
Unsupervised Learning on
Graphs

Spectral Clustering: Graph = Matrix

A
B

C

F
D

E

G
I

H
J

A B C D E F G H I J

A 1 1 1

B 1 1

C 1

D 1 1

E 1

F 1 1 1

G 1

H 1 1 1

I 1 1 1

J 1 1

Spectral Clustering: Graph = Matrix
Transitively Closed Components = “Blocks”

A
B

C

F
D

E

G
I

H
J

A B C D E F G H I J

A _ 1 1 1

B 1 _ 1

C 1 1 _

D _ 1 1

E 1 _ 1

F 1 1 1 _

G _ 1 1

H _ 1 1

I 1 1 _ 1

J 1 1 1 _

Of course we can’t see the “blocks” unless the nodes
are sorted by cluster…

sometimes called a block-stochastic
matrix:
•  each node has a latent “block”
•  fixed probability qi for links between

elements of block i
•  fixed probability q0 for links between

elements of different blocks

Spectral Clustering: Graph = Matrix
Vector = Node ! Weight

H

A B C D E F G H I J

A _ 1 1 1

B 1 _ 1

C 1 1 _

D _ 1 1

E 1 _ 1

F 1 1 1 _

G _ 1 1

H _ 1 1

I 1 1 _ 1

J 1 1 1 _

A
B

C

F
D

E

G
I

J

A

A 3

B 2

C 3

D

E

F

G

H

I

J

M

M v

Spectral Clustering: Graph = Matrix
M*v1 = v2 “propogates weights from neighbors”

H

A B C D E F G H I J

A _ 1 1 1

B 1 _ 1

C 1 1 _

D _ 1 1

E 1 _ 1

F 1 1 _

G _ 1 1

H _ 1 1

I 1 1 _ 1

J 1 1 1 _

A
B

C

F
D

E

G
I

J

A 3

B 2

C 3

D

E

F

G

H

I

J

M

M v1

A 2*1+3*1+0*1

B 3*1+3*1

C 3*1+2*1

D

E

F

G

H

I

J

v2 * =

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

H

A B C D E F G H I J

A _ .5 .5 .3

B .3 _ .5

C .3 .5 _

D _ .5 .3

E .5 _ .3

F .3 .5 .5 _

G _ .3 .3

H _ .3 .3

I .5 .5 _ .3

J .5 .5 .3 _

A
B

C

F
D

E

G
I

J

A 3

B 2

C 3

D

E

F

G

H

I

J

W v1

A 2*.5+3*.5+0*.3

B 3*.3+3*.5

C 3*.33+2*.5

D

E

F

G

H

I

J

v2 * = W: normalized so columns sum to 1

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

λλ eigenvaluer with eigenvectoan is : vvvW =⋅

Q: How do I pick v
to be an eigenvector

for a block-
stochastic matrix?

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

λλ eigenvaluer with eigenvectoan is : vvvW =⋅

How do I pick v to
be an eigenvector

for a block-
stochastic matrix?

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

λλ eigenvaluer with eigenvectoan is : vvvW =⋅

[Shi & Meila, 2002]

λ2

λ3

λ4

λ5
,
6,7,
….

λ1
e1

e2

e3
“eigengap”

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

λλ eigenvaluer with eigenvectoan is : vvvW =⋅

[Shi & Meila, 2002]

e2

e3

-0.4 -0.2 0 0.2

-0.4

-0.2

0.0

0.2

0.4

x x x x x x

y y y
y

y

x x x x x x

z z z z
z z z z z
z z e1

e2

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

M

λλ eigenvaluer with eigenvectoan is : vvvW =⋅

If W is connected but roughly
block diagonal with k blocks
then
•  the top eigenvector is a
constant vector
•  the next k eigenvectors are
roughly piecewise constant
with “pieces” corresponding
to blocks

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

M

λλ eigenvaluer with eigenvectoan is : vvvW =⋅

If W is connected but
roughly block diagonal with k
blocks then
•  the “top” eigenvector is a
constant vector
•  the next k eigenvectors are
roughly piecewise constant
with “pieces” corresponding
to blocks

Spectral clustering:
•  Find the top k+1
eigenvectors v1,…,vk+1
•  Discard the “top” one
•  Replace every node a
with k-dimensional vector
xa = <v2(a),…,vk+1 (a) >

