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Announcement 

•  Two-day extension for all on HW1B:  
– now due Thursday 1/29 



Correction… 



Using Large-vocabulary Naïve Bayes 

•  For each example id, y, x1,….,xd in test: train: 
•  Sort the event-counter update “messages” 
•  Scan and add the sorted messages and output the final 

counter values 
•  Initialize a HashSet NEEDED and a hashtable C 
•  For each example id, y, x1,….,xd in test: 
–  Add x1,….,xd to NEEDED 

•  For each event, C(event) in the summed counters 
–  If event involves a NEEDED term x read it into C 

•  For each example id, y, x1,….,xd in test: 
–  For each y’ in dom(Y): 

•  Compute log Pr(y’,x1,….,xd) = …. 

[For assignment] 

Model size: O(|V|) 

Time: O(n2), size of test 
Memory: same 

Time: O(n2) 
Memory:  same 

Time: O(n2) 
Memory:  same 

4 



Review of NB algorithms 

HW Train events Test events Suggested data 

1A HashMap HashMap RCV1 

1B Msgs è Disk HashMap 
(for subset) 

Wikipedia 

--- Msgs è Disk Msgs on Disk 
(coming….) 

--- 



Outline 

•  Even more on stream-and-sort and naïve 
Bayes 

•  Another problem: “meaningful” phrase 
finding 

•  Implementing phrase finding efficiently 
•  Some other phrase-related problems 



Last Week 
•  How to implement Naïve Bayes 
–  Time is linear in size of data (one scan!) 
–  We need to count, e.g. C( X=word ^ Y=label) 

•  How to implement Naïve Bayes with large vocabulary and 
small memory 
–  General technique:  “Stream and sort” 
•  Very little seeking (only in merges in merge sort) 
•  Memory-efficient 



Flaw: Large-vocabulary Naïve Bayes is 
Expensive to Use 
•  For each example id, y, x1,….,xd in train: 
•  Sort the event-counter update “messages” 
•  Scan and add the sorted messages and output the final 

counter values 
•  For each example id, y, x1,….,xd in test: 
–  For each y’ in dom(Y): 

•  Compute log Pr(y’,x1,….,xd) =  

Model size:  max O(n), O(|V||dom(Y)|) 
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The workaround I suggested 
•  For each example id, y, x1,….,xd in train: 
•  Sort the event-counter update “messages” 
•  Scan and add the sorted messages and output the final 

counter values 
•  Initialize a HashSet NEEDED and a hashtable C 
•  For each example id, y, x1,….,xd in test: 
–  Add x1,….,xd to NEEDED 

•  For each event, C(event) in the summed counters 
–  If event involves a NEEDED term x read it into C 

•  For each example id, y, x1,….,xd in test: 
–  For each y’ in dom(Y): 

•  Compute log Pr(y’,x1,….,xd) = …. 



Can we do better? 



Can we do better? 

id1  w1,1 w1,2 w1,3 …. w1,k1 
id2  w2,1 w2,2 w2,3 ….  
id3  w3,1 w3,2  ….  
id4  w4,1 w4,2 … 
id5  w5,1 w5,2 …. 
.. 
 

X=w1^Y=sports 
X=w1^Y=worldNews 
X=.. 
X=w2^Y=… 
X=… 
… 
 

5245 
1054 
2120 

37 
3 

… 
 

Test data Event counts 

id1  w1,1 w1,2 w1,3 …. w1,k1 
 
id2  w2,1 w2,2 w2,3 ….  
 
id3  w3,1 w3,2  ….  
 
id4  w4,1 w4,2 … 
 
 

C[X=w1,1^Y=sports]=5245, C[X=w1,1^Y=..],C[X=w1,2^…] 
 
C[X=w2,1^Y=….]=1054,…, C[X=w2,k2^…] 
 
C[X=w3,1^Y=….]=… 
 
… 
 
 

What we’d like 



Can we do better? 

