
Randomized Algorithms: Lecture Notes

William W. Cohen

February 8, 2025

1 Bloom filters: the basic idea

These notes generally follow the Daniely et al paper from ICLR 2017.1.
Let XV,k be the set of all sets X such that X is a subset of V of size at most k. A typical

use of X would be to encode the set of words in a document, or a sparse binary feature
vectore. Let d = |V | be the vocabulary size (or alternatively the dimension of the feature
space).

Let h be a hash function mapping V to a range of integers {1, . . . ,m}, where m < d.
The sketch Sh(X) for a set X ∈ XV,k is an length-m bit vector, defined as follows:

Sh(X) ≡ b1 . . . bm : bj =
∨
x∈X

(h(x) = j)

Or if you prefer, Sh(X) is computed with the following procedure: start with s = 0m.
Then to construct Sh(X), we just hash each x ∈ X to a position in s, and then set the bit
at that position, ignoring collisions, as shown in the code below:

1. Let s = 0m be an binary vector of length m with all the bits cleared.

2. For word x ∈ X set s[h(x)] = 1.

3. Return s as Sh(X), the sketch of X.

Since m < d the sketch clearly loses information, relative to X: in particular we can’t
determine which elements x were in X from Sh, because typically many x’s will hash to
the same position h(x) in Sh. It turns out that you lose much less information about X
if you construct multiple sketches for X. Let’s assume we have a set of t hash functions,
h1, . . . , ht, each of which hash V into {1, . . . ,m}. From these t hash functions we can create
t sketches of X, Sh1(X), Sh2(X), . . . , Sht(X). Following Daniely et al, we will denote this
set of sketches S1:t(X). Sometimes it will be convenient to think of this as a matrix where
row j is Sj(X).

Figure 1 gives some examples, where m = 3 and (coincidentally) t = 3. The t sketches
are called a Bloom filter for X.

1Short and Deep: Sketching and Neural Networks, Amit Daniely,
https://openreview.net/pdf?id=S1hsDCNFx

1

Figure 1: Example of Bloom filters constructed for three small sets.

Let’s fix X for now, to simplify the notation, so Shj
can be used instead Shj

(X). We can
test if some x ∈ X using this function:

contains(S1:t, x) ≡ Sh1 [h1(x)] ∧ . . . ∧ Sht [ht(x)] =
t∧

i=1

Shi
[hi(x)]

To understand this function better, try using this function to see which of the sketches in
Figure 1 contain “fred flintstone”. (The first example tells you that h1(“fred flintstone”) = 2,
h2(“fred flintstone”) = 1, and etc.) If should be pretty easy to convince yourself of the
following:

Proposition 1 If x ∈ X then contains(S1:t(X), x) = 1

However, the converse is not true: it might be that contains(S1:t(X), x) = 1 but x ̸∈ X.
As an example, consider the first sketch in the figure, S1:t({“fred flintstone”}). If some
x′ ̸= “fred flintstone” happened to hash to the same three indices as “fred flintstone”, then
contains(S1:t(X), x) = 1 would return the wrong answer.

To fix this—or at least, probably fix it—we assume the hash functions are random map-
pings from V to {1, . . . ,m}. More precisely, we assume that for all x ∈ V , i ∈ {1, . . . , t},
and all a ∈ {1, . . . ,m},

Pr(hi(x) = a) =
1

m
(1)

An important point: the probability here, and elsewhere in this document, is taken over our
choice of hash functions.

2

We will also assume that the t hash functions are are all drawn independently at random.
More precisely, for all x ̸= x′, x, x′ ∈ V , all i, j ∈ {1, . . . , t} and all a, b ∈ {1, . . . ,m},

Pr(hi(x) = a ∧ hj(x
′) = b) =

1

m2
(2)

It’s certainly possible to construct hash functions that satisfy Equations 1 and 2, by fixing
V and defining each hi with random draws. However, it also turns out that you can also use
certain deterministic and efficient hash functions2 in place of random hi’s. In practice, I have
found that for Bloom filters, most decent hash functions will provide performance similar to
the formal bounds below. (To create a set of t hash functions h1, . . . , ht from a single hash
function, one simple trick is to define hi(x) = (h(x) XOR bi) where bi is a random bit string
and XOR is bit-wise exclusive or. Another trick is to let bi be a random string, and define
hi(x) = h(bi CONCAT x) where CONCAT is string concatenation.)

Daniely et al show the following upper bound on the probability of an error using the
contains routine.

