
Semi-Supervised Learning: Lecture Notes

William W. Cohen

March 30, 2018

1 What is Semi-Supervised Learning?

In supervised learning, a learner is given a dataset of m labeled examples

{(x1, y1), . . . , (xm, ym)}

and constructs a function f which predicts a label y for an unseen test ex-
ample x, i.e., ŷ = f(x). In semi-supervised learning (SSL) the learner has an
additional input: a set of n unlabeled examples {xm+1, . . . ,xm+n}. Figure 1
suggests how this can be helpful.

There are several different paradigms for SSL [6]. Here I will focus on
graph-based SSL [2]. Here the examples (both labeled and unlabeled) are
organized in a graph. I will assume W is a matrix such that W [i, j] is the
weight of the edge between xi and xj, and weights are always positive. This
graph can be constructed in many ways, but usually it is sparse (i.e., most
edges have weight zero). Here are some common cases.

• Similarity edges: All nodes in the graph are examples, and W [i, j]
measures similarity between examples i and j. Figure 2(A) shows an
example of this, where the examples are images of digits, taken from
[5]. Note that some of the nodes in the graph have labels, and some do
not.

• Network edges: All nodes in the graph are examples, W [i, j] indicates
that some relationship holds between the examples. For instance, the
examples are web sites, and W [i, j] = 1 if there is a hyperlink from
from site i to site j.

1



Figure 1: Cartoon suggesting why unlabeled examples might be helpful in learn-
ing. (A) If there are few labeled examples, learning a classifier is unconstrained—
many different classifiers separate the data equally well. (B) If unlabeled examples
are added, then the choice of classifier may become more obvious; for instance, if
we assume that the labeled examples are drawn from two well-separated clusters,
learning becomes nearly as constrained as in supervised learning with many ex-
amples (C).

Figure 2: Graphs based on similarity edges (A) and coupling edges (B).

2



• Coupling-node edges: The graph is a bipartite graph, and some nodes
are examples, and the other nodes correspond to sets of example. As
an example, in [3] text-mining was performed on a large corpus, look-
ing for phrases like “songwriters such as Bob Dylan” or “singers such
as Billy Joel”. This was used to create a graph with nodes of two
types: categories (“songwriters”, “singers”, . . . ) and examples (“Bob
Dylan”, “Billy Joel”, . . . ). Edges connect a category nodes to member
of that category, with weights derived from frequency in the corpus.
Figure 2(B) shows an example of this from [3].

Note that only some of the nodes in the graph are labeled. The initially-
labeled nodes are sometimes called “seeds”. Graph-based SSL is often called
label propagation (LP), with the intuition that labels “propagate” from the
seeds through the graph along the edges, thus associating labels with initially-
unlabeled nodes. Label propagation is generally a “soft” iterative process,
where in each iteration, some real-number scores, each representing confi-
dence in a particular label at a particular node, are propagated through the
graph.

2 MultiRank Walk: A Sample LP Algorithm

Let us first look at this problem intuitively, and ask: when does it make sense
that a label from xi should be “propagated” (transferred) to a connected
node xj? More interestingly, when should labels be propagated over a path
consisting of multiple edges?

Figure 3 shows three subgraphs, each of which contains two seeds with
red and green labels, and a starred node which is connected to both red and
green seeds. However, in each case, we argue it is more plausible to associate
the starred node with the green label.

• In subgraph (A), the path to the green seed is shorter than the path
to the red seed.

• In subgraph (B), every path to a seed is of length two, but there are
more paths to the greed seed than to the red seed. Put another way,
define N (i) to be the set of nodes that are neighbors of i, and suppose
that shared neighbors of two graph nodes indicate similarity, such as
shared words of two documents indicate similarity. The starred node

3



Figure 3: Some sample graphs to motivate a particular graph propagation scheme

has three common neighbors with the green seed, and only one common
neighbor with the red one.

• In subgraph (C), there is exactly one length-two path to each of the
seeds, and the starred node has exactly one common neighbor with
each seed. But there is an important difference: the common neigh-
bor with the red node is a common neighbor for many pairs of nodes.
Again treating common neighbors as analogous to words, this would be
like two documents sharing a common word (like “the”) rather than a
rare one (like “aardvark”). This suggests that the starred node should
ultimately receive the green label, not the red label, after propagation.

We now ask: is there any simple algorithmic definition of graph similarity
that is consistent with these intuitions? It turns out there is: they are
all consistent with random-walk-with-reset (RWR) distance, also known as
personalized PageRank.

Let’s start by defining the following random process, parameterized by a
set of seed nodes S and a reset probability c:

1. Draw node V0 uniformly at random from S (notice V0 is a random
variable here)

4



2. For t = 0, . . . , T :

(a) with probability c, draw node Vt+1 uniformly at random from S;

(b) otherwise, draw1 node Vt+1 from the neighbors of Vt, weighted by
the weight of the edge from Vt to Vt+1.

This is the same as the random surfer model used in PageRank, except that
the “teleport” steps always jump to a seed. Ignore for a minute the parameter
c, and define

RWRS(j) ≡ lim
T→∞

Pr(VT = j)

Finally the vector RWRS is the vector of these values over all nodes, i.e.