X=w1^Y=sports 
X=w1^Y=worldNews 
X=.. 
X=w2^Y=… 
X=… 
… 
 

5245 
1054 
2120 

37 
3 

… 
 

Event counts 

w Counts associated with W 

aardvark C[w^Y=sports]=2 

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… … 
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464 

Step 1: group counters by word w 

How: 
•  Stream and sort: 

•  for each C[X=w^Y=y]=n 
•  print “w  C[Y=y]=n” 

•  sort and build a list of values 
associated with each key w 
Like an inverted index 



If these records were in a key-value DB we 
would know what to do…. 

id1  w1,1 w1,2 w1,3 …. w1,k1 
id2  w2,1 w2,2 w2,3 ….  
id3  w3,1 w3,2  ….  
id4  w4,1 w4,2 … 
id5  w5,1 w5,2 …. 
.. 
 

Test data Record of all event counts for each word 

w Counts associated with W 

aardvark C[w^Y=sports]=2 

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… … 
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464 

Step 2: stream through and for each test case 
 
idi  wi,1 wi,2 wi,3 …. wi,ki 
 
request the event counters needed to classify 
idi from the event-count DB, then classify 
using the answers 
 

Classification 
logic 



Is there a stream-and-sort analog of this 
request-and-answer pattern? 

id1  w1,1 w1,2 w1,3 …. w1,k1 
id2  w2,1 w2,2 w2,3 ….  
id3  w3,1 w3,2  ….  
id4  w4,1 w4,2 … 
id5  w5,1 w5,2 …. 
.. 
 

Test data Record of all event counts for each word 

w Counts associated with W 

aardvark C[w^Y=sports]=2 

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… … 
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464 

Step 2: stream through and for each test case 
 
idi  wi,1 wi,2 wi,3 …. wi,ki 
 
request the event counters needed to classify 
idi from the event-count DB, then classify 
using the answers 
 

Classification 
logic 



Recall: Stream and Sort Counting: sort messages so 
the recipient can stream through them 

•  example 1 
•  example 2 
•  example 3 
•  …. 

Counting logic 

“C[x] +=D” 

Machine A 

So
rt

 

•  C[x1] += D1 
•  C[x1] += D2 
•  …. 

Logic to 
combine 
counter 
updates 

Machine C 

Machine B 



Is there a stream-and-sort analog of this 
request-and-answer pattern? 

id1  w1,1 w1,2 w1,3 …. w1,k1 
id2  w2,1 w2,2 w2,3 ….  
id3  w3,1 w3,2  ….  
id4  w4,1 w4,2 … 
id5  w5,1 w5,2 …. 
.. 
 

Test data Record of all event counts for each word 

w Counts associated with W 

aardvark C[w^Y=sports]=2 

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… … 
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464 

Classification 
logic 

W1,1 counters to id1 
W1,2 counters to id2 
… 
Wi,j counters to idi 
… 



Is there a stream-and-sort analog of this 
request-and-answer pattern? 

id1  found an aarvark in 
zynga’s farmville today! 
id2  … 
id3  …. 
id4  … 
id5  … 
.. 
 

Test data Record of all event counts for each word 

w Counts associated with W 

aardvark C[w^Y=sports]=2 

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… … 
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464 

Classification 
logic 

found  ctrs to id1 
aardvark  ctrs to id1 
… 
today  ctrs to id1 
… 



Is there a stream-and-sort analog of this 
request-and-answer pattern? 

id1  found an aarvark in 
zynga’s farmville today! 
id2  … 
id3  …. 
id4  … 
id5  … 
.. 
 

Test data Record of all event counts for each word 

w Counts associated with W 

aardvark C[w^Y=sports]=2 

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… … 
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464 

Classification 
logic 

found  ~ctrs to id1 
aardvark  ~ctrs to id1 
… 
today  ~ctrs to id1 
… 

~ is the last ascii character 
 
% export LC_COLLATE=C 
 
means that it will sort after 
anything else with unix sort 



Is there a stream-and-sort analog of this 
request-and-answer pattern? 

id1  found an aardvark in 
zynga’s farmville today! 
id2  … 
id3  …. 
id4  … 
id5  … 
.. 
 