Theorem 1 If the hash functions h1, . . . , ht satisfy Equations 1 and 2, and if m = ⌈ek⌉ and
X ∈ XV,k, then for any x′ ̸∈ X,

Pr(contains(S1:t(X), x′) = 1) ≤ 1

et

Proof. For x′ ̸∈ X, contains(S1:t(X), x′) = 1 only if for every i ∈ {1, . . . , t}, Shi
[hi(x

′)] = 1.
Let X = {x1, . . . , xk}, and consider a particular hi. We claim

Pr(Shi
[hi(x

′)] = 1) = Pr(hi(x1) = hi(x
′) ∨ . . . ∨ hi(xk) = hi(x

′))

≤
k∑

j=1

Pr(hi(xj) = hi(x
′)) (3)

=
k

m
(4)

=
1

e

Line 3 is because Pr(A1 ∨ . . . ∨ Ak) ≤
∑k

i=1 Pr(Ai), a property sometimes called the “union
bound”. Line 4 holds because of the random-hash assumption made in Equation 1.

Finally, repeated use of the assumption of Equation 2 produces the overall bound of e−t

on an error given in the theorem. 2

This is a pretty strong result, as the following corollary emphasizes: if we are willing to
accept a small (less than δ) chance of a false positive result on containment queries, we can
store a set of elements in less than 3 ln(1/δ) bits per element, regardless of the size of V .

Corollary 1 Let X ∈ XV,k, let m = ⌈ek⌉, and let t = ⌈ln 1
δ
⌉. Then

• If x ∈ X then contains(S1:t(X), x) = 1

2For example, see Michael Mitzenmacher and Eli Upfal, Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis, Cambridge University Press, 2005.

3

• If x ̸∈ X then Pr(contains(S1:t(X), x) = 0) ≥ 1− δ

Concretely, for δ = 0.01, this works to about 12.5k bits to store a set of size k, and for
δ = 0.001, this works to about 19k bits. If you decide you can afford 32k bits, then you will
get to δ down to 0.00001. Of course, all we can do with this set is to create it and then check
containment.

2 Bloom filters: variants and extensions

2.1 Variants

Bloom filters are more usually defined by letting all the hash functions hash to a single
bit vector (which then must be longer). This works fine and leads to essentially the same
formulation, but the math is a little messier (IMHO), which is why I’m using the Daniely et
al formulation.

If you’d rather have one long bit vector instead of t short ones, you could also modify the
hash functions as follows. Recall hi needs to produce an integer in {1, . . . ,m}, so its usually
defined by hash into {1, . . . , 232−1} to get a position p, and then returning hi = (p mod m).
But you could also let hi = (i − 1)t + (p mod m), so that each hi returns indices into a
different subrange of {1, . . . , tm}.

2.2 Incremental changes and combining filters

A more convenient API would allow you to add and delete elements to a Bloom-filter encoded
set. It’s very easy to a new element y to a Bloom filter S1:t: just compute the positions
h1(y), . . . , ht(y), and set the corresponding bits of Sh1 , . . . , Sht . More precisely, the algorithm
to convert S1:t(X) to S1:t(X + {y}) is below.

1. Let s1, . . . , st be the bit vectors associated with S1:t(X).

2. For i = 1, . . . , t, set si[hi(y)] = 1

Figure 2 gives code for this sort of “incremental” Bloom filter.
More generally it’s easy to compute S1:t(X1 +X2): just compute the bit-wise OR of the

sketches in the two filters. This is a really nice property: for instance, if you want to encode
a large set, you can split it into subsets and encode the subsets in parallel with different
filters, and then combine the subset filters by XOR-ing the sketches. Again, Figure 2 gives
pseudo-code for this operation.

Unfortunately, removing elements from a sketch is not easy. One sort-of solution is to
maintain a filter S1:t for X and another filter for the set of things removed from X. Call the
second filter S1:t. You can then define containment as

contains’(x) ≡ contains(S1:t, x) ∧ ¬contains(S1:t, x)

This only “sort of” works, however, because if you add x to S1:t, remove x by adding it to
S1:t, and then add x back again, contains’ will be incorrect.