•  Cluster with k-means

Spectral Clustering: Pros and
Cons

•  Elegant, and well-founded mathematically
•  Tends to avoid local minima

–  Optimal solution to relaxed version of mincut problem
(Normalized cut, aka NCut)

•  Works quite well when relations are approximately
transitive (like similarity, social connections)

•  Expensive for very large datasets
–  Computing eigenvectors is the bottleneck
–  Approximate eigenvector computation not always useful

•  Noisy datasets sometimes cause problems
–  Picking number of eigenvectors and k is tricky
–  “Informative” eigenvectors need not be in top few
–  Performance can drop suddenly from good to terrible

Experimental results:
best-case assignment of class labels to clusters

Another way to think about spectral
clustering….

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

λλ eigenvaluer with eigenvectoan is : vvvW =⋅
•  smallest eigenvecs of D-A are largest eigenvecs of A
•  smallest eigenvecs of I-W are largest eigenvecs of W
Suppose each y(i)=+1 or -1:
•  Then y is a cluster indicator that splits the nodes into
two
•  what is yT(D-A)y ?

⎥
⎦

⎤
⎢
⎣

⎡
−=

⎥
⎦

⎤
⎢
⎣

⎡
−+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎦

⎤
⎢
⎣

⎡
−=

−=−=−

∑

∑∑∑

∑∑ ∑∑ ∑

∑∑

∑∑

ji
jiji

ji
jiji

ji
jij

ji
iij

ji
jiji

j
j

i
ij

i
i

j
ij

ji
jiji

i
ii

ji
jiji

i
ii

TTT

yya

yyayaya

yyayaya

yyayd

yyaydADAD

,

2
,

,
,

,

2

,

2

,
,

22

,
,

2

,
,

2

)(
2
1

2
2
1

2
2
1

22
2
1

)(yyyyyy

= size of CUT(y)

)NCUT(of size)(yyy =−WIT

NCUT: roughly minimize ratio of transitions between
classes vs transitions within classes

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

λλ eigenvaluer with eigenvectoan is : vvvW =⋅
•  smallest eigenvecs of D-A are largest eigenvecs of A
•  smallest eigenvecs of I-W are largest eigenvecs of W
Suppose each y(i)=+1 or -1:
•  Then y is a cluster indicator that cuts the nodes into two
•  what is yT(D-A)y ? The cost of the graph cut defined by y
•  what is yT(I-W)y ? Also a cost of a graph cut defined by y
•  How to minimize it?

•  Turns out: to minimize yT X y / (yTy) find smallest eigenvector of X
•  But: this will not be +1/-1, so it’s a “relaxed” solution

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

λλ eigenvaluer with eigenvectoan is : vvvW =⋅

[Shi & Meila, 2002]

λ2

λ3

λ4

λ5
,
6,7,
….

λ1
e1

e2

e3
“eigengap”

Another way to think about spectral
clustering….

•  Most normal people think about spectral
clustering like that - as relaxed optimization

•  …me, not so much

•  I like the connection to “averaging”…

because….

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

H

A B C D E F G H I J

A _ .5 .5 .3

B .3 _ .5

C .3 .5 _

D _ .5 .3

E .5 _ .3

F .3 .5 .5 _

G _ .3 .3

H _ .3 .3

I .5 .5 _ .3

J .5 .5 .3 _

A
B

C

F
D

E

G
I

J

A 3

B 2

C 3

D

E

F

G

H

I

J

W v1

A 2*.5+3*.5+0*.3

B 3*.3+3*.5

C 3*.33+2*.5

D

E

F

G

H

I

J

v2 * = W: normalized so columns sum to 1

Repeated averaging with neighbors as a clustering
method

•  Pick a vector v0 (maybe at random)

•  Compute v1 = Wv0

–  i.e., replace v0[x] with weighted average of v0[y] for the
neighbors y of x

•  Plot v1[x] for each x
•  Repeat for v2, v3, …

•  Variants widely used for semi-supervised learning
–  HF/CoEM/wvRN - average + clamping of labels for nodes with

known labels
•  Without clamping, will converge to constant vt

•  What are the dynamics of this process?

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

λλ eigenvaluer with eigenvectoan is : vvvW =⋅

[Shi & Meila, 2002]

λ2

λ3

λ4

λ5
,
6,7,
….