Test data Record of all event counts for each word 

w Counts associated with W 

aardvark C[w^Y=sports]=2 

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… … 
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464 

Classification 
logic 

found  ~ctr to id1 
aardvark  ~ctr to id2 
… 
today  ~ctr to idi 
… 

Counter records 

requests 

Combine and sort 



A stream-and-sort analog of the request-and-
answer pattern… 

Record of all event counts 
for each word 

w Counts 
aardvark C[w^Y=sports]=2 

agent … 

… 

zynga … 

found  ~ctr to id1 
aardvark  ~ctr to id1 
… 
today  ~ctr to id1 
… 

Counter records 

requests 

Combine and sort 

w Counts 

aardvark C[w^Y=sports]=2 

aardvark ~ctr to id1 

agent C[w^Y=sports]=… 

agent ~ctr to id345 

agent ~ctr to id9854 

… ~ctr to id345 

agent ~ctr to id34742 

… 

zynga C[…] 

zynga ~ctr to id1 

Request-handling logic 



A stream-and-sort analog of the request-and-
answer pattern… 

requests 

Combine and sort 

w Counts 

aardvark C[w^Y=sports]=2 

aardvark ~ctr to id1 

agent C[w^Y=sports]=… 

agent ~ctr to id345 

agent ~ctr to id9854 

… ~ctr to id345 

agent ~ctr to id34742 

… 

zynga C[…] 

zynga ~ctr to id1 

Request-handling logic 

• previousKey = somethingImpossible 
•  For each (key,val) in input: 

•  If key==previousKey  
•  Answer(recordForPrevKey,val) 

•  Else 
•  previousKey = key 
•  recordForPrevKey = val 
 

define Answer(record,request): 
•  find id where “request = ~ctr to id” 
•  print “id ~ctr for request is record” 



A stream-and-sort analog of the request-and-
answer pattern… 

requests 

Combine and sort 

w Counts 

aardvark C[w^Y=sports]=2 

aardvark ~ctr to id1 

agent C[w^Y=sports]=… 

agent ~ctr to id345 

agent ~ctr to id9854 

… ~ctr to id345 

agent ~ctr to id34742 

… 

zynga C[…] 

zynga ~ctr to id1 

Request-handling 
logic 

• previousKey = somethingImpossible 
•  For each (key,val) in input: 

•  If key==previousKey  
•  Answer(recordForPrevKey,val) 

•  Else 
•  previousKey = key 
•  recordForPrevKey = val 
 

define Answer(record,request): 
•  find id where “request = ~ctr to id” 
•  print “id ~ctr for request is record” 

Output: 
id1 ~ctr for aardvark is C[w^Y=sports]=2 
… 
id1  ~ctr for zynga is …. 
… 



A stream-and-sort analog of the request-and-
answer pattern… 

w Counts 

aardvark C[w^Y=sports]=2 

aardvark ~ctr to id1 

agent C[w^Y=sports]=… 

agent ~ctr to id345 

agent ~ctr to id9854 

… ~ctr to id345 

agent ~ctr to id34742 

… 

zynga C[…] 

zynga ~ctr to id1 

Request-handling 
logic 

Output: 
id1 ~ctr for aardvark is C[w^Y=sports]=2 
… 
id1  ~ctr for zynga is …. 
… 

id1  found an aardvark in 
zynga’s farmville today! 
id2  … 
id3  …. 
id4  … 
id5  … 
.. 
 

Combine and sort ???? 



id1  w1,1 w1,2 w1,3 …. w1,k1 
 
id2  w2,1 w2,2 w2,3 ….  
 
id3  w3,1 w3,2  ….  
 
id4  w4,1 w4,2 … 
 
 

C[X=w1,1^Y=sports]=5245, C[X=w1,1^Y=..],C[X=w1,2^…] 
 
C[X=w2,1^Y=….]=1054,…, C[X=w2,k2^…] 
 
C[X=w3,1^Y=….]=… 
 
… 
 
 

Key Value 

id1 found aardvark zynga farmville today 

~ctr for aardvark is C[w^Y=sports]=2 

~ctr for found is C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… 

id2 w2,1 w2,2 w2,3 ….  

~ctr for w2,1 is … 

… … 

What we’d wanted 

What we ended up with 



Implementation summary 

java CountForNB train.dat … > eventCounts.dat 
java CountsByWord eventCounts.dat | sort  
| java CollectRecords   > words.dat 
 
java requestWordCounts  test.dat 
| cat - words.dat | sort | java answerWordCountRequests 
| cat - test.dat| sort | testNBUsingRequests 

id1  w1,1 w1,2 w1,3 …. w1,k1 
id2  w2,1 w2,2 w2,3 ….  
id3  w3,1 w3,2  ….  
id4  w4,1 w4,2 … 
id5  w5,1 w5,2 …. 
.. 
 