4

Another case in which Bloom filters can be usefully combined is to build counters that
count up to some small integer ℓ. For instance, suppose you want to find all x’s that occur
at least ℓ = 5 times in a corpus. You can create five Bloom filters f1, . . . , f5 where fj will
(approximately) hold the set of all x’s that occur at least j times. Then scan through the
corpus using this code:

• For each word occurrence x in the corpus:

– If f4.Contains(x) then f5.Add(x)

– If f3.Contains(x) then f4.Add(x)

– If f2.Contains(x) then f3.Add(x)

– If f1.Contains(x) then f2.Add(x)

– f1.Add(x)

(If you are having trouble understanding this, consider the easier case of ℓ = 2.) Some-
times this approach is combined with ideas from the “Morris counter” literature.3. In a
Morris counter, transitions are are done probabilistically, for instance you could imagine this
sort of strategy:

• For each word occurrence x in the corpus:

– If f4.Contains(x) then with probability 1/16, do f5.Add(x)

– If f3.Contains(x) then with probability 1/8, do f4.Add(x)

– If f2.Contains(x) then with probability 1/4, do f3.Add(x)

– If f1.Contains(x) then with probability 1/2, do f2.Add(x)

– f1.Add(x)

This sort of counter (called a Talbot-Osborne-Bloom counter) lets you count up to 2ℓ

with only log ℓ filters, with the caveat that you only have a rough idea of the counter values:
here for instance if x is contained by f4 but not f5, it probably appeared between 16 and 32
times.

3 Countmin sketches

3.1 Countmin sketches: the basic idea

An alternative to counting using multiple Bloom filters is to use a countmin sketch, a con-
struct closely related to a Bloom filter, but is based on real numbers, not bits. While a
Bloom filter is a randomized version of a set, a countmin sketch is a randomized version of
a vector a—or if you prefer, a dictionary indexed by V that maps an element x ∈ V to a

3For example, see Van Durme, Benjamin, and Ashwin Lall. “Probabilistic Counting with Randomized
Storage.” IJCAI. 2009.

5

Bloom filters

Initialize(k, δ):
m = ek
t = ln(1/δ)
// create t bit vectors from {0, 1}m
s1 = . . . = st = 0m

Add(x):
for i = 1, . . . , t:

si[hi(x)] = 1

AddAll(b):
// b is another Bloom filter
for i = 1, . . . , t:

si = si | b.si // bit-wise OR

Contains(x):
return

∧t
i=1 si[hi(x)]

Countmin sketches

Initialize(k, δ):
m = ⌈ e

ϵ
⌉

t = ln(1/δ)
// create t real vectors from Rm

r1 = . . . = rt = 0m

Increment(x,v):
for i = 1, . . . , t:

ri[hi(x)] = ri[hi(x)] + v

IncrementAll(c):
// c is another cm sketch
for i = 1, . . . , t:

ri = ri + c.ri

Retrieve(x):
return min(r1[h1(x)], . . . , rt[ht(x)])

Figure 2: Code for incremental versions of a Bloom filter and a countmin sketch

positive real value a[x]. The countmin sketch’s main use to is to keep a large number of
running sums, one for each element of V .

Figure 2 shows pseudo-code for a countmin sketch. When it is initialized, t real vectors of
lengthm are allocated (instead of bit vectors). The main operations that are supported are to
increment the value a[x] associated with x by some positive real quantity v, and to retrieve
the value associated with x, and they are implemented using analogous methods to their
Bloom filter counterparts. To increment a[x] by v, one finds the t indices associated with x
using hash functions h1, . . . , ht, and then increments the corresponding sketch elements by
v. To retrieve the value for x, one takes the minimum sketch value at these same positions.

It’s easy to see that one can implement a Bloom filter using a countmin sketch: you can
replace calls to Add(x) with Increment(x,1) and replace calls to Contains(x) with the test
(Retrieve(x) > 0). It’s also easy to see that when an incorrect value for x is retrieved, it will
always be strictly too large.

Finally, it can be observed that an incorrect value is retrieved only when there has been
a collision for every one of the t hash functions—the same circumstance that leads a Bloom
filter to return a false positive with a Contains call. Put another way:

Corollary 2 Let c be a countmin sketch. Assume that at most k distinct values of x
have appeared in c.Increment(j, ·) calls. Define a[x] to be the value that should be associ-
ated with x, i.e., if the previous calls to c to increment x have been Increment(x, v1), . . . ,

6

Increment(x, vJ), define

a[x] ≡
J∑

j=1

vj

If the hash functions h1, . . . , ht satisfy Equations 1 and 2, and if m = ⌈ek⌉ and X ∈ XV,k,
then

Pr(c.Retrieve(x) ̸= a[x]) ≤ 1

et

Or:

Corollary 3 Let c be a countmin sketch, let m = ⌈ek⌉, and let t = ⌈ln 1
δ
⌉. Then in the

conditions of Corollary 2:

