
Parallel Machine Learning: Lecture Notes

William Cohen

March 12, 2015

1 Notation

T a dataset
xt, yt the t-th example in a dataset
S the number of “shards” of data
Ti the i-th shard
w a linear classifier/weight vector
w a weight vector for an on-line learner at time t
`t(w,xt, yt) the loss incurred by w on t-th example
gt gradient of loss wrt w at xt
τ a “delay” (# time steps out of date)
L bound on subgradient of loss

2 Adapting Streaming Learning Methods to

Map-Reduce

In class we covered two closely-related streaming learning algorithms in de-
tail: logistic regression using stochastic gradient descent (SGD), and the
averaged perceptron algorithm. We also discussed in detail one paper dis-
cussing parallelizing the perceptron algorithm.1 That paper describes two
parallel algorithms.

• The parameter mixing (PM) version of the perceptron runs the program
on S “shards” of data, each a randomly-chosen subset of the instances,
and then averages the S different linear classifiers that are learned.

1Distributed Training Strategies for the Structured Perceptron, R. McDonald, K. Hall
and G. Mann, North American Association for Computational Linguistics (NAACL), 2010.

1



• The iterative parameter mixing (IPM) version of the perceptron does
parameter mixing in a loop. At the end of the k-th loop, the “mixed”
(averaged) linear classifier w(k) is broadcast to each of the S worker
processors, and they stream through the data again, using this as the
starting point for the on-line perceptron perceptron algorithm.

Formally, McDonald et al. show (1) that PM will fail to converge in the
worse case; and that (2) IPM will converge, but in the worst case, might take
S times as many mistakes to converge—i.e., might be no faster than a single
on-line worker. The second result was presented in detail in class.

Experimentally, however, IPM works fairly well, providing a wall-clock
speedup of 25x or so over a serial process. The experiments suggest that
parameter mixing is not effective: it seems to work less well than a sin-
gle iteration. Formally, it’s left open whether the worst-case results in the
mistake-bound setting really reflect performance on the i.i.d. data one would
expect to see in practice.

todo: discuss experiments, and questions they raise. does it
beat subsampling? is it faster than a serial method? how scalable
is it?

3 Delayed SGD

PM and IPM are prototypical of two common approaches to parallel ML in
a map-reduce like setting, which one could instantiate in a number of other
settings: in particular, you could use the same approaches for any streaming
machine learning method, like as SGD. PM provides maximal parallelism,
and requires minimal communication. IPM requires more communication
but may provide better performance.

In another well-cited paper2 the idea of iterative parameter mixing is ex-
tended as follows. In IPM, the essential idea is that parallelism is enabled
because different worker processes are allowed to let their weight vectors di-
verge: i.e., each process is using a “stale”, “out of date” version of the weight
vector. Langford et al. consider delayed stochastic gradient descent (DSGD),
an on-line SGD process where in each step, an old version of the weight vec-
tor is used to compute a gradient. Formally, if τ is a delay, gt is the usual
SGD gradient at time t, and ηt is the learning rate at t, a weight vector will

2“Slow learners are fast”, Langford, Smola, Zinkevick JMLR 2009

2



be updated at time t to
wt = wt − ηtgt−τ

i.e., using a gradient that was computed τ steps previously.
Delayed SGD is a formal model, which could be used to analyze an IPM-

like version of SGD—here τ would grow as each worker node progressed.
Another reasonable parallel algorithm that can be analyzed in this framework
is a multi-threaded architecture where w is shared by many worker threads,
each of which repeatedly reads (part of) w, computes a gradient, and then
sends an update (which may by now be out-of-date, due to other worker
updates) to a process that controls write access to w.

Comments on the theory. What can you say about this model? As
noted above, it’s close to the IPM setting, which in the mistake-bounded
model converges, but might converge as slowly as a serial computation that
consumes a fixed fraction 1

S
of the data in each iteration. The McDonald et

al. results clearly depend on the mistake-bound model, and it’s not obvious
how to extend them to an SGD setting.

To summarize the “Slow learners are fast” theoretical results, the notion
of a mistake bound is extended to “regret”. Let wt be the t-th weight vector,
and define `t(wt,xt, yt) to be the loss incurred by wt on the t-the example.
Let w∗ be the weight vector that minimizes loss over the entire dataset T .
We assume that T is ordered, and now the regret for the dataset T is defined
as

R[T ] ≡
T∑
t=1

`t(wt,xt, yt)− `t(w∗,xt, yt)

If `t is 0-1 classification error and T is linearly seperable, then regret reduces
to the number of mistakes made: however, it is much more general. Roughly
speaking, regret is how well the on-line process performs relative to a batch
process in which all the examples are available, and like a mistake bound, a
bound on regret is closely related to generalization performance in an i.i.d.
setting.

To bound regret in a delayed SGD setting, you need to make some as-
sumptions. We will assume

1. The loss is convex. Convexity means that we can bound

R[T ] ≡
T∑
t=1

`t(wt,xt, yt)− `t(w∗,xt, yt) ≤
T∑
t=1

〈gt,wt −w∗〉

where 〈u,v〉 is the inner product.

3



2. The gradient (more technically, the subgradients) of the loss are bounded
by a constant L, i.e., for all t, gt ≤ L for some L > 0.

todo: mistake bound goes to “regret”, and you need to as-
sume something about how far off a “stale” update can be. which
needs assumptions about smoothness of loss - convex and Lipschitz
continuous, where loss gradient is bounded by L – and a distance
function between parameters – bregman divergence, which gener-
alizes an inner product – so we can bound in instantaneous loss.

bounds range from O(τ log T ) to O(τ 2 + log T ) for strongly convex
losses and smooth gradients.

4