X=w1^Y=sports 
X=w1^Y=worldNews 
X=.. 
X=w2^Y=… 
X=… 
… 
 

5245 
1054 
2120 

37 
3 

… 
 

train.dat counts.dat 



Implementation summary 

java CountForNB train.dat … > eventCounts.dat 
java CountsByWord eventCounts.dat | sort  
| java CollectRecords   > words.dat 
 
java requestWordCounts  test.dat 
| cat - words.dat | sort | java answerWordCountRequests 
| cat - test.dat| sort | testNBUsingRequests 

words.dat 

w Counts associated with W 

aardvark C[w^Y=sports]=2 

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… … 
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464 



Implementation summary 

java CountForNB train.dat … > eventCounts.dat 
java CountsByWord eventCounts.dat | sort  
| java CollectRecords   > words.dat 
 
java requestWordCounts  test.dat 
| cat - words.dat | sort | java answerWordCountRequests 
| cat - test.dat| sort | testNBUsingRequests 

w Counts 
aardvark C[w^Y=sports]=2 

agent … 

… 

zynga … 

found  ~ctr to id1 
aardvark  ~ctr to id2 
… 
today  ~ctr to idi 
… 

w Counts 

aardvark C[w^Y=sports]=2 

aardvark ~ctr to id1 

agent C[w^Y=sports]=… 

agent ~ctr to id345 

agent ~ctr to id9854 

… ~ctr to id345 

agent ~ctr to id34742 

… 

zynga C[…] 

zynga ~ctr to id1 

output looks like this 

input looks 
like this 

words.dat 



Implementation summary 

java CountForNB train.dat … > eventCounts.dat 
java CountsByWord eventCounts.dat | sort  
| java CollectRecords   > words.dat 
 
java requestWordCounts  test.dat 
| cat - words.dat | sort | java answerWordCountRequests 
| cat - test.dat| sort | testNBUsingRequests 

Output: 
id1 ~ctr for aardvark is C[w^Y=sports]=2 
… 
id1  ~ctr for zynga is …. 
… 

id1  found an aardvark in 
zynga’s farmville today! 
id2  … 
id3  …. 
id4  … 
id5  … 
.. 
 

Output 
looks like 
this 

test.dat 



Implementation summary 

java CountForNB train.dat … > eventCounts.dat 
java CountsByWord eventCounts.dat | sort  
| java CollectRecords   > words.dat 
 
java requestWordCounts  test.dat 
| cat - words.dat | sort | java answerWordCountRequests 
| cat -test.dat| sort | testNBUsingRequests Input looks like this 

Key Value 

id1 found aardvark zynga farmville today 

~ctr for aardvark is C[w^Y=sports]=2 

~ctr for found is C[w^Y=sports]=1027,C[w^Y=worldNews]=564 

… 

id2 w2,1 w2,2 w2,3 ….  

~ctr for w2,1 is … 

… … 



Outline 

•  Even more on stream-and-sort and naïve 
Bayes 

•  Another problem: “meaningful” phrase 
finding 

•  Implementing phrase finding efficiently 
•  Some other phrase-related problems 





ACL Workshop 2003 





Why phrase-finding? 

•  There are lots of phrases 
•  There’s not supervised data 
•  It’s hard to articulate 
– What makes a phrase a phrase, vs just an 

n-gram? 
•  a phrase is independently meaningful (“test 

drive”, “red meat”) or not (“are interesting”, 
“are lots”) 

– What makes a phrase interesting? 



The breakdown: what makes a 
good phrase 
•  Two properties: 
– Phraseness: “the degree to which a given word 

sequence is considered to be a phrase” 
•  Statistics: how often words co-occur together vs 

separately 
–  Informativeness: “how well a phrase captures or 

illustrates the key ideas in a set of documents” – 
something novel and important relative to a domain 

•  Background corpus and foreground corpus; how 
often phrases occur in each 



“Phraseness”1 – based on BLRT 
•  Binomial Ratio Likelihood Test (BLRT): 
– Draw samples:  
•  n1 draws, k1 successes 
•  n2 draws, k2 successes  
•  Are they from one binominal (i.e., k1/n1 and k2/n2 

were different due to chance) or from two distinct 
binomials? 