RWRS = 〈RWRS(1),RWRS(2), . . . ,RWRS(m+ n)〉

where the nodes of the graph are named with integers 1, . . . ,m+ n.
One way to approximate RWRS is let s be a row vector which is uniform

over the seeds S, and let W ′ be a column-normalized version of W : i.e.,

W ′[i, j] =
W [i, j]∑
kW [i, k]

Let v0 = s, and then repeatedly do this update:

vt+1 = cs + (1− c)vtW ′

If s was uniform over the whole graph (not just the nodes in S) then this
would be exactly the update used to compute ordinary PageRank. In practice
this converges quickly: the effect of long paths on RWRS is small because
the probability of not doing a reset in n steps is (1 − c)n, which shrinks
exponentially. As discussed in class, this update operation can also be done
using map-reduce for very large graphs.

Now let’s look go back to Figure 3 and consider two seeds sets, G and R
(for green and red) which contain just one node each. Let i∗ be the index
of the starred node, and also suppose that each edge is bidirectional, so our
random walks don’t hit any “dead ends”, and that the edge weights are all
equal. We can see that propagating labels using RWR satisfies the intuitions
discussed above:

1Hence we are assuming here that every node has some outlinks. Sometimes this is
enforced by having every node link to itself.

5



• In subgraph (A), RWRG[i∗] > RWRR[i∗] because RWR is dominated by
the number of short random walks, and the path from i∗ to the green
seed is shorter than the path to the red seed.

• In subgraph (B), RWRG[i∗] > RWRR[i∗] because RWR is dominated by
the short random walks, and there are more short paths to the green
seed.

• In subgraph (C), RWRG[i∗] > RWRR[i∗] because a random walk from
the red seed needs to go through a high-fanout “hub” node, and the
probability of moving toward the starred node from this hub is low.

This suggests that we can use RWRG[i] (respectively RWRR[i]) a measure
of how much the the green (respectively red) label should be propagated to
i. So we have now motivated the following simple LP method.

1. For classes y1, . . . , yK :

(a) Let Sk be the seeds for class yk

(b) Compute RWRSk

2. For each unlabeled graph node j:

• Predict the class yk where k = argmaxk′ RWRS′
k
[j]

This approach is called the MultiRank Walk (MRW) algorithm, and it
works reasonably well in a wide range of settings [1].

Note that in MRW, nodes don’t need to have any features (although
features of the examples xi might have been used in creating the graph
initially—e.g., in the graph might include similarity edges computed where
similarity was computed using features.) This is also true for the other LP
methods we’ll discuss here.

3 Graph-based SSL as optimization

For MRW, we took an existing propagation method (based on PageRank) and
argued that it was an intuitively reasonable way to propagate labels. Some
LP schemes also arise as solutions to certain simple ptimization criterion.

Remember in our notation, the first m examples are labeled and examples
m + 1 . . .m + n are unlabeled. For a binary classification task, let us use

6



y = +1 for a positive examples and y = −1 for a negative example. Labeling
the unlabeled examples (softly) simply means that we will assign a real-
number “soft” prediction ŷi every label. One plausible goal would be to make
these predictions consistent with the labeled examples, also try to minimize
degree to which connected nodes are given different labels—i.e., to minimize
the following loss on the unlabeled examples:

Loss =
∑

i>m,j>m

W [i, j](ŷi − ŷj)2 (1)

This loss expresses a sort of “smoothness” constraint on our labels: the
predicted labels for nodes connected by an edge should be similar.

I will now assume that W [i, j] = W [j, i]—which makes sense if a weight
indictes similarity of two nodes. With a little algebra, we can write the
smoothness penalty L in matrix form. To simplify I’ll write wij for W [i, j],
define di =

∑
j wi,j, and let D be a diagonal matrix where Di,i = di. I will

also ignore the complicated indexing i > m, j > m below. Then

Loss =
∑
i,j

wi,j(ŷi − ŷj)2

=
∑
i,j

wi,j ŷ
2
i +

∑
i,j

wi,j ŷ
2
j − 2

∑
i,j

wi,j ŷiŷj

=
∑
i

(
∑
j

wi,j)ŷ
2
i +

∑
j

(
∑
i

wi,j)ŷ
2
j − 2

∑
i,j

wi,j ŷiŷj

=
∑
i

diŷ
2
i +

∑
j

dj ŷ
2
j − 2

∑
i,j

wi,j ŷiŷj

= 2
∑
i

diŷ
2
i − 2

∑
i,j

wi,j ŷiŷj

= 2(
∑
i

diŷ
2
i −

∑
i,j

wi,j ŷiŷj)

= 2(ŷTDŷ− ŷTW ŷ)

= 2ŷT (D −W )ŷ

We’ll go ahead and drop the factor of 2, which doesn’t make a difference
since at the end we want to just minimize subject to a constraint, and let S
be another diagonal matrix which tells where the seeds are: i.e., Si,i = 1 for
i ≤ m and Si,i = 0 otherwise. Then the final optimization problem is

minimize ŷT (D −W )ŷ subject to the constraint Sŷ = Sy (2)

7



(A side note: ŷT (D −W )ŷ is often written as ŷTLŷ where the matrix
L = (D−W ) is called the “graph Laplacian”. I’m going to avoid this notation
for now so we don’t confuse this L with a loss function.)