λ1
e1

e2

e3
“eigengap”

Repeated averaging with neighbors on a sample problem…

•  Create a graph, connecting
all points in the 2-D initial
space to all other points

•  Weighted by distance
•  Run power iteration
(averaging) for 10 steps
•  Plot node id x vs v10(x)

•  nodes are ordered and
colored by actual cluster
number

b

b

b

b

b

g g

g

g

g

g g

g g
r r r r

r r r
…

blue green ___red___

Repeated averaging with neighbors on a sample
problem…

blue green ___red___ blue green ___red___ blue green ___red___

sm
al

le
r

la
rg

er

Repeated averaging with neighbors on a sample
problem…

blue green ___red___ blue green ___red___ blue green ___red___

blue green ___red___ blue green ___red___

Repeated averaging with neighbors on a sample
problem…

ve
ry

 sm
al

l

PIC: Power Iteration Clustering
run power iteration (repeated averaging w/ neighbors)

with early stopping

–  V0: random start, or “degree matrix” D, or …
–  Easy to implement and efficient
–  Very easily parallelized

–  Experimentally, often better than traditional spectral methods

–  Surprising since the embedded space is 1-dimensional!

Experiments

•  “Network” problems: natural graph structure
–  PolBooks: 105 political books, 3 classes, linked by copurchaser
–  UMBCBlog: 404 political blogs, 2 classes, blogroll links
–  AGBlog: 1222 political blogs, 2 classes, blogroll links

•  “Manifold” problems: cosine distance between
classification instances
–  Iris: 150 flowers, 3 classes
–  PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7)
–  20ngA: 200 docs, misc.forsale vs soc.religion.christian
–  20ngB: 400 docs, misc.forsale vs soc.religion.christian
–  20ngC: 20ngB + 200 docs from talk.politics.guns
–  20ngD: 20ngC + 200 docs from rec.sport.baseball

Experimental results:
best-case assignment of class labels to clusters

Experiments: run time and
scalability

Time in millisec

More experiments

Varying	the	number	of	clusters	for	PIC	and	PIC4	(starts	with	
random	4-d	point	rather	than	a	random	1-d	point).	

More experiments

Varying	the	amount	of	noise	for	PIC	and	PIC4	(starts	with	random	
4-d	point	rather	than	a	random	1-d	point).	

More experiments

More	“real”	network	datasets	from	various	domains	

More experiments

LEARNING ON GRAPHS FOR NON-
GRAPH DATASETS

Why I’m talking about graphs
•  Lots of large data is graphs

–  Facebook, Twitter, citation data, and other social
networks

–  The web, the blogosphere, the semantic web, Freebase,
Wikipedia, Twitter, and other information networks

–  Text corpora (like RCV1), large datasets with discrete
feature values, and other bipartite networks

•  nodes = documents or words

•  links connect document à word or word à document

–  Computer networks, biological networks (proteins,
ecosystems, brains, …), …

– Heterogeneous networks with multiple types of nodes

•  people, groups, documents

proposal

CMU

CALO

graph

William

Simplest Case: Bi-partite
Graphs

Outline
•  Background on spectral clustering

•  “Power Iteration Clustering”

– Motivation

– Experimental results

•  Analysis: PIC vs spectral methods

•  PIC for sparse bipartite graphs

– “Lazy” Distance Computation

– “Lazy” Normalization

– Experimental Results

Motivation: Experimental Datasets
are…
•  “Network” problems: natural graph structure

–  PolBooks: 105 political books, 3 classes, linked by copurchaser

–  UMBCBlog: 404 political blogs, 2 classes, blogroll links

–  AGBlog: 1222 political blogs, 2 classes, blogroll links

–  Also: Zachary’s karate club, citation networks, ...

•  “Manifold” problems: cosine distance between all pairs of
classi^ication instances

–  Iris: 150 ^lowers, 3 classes

–  PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7)

–  20ngA: 200 docs, misc.forsale vs soc.religion.christian

–  20ngB: 400 docs, misc.forsale vs soc.religion.christian

–  …

Gets expensive fast

Spectral Clustering: Graph = Matrix
A*v1 = v2 “propogates weights from neighbors”