– Define 
•  p1=k1 / n1, p2=k2 / n2,  p=(k1+k2)/(n1+n2), 
•  L(p,k,n) = pk(1-p)n-k 

BLRT (n1,k1,n2,k2 ) =
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )



“Phraseness”1 – based on BLRT 
•  Binomial Ratio Likelihood Test (BLRT): 
– Draw samples:  
•  n1 draws, k1 successes 
•  n2 draws, k2 successes  
•  Are they from one binominal (i.e., k1/n1 and k2/n2 

were different due to chance) or from two distinct 
binomials? 

– Define 
•  pi=ki/ni, p=(k1+k2)/(n1+n2), 
•  L(p,k,n) = pk(1-p)n-k 

BLRT (n1,k1,n2,k2 ) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )



“Phraseness”1 – based on BLRT 

– Define 
•  pi=ki /ni, p=(k1+k2)/(n1+n2), 
• L(p,k,n) = pk(1-p)n-k 

ϕ p(n1,k1,n2,k2 ) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )

comment 

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C 

n1 C(W1=x) how often word x occurs in corpus C 

k2 C(W1≠x^W2=y) how often y occurs in C after a non-x 

n2 C(W1≠x) how often a non-x occurs in C 

Phrase x y: W1=x ^ W2=y 
 

Does y occur at the same frequency after x as in other positions? 



“Informativeness”1 – based on BLRT 

– Define 
•  pi=ki /ni, p=(k1+k2)/(n1+n2), 
• L(p,k,n) = pk(1-p)n-k 

Phrase x y: W1=x ^ W2=y 
and two corpora, C and B 

comment 

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C 

n1 C(W1=* ^ W2=*) how many bigrams in corpus C 

k2 B(W1=x^W2=y) how often x y occurs in background corpus 

n2 B(W1=* ^ W2=*) how many bigrams in background corpus 

Does x y occur at the same frequency in both corpora? 

ϕi (n1,k1,n2,k2 ) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )



The breakdown: what makes a 
good phrase 
•  “Phraseness” and “informativeness” are then 

combined with a tiny classifier, tuned on labeled data. 

•  Background corpus: 20 newsgroups dataset (20k 
messages, 7.4M words) 

•  Foreground corpus: rec.arts.movies.current-films 
June-Sep 2002 (4M words)  

•  Results? 
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The breakdown: what makes a 
good phrase 
•  Two properties: 

–  Phraseness: “the degree to which a given word sequence is 
considered to be a phrase” 
•  Statistics: how often words co-occur together vs separately 

–  Informativeness: “how well a phrase captures or illustrates 
the key ideas in a set of documents” – something novel and 
important relative to a domain 
•  Background corpus and foreground corpus; how often 

phrases occur in each 
– Another intuition: our goal is to compare 

distributions and see how different they are: 
•  Phraseness: estimate x y with bigram model or 

unigram model 
•  Informativeness: estimate with foreground vs 

background corpus 



The breakdown: what makes a 
good phrase 
– Another intuition: our goal is to compare distributions 

and see how different they are: 
•  Phraseness: estimate x y with bigram model or unigram 

model 
•  Informativeness: estimate with foreground vs background 

corpus 
–  To compare distributions, use KL-divergence 

“Pointwise KL divergence” 



The breakdown: what makes a 
good phrase 
– To compare distributions, use KL-divergence 

“Pointwise KL divergence” 

Phraseness: difference 
between bigram and 
unigram language 
model in foreground 

Bigram model:    P(x y)=P(x)P(y|x) 
 
Unigram model: P(x y)=P(x)P(y) 



The breakdown: what makes a 
good phrase 
– To compare distributions, use KL-divergence 

“Pointwise KL divergence” 

Informativeness: difference 
between foreground and 
background models 

Bigram model:    P(x y)=P(x)P(y|x) 
 
Unigram model: P(x y)=P(x)P(y) 



The breakdown: what makes a 
good phrase 
– To compare distributions, use KL-divergence 

“Pointwise KL divergence” 

Combined: difference 
between foreground bigram 
model and background 
unigram model 

Bigram model:    P(x y)=P(x)P(y|x) 
 
Unigram model:  P(x y)=P(x)P(y) 



The breakdown: what makes a 
good phrase 
– To compare distributions, use KL-divergence 

Combined: difference 
between foreground bigram 
model and background 
unigram model 

Subtle advantages: 
•  BLRT scores “more frequent in 

foreground” and “more frequent in 
background” symmetrically, 
pointwise KL does not. 