There is a simple iterative algorithm to solve Eq 2.

1. Let ŷ0 be any label assignment consistent with the seed labels.

2. For t = 0, . . . , T :

(a) For every unlabeled node i > m, let ŷt+1
i = 1

di

∑
j wi,j ŷ

t
j

(b) For every labeled node i ≤ m, let ŷt+1
i = yi (where yi is the seed

label for example i).

This algorithm is very simple and natural: in each iteration, you simply
replace each node’s value with the weighted average of its neighbor’s values
(while keeping the seed nodes unchanged). This method has been invented
at least three times with different motivations, and has many names.

• Zhu, Gharamani and Lafferty [5] motivate it as an optimization problem
(as we did above). They called the method Gaussian harmonic fields
(GHF), because after you converge, in iteration T , it should be true
that

ŷTi =
1

di

∑
j

wi,j ŷ
T
j

or in other words, each prediction ŷTi is the weighted average of the
predictions for its neighbors. This is called the “harmonic property”.
Not everyone liked that name, and other researchers have cited [5] and
called the method “harmonic fields” (HF) or “ZGL-LP”.

• Around the same time, Mackassy and Provost [?] presented results with
the same method, which they called the relational neighbor algorithm
(RN) and later used the even catchier name weighted-vote relational
neighbor algorithm (wvRN) [?]

• Earlier, Nigam and Ghani [?] presented a variant of co-training called
co-EM which is algorithmically the same (although the presentation
assumes a coupling-node graph).

8



4 Other optimization criteria

There are many variations of this optimization-based algorithm. For in-
stance, Eq 2 can be extended to multilabel tasks by introducing K different
label vectors ŷ1, . . . , ŷK and solving this optimization problem:

minimize
K∑
k=1

ŷk(D −W )ŷk subject to the constraint ∀k, Sŷk = yk

You can relax the hard constraint that the predictions match the seeds pre-
cisely. For instance you can simply minimize the loss

Loss2 = µ1

m∑
i=1

(ŷi − yi)2 + µ2ŷ
T (D −W )ŷ

= µ1(ŷ− y)TS(ŷ− y) + µ2ŷ
T (D −W )ŷ (3)

Here µ is a parameter that determines how to trade off the “smoothness”
part of the loss with the soft constraint on matching seeds.

Eq 2 doesn’t make any distinction between high-fanout “hub” nodes and
other nodes. One approach to making such a distinction is to modify the
smoothness penalty of Eq 1 to

Loss3 =
n∑

m+1

∑
i,j

wi,j

(
ŷi

f(di)
− ŷj
f(dj)

)2

(4)

where f(d) is some appropriate way of scaling down the impact of high-
degree nodes based on their degree: for instance, f(d) =

√
d is used in the

local and global consistency algorithm [4]. This formula downweights label
disagreements that involve one or more high-degree node.

Another approach to handling “hubs” is to introduce vector of biases rk
that pushes each node toward a particular class, and trade closeness to the
bias vectors off against the usual smoothness criterion.

Loss4 =
K∑
k=1

µ1ŷk
T (D −W )ŷk + µ2(ŷk − rk)

These bias vectors can be used to push the labels of certain unlabeled nodes
towards a special “unknown” or “dummy” label. If one uses r to push high-
degree nodes toward a dummy label, then an effect similar Eq 4 is obtained.

9



In [3] this loss function is combined with the agreement constraint of Eq 3
to get the following loss

Loss4 = µ1(ŷ− y)TS(ŷ− y) + µ2ŷ
T (D −W )ŷ + µ3(ŷk − rk)

All of these optimization criterion have iterative update schemes similar to
the ones shown above.

References

[1] Frank Lin and William W Cohen. Semi-supervised classification of net-
work data using very few labels. In Advances in Social Networks Analysis
and Mining (ASONAM), 2010 International Conference on, pages 192–
199. IEEE, 2010.

[2] Amarnag Subramanya and Partha Pratim Talukdar. Graph-based semi-
supervised learning. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 8(4):1–125, 2014.

[3] Partha Pratim Talukdar and Fernando Pereira. Experiments in graph-
based semi-supervised learning methods for class-instance acquisition. In
Proceedings of the 48th annual meeting of the association for computa-
tional linguistics, pages 1473–1481. Association for Computational Lin-
guistics, 2010.

[4] Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bern-
hard Schölkopf. Learning with local and global consistency. In Advances
in neural information processing systems, pages 321–328, 2004.

[5] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of
the 20th International conference on Machine learning (ICML-03), pages
912–919, 2003.

[6] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised
learning. Synthesis lectures on artificial intelligence and machine learn-
ing, 3(1):1–130, 2009.

10


