values +1/-1 for labeled data


for 5-10 iterations


Classify data using ^inal values from v 




Implicit Manifolds on the NELL 
datasets 

Paris 

live in  arg1 

San Francisco 
Austin 

traits such as arg1 

anxiety 

mayor of  arg1 

Pittsburgh 

Seattle 

denial 

arg1 is home of 

selfishness 

Nodes “near” seeds Nodes “far from” seeds 

arrogance 
traits such as arg1 

denial 
selfishness 



Using the Manifold Trick for SSL 



Using the Manifold Trick for SSL 



Using the Manifold Trick for SSL 



Using the Manifold Trick for SSL 



Using the Manifold Trick for SSL 



Using the Manifold Trick for SSL 
A smoothing trick: 



Using the Manifold Trick for SSL 