• For all x ∈ V , c.Retrieve(x) ≥ a[x]

• For any x ∈ V , Pr(c.Retrieve(x) ̸= a[x]) ≤ 1− δ

3.2 Countmin sketches: other results

Corollary 2 is a non-standard analysis of countmin sketches. The more usual theorem4 bases
the analysis not on the number of values x that have been incremented in the sketch, but
on the sum of all the increments: i.e., thinking of a as an ordinary vector, what is assumed
is not that |{x ∈ V : a[x] > 0}| < k but that

(
∑

x ∈ V a[x]) < n

The quantity
∑

x∈V a[x] is also called the L1 norm of a and is written ||a||1. Another bound
on error is

Theorem 2 (Cormode and Muthukrishnan) Let c be a countmin sketch, let m = ⌈ e
ϵ
⌉,

and let t = ⌈ln 1
δ
⌉. Then in the conditions of Corollary 2:

• For all x ∈ V , c.Retrieve(x) ≥ a[x]

• For any x ∈ V , Pr(c.Retrieve(x) ≤ a[x] + ϵ||a||1) ≤ 1− δ

Proof. The proof is similar to the proof of Theorem 1 but uses an additional lemma called
the Markov inequality, which says that if X is a random variable that takes positive values,
then

Pr(X ≥ c) ≤ 1

c
E[X] (5)

To derive this note that

E[X|X < c] > 0 since X takes positive values

E[X|X ≥ c] ≥ c since we conditioned on X ≥ c

4Cormode, Graham, and S. Muthukrishnan. “An improved data stream summary: The count-min sketch
and its applications.” Latin American Symposium on Theoretical Informatics. Springer, Berlin, Heidelberg,
2004.

7

So we we can see that

E[X] = E[X|X < c]Pr(X < c) + E[X|X ≥ c] · Pr(X ≥ c)

implies E[X] ≥ E[X|X ≥ c] · Pr(X ≥ c) ≥ c · Pr(X ≥ c)

which immediate implies Equation 5.
Now fix a hash function t, and consider the random 0/1 variable I tx,x′ which indicates if

x ̸= x′ collide for hash t, i.e.

Ix,x
′

t ≡ (1 if ht(x) = ht(x
′) else 0)

Since hashes are independent and m = e
ϵ
,

Pr(Ix,x
′

t == 1) =
1

m
=

ϵ

e

We can now define Cx
t , which is the “collision-related” error for x, as

Cx
t ≡

∑
x′

Ix,x
′

t a[x′]

and the expectation for this is

E[Cx
t] =

ϵ

e
||a||1

Finally we can use the Markov inequality to show that

Pr(Cx
t > ϵ||a||1) ≤

E[Cx
t]

ϵ||a||1

which simplifies to 1
e
.

The remainder of the proof follows Theorem 1. 2

There are number of additional results of this sort. One is for vectors with skewed values.
A sequence of values f1, f2, . . . , has a Zipf distribution if fi ∝ i−z and

∑
i fi = 1. Famously

the frequency of words in English text have a Zipf distribution: the most frequent words
account for most word occurrences, and there is a long tail of infrequent words. For z > 1,
a countmin sketch with width

m =
1

ϵ−z

can approximately encode a Zipf-distributed sequence5, and similar results hold for some
relaxations of the Zipf distribution. The intuition behind these bounds is that most x’s will
be from the tail of the distribution and will have small values a[x], and that even t collisions
can shown to be inconsequential, if all the collisions involve the “tail” x’s: although the value
of Retrieve will be incorrect the error will be small, since the “tail” x’s are associated with
small values.

5Cormode, Graham, and S. Muthukrishnan. “Summarizing and mining skewed data streams.” Pro-
ceedings of the 2005 SIAM International Conference on Data Mining. Society for Industrial and Applied
Mathematics, 2005.

8

Another interesting result is that one can approximate an inner product, say of two
vectors a and b, using only their countmin sketches. Let r1, . . . , rt be the sketch vectors for
a and let q1, . . . ,qt be the sketch vectors for b. You can approximate

a · b ≡
∑
x∈V

a[x]b[x] ≈ min(r1 · q1, . . . , rt · qt)

Finally, like Bloom filters, it is easy to combine two countmin sketches. One can also
compute a weighted sum of two sketches: for instance to compute αa+βb one would create
a new sketch with sketch vectors u1, . . . ,ut where for i = 1, . . . , t,

ui = αri + βqi

9