H

A B C D E F G H I J

A _ 1 1 1

B 1 _ 1

C 1 1 _

D _ 1 1

E 1 _ 1

F 1 1 _

G _ 1 1

H _ 1 1

I 1 1 _ 1

J 1 1 1 _

A
B

C

F
D

E

G
I

J

A 3

B 2

C 3

D

E

F

G

H

I

J

M

A v1

A 2*1+3*1+0*1

B 3*1+3*1

C 3*1+2*1

D

E

F

G

H

I

J

v2 * =

Spectral Clustering: Graph = Matrix
W*v1 = v2 “propogates weights from neighbors”

H

A B C D E F G H I J

A _ .5 .5 .3

B .3 _ .5

C .3 .5 _

D _ .5 .3

E .5 _ .3

F .3 .5 .5 _

G _ .3 .3

H _ .3 .3

I .5 .5 _ .3

J .5 .5 .3 _

A
B

C

F
D

E

G
I

J

A 3

B 2

C 3

D

E

F

G

H

I

J

W v1

A 2*.5+3*.5+0*.3

B 3*.3+3*.5

C 3*.33+2*.5

D

E

F

G

H

I

J

v2 * = W: normalized so columns sum to 1

W = D-1*A D[i,i]=1/degree(i)

Lazy computation of distances and
normalizers

•  Recall PIC’s update is

–  vt = W * vt-1 = = D-1A * vt-1

–  …where D is the [diagonal] degree matrix: D=A*1

•  My favorite distance metric for text is length-

normalized TFIDF:

–  Def’n: A(i,j)=<vi,vj>/||vi||*||vj||

–  Let N(i,i)=||vi|| … and N(i,j)=0 for i!=j

–  Let F(i,k)=TFIDF weight of word wk in document vi

– Then: A = N-1FTFN-1

<u,v>=inner product
||u|| is L2-norm

1 is a column
vector of 1’s

Lazy computation of distances and
normalizers

•  Recall PIC’s update is

–  vt = W * vt-1 = = D-1A * vt-1

–  …where D is the [diagonal] degree matrix: D=A*1

–  Let F(i,k)=TFIDF weight of word wk in document vi

–  Compute N(i,i)=||vi|| … and N(i,j)=0 for i!=j

–  Don’t compute A = N-1FTFN-1

–  Let D(i,i)= N-1FTFN-1*1 where 1 is an all-1’s vector

•  Computed as D=N-1(FT(F(N-1*1))) for ef^iciency

– New update:

• vt = D-1A * vt-1 = D-1 N-1FTFN-1 *vt-1

Equivalent to using TFIDF/
cosine on all pairs of

examples but requires only
sparse matrices

Experimental results

•  RCV1 text classi^ication dataset

–  800k + newswire stories

–  Category labels from industry vocabulary

–  Took single-label documents and categories with at least

500 instances

–  Result: 193,844 documents, 103 categories

•  Generated 100 random category pairs

–  Each is all documents from two categories

–  Range in size and dif^iculty

–  Pick category 1, with m1 examples

–  Pick category 2 such that 0.5m1<m2<2m1

Results

• NCUTevd: Ncut with exact eigenvectors
• NCUTiram: Implicit restarted Arnoldi method
• No stat. signif. diffs between NCUTevd and PIC

Results

Results

Results

Results
•  Linear run-time implies constant number of

iterations

•  Number of iterations to “acceleration-

convergence” is hard to analyze:

– Faster than a single complete run of power

iteration to convergence

– On our datasets

• 10-20 iterations is typical

• 30-35 is exceptional

From SemiSupervised to Unsupervised
Learning … and back again

•  Implicit manifolds work for unsupervised
learning (PIC)

•  But PIC is so close to SSL methods

PIC: Power Iteration Clustering
run power iteration (repeated averaging w/ neighbors)

with early stopping

Harmonic Functions/CoEM/wvRN

then replace vt+1(i) with seed values +1/-1 for labeled data

for 5-10 iterations

Classify data using ^inal values from v

Implicit Manifolds on the NELL
datasets

Paris

live in arg1

San Francisco
Austin

traits such as arg1

anxiety

mayor of arg1

Pittsburgh

Seattle

denial

arg1 is home of

selfishness

Nodes “near” seeds Nodes “far from” seeds

arrogance
traits such as arg1

denial
selfishness

Using the Manifold Trick for SSL

Using the Manifold Trick for SSL

Using the Manifold Trick for SSL

Using the Manifold Trick for SSL

Using the Manifold Trick for SSL

Using the Manifold Trick for SSL
A smoothing trick:

Using the Manifold Trick for SSL