•  Phrasiness and informativeness 
scores are more comparable – 
straightforward combination w/o a 
classifier is reasonable. 

•  Language modeling is well-studied: 
•  extensions to n-grams, 

smoothing methods, … 
•  we can build on this work in a 

modular way 



Pointwise KL, combined 



Why phrase-finding? 
•  Phrases are where the standard supervised “bag 

of words” representation starts to break. 
•  There’s not supervised data, so it’s hard to see 

what’s “right” and why 
•  It’s a nice example of using unsupervised 

signals to solve a task that could be formulated 
as supervised learning 

•  It’s a nice level of complexity, if you want to do 
it in a scalable way. 



Implementation 
•  Request-and-answer pattern 

–  Main data structure: tables of key-value pairs 
•  key is a phrase x y  
•  value is a mapping from a attribute names (like phraseness, freq-in-B, 

…) to numeric values. 
–  Keys and values are just strings 
–  We’ll operate mostly by sending messages to this data structure 

and getting results back, or else streaming thru the whole table 
–  For really big data: we’d also need tables where key is a word and 

val is set of attributes of the word (freq-in-B, freq-in-C, …) 



Generating and scoring phrases: 1 

•  Stream through foreground corpus and count events “W1=x ^ 
W2=y” the same way we do in training naive Bayes: stream-and 
sort and accumulate deltas (a “sum-reduce”) 
–  Don’t bother generating boring phrases (e.g., crossing a 

sentence, contain a stopword, …) 
•  Then stream through the output and convert to phrase, attributes-

of-phrase records with one attribute: freq-in-C=n 
•  Stream through foreground corpus and count events “W1=x” in a 

(memory-based) hashtable…. 
•  This is enough* to compute phrasiness: 

–  ψp(x y) = f( freq-in-C(x), freq-in-C(y), freq-in-C(x y)) 

•  …so you can do that with a scan through the phrase table that 
adds an extra attribute (holding word frequencies in memory). 

* actually you also need total # words and total #phrases…. 



Generating and scoring phrases: 2 

•  Stream through background corpus and count events 
“W1=x ^ W2=y” and convert to phrase, attributes-of-
phrase records with one attribute: freq-in-B=n 

•  Sort the two phrase-tables: freq-in-B and freq-in-C and 
run the output through another “reducer” that 
– appends together all the attributes associated with 

the same key, so we now have elements like 



Generating and scoring phrases: 3 

•  Scan the through the phrase table one more 
time and add the informativeness attribute 
and the overall quality attribute 

Summary, assuming word vocabulary nW is small: 
•  Scan foreground corpus C for phrases: O(nC) producing mC phrase 

records – of course mC << nC 
•  Compute phrasiness: O(mC)  
•  Scan background corpus B for phrases: O(nB) producing mB  
•  Sort together and combine records: O(m log m), m=mB + mC 
•  Compute informativeness and combined quality: O(m) 

Assumes word counts fit in memory 



Ramping it up – keeping word 
counts out of memory 
•  Goal: records for xy with attributes freq-in-B, freq-in-C, 

freq-of-x-in-C, freq-of-y-in-C, … 
•  Assume I have built built phrase tables and word 

tables….how do I incorporate the word attributes into the 
phrase records? 

•  For each phrase xy, request necessary word frequencies: 
–  Print “x ~request=freq-in-C,from=xy” 
–  Print “y ~request=freq-in-C,from=xy” 

•  Sort all the word requests in with the word tables 
•  Scan through the result and generate the answers: for 

each word w, a1=n1,a2=n2,…. 
–  Print “xy ~request=freq-in-C,from=w” 

•  Sort the answers in with the xy records 
•  Scan through and augment the xy records appropriately 



Generating and scoring phrases: 3 

Summary 
1.  Scan foreground corpus C for phrases, words: O(nC)  

producing mC phrase records, vC word records 
2.  Scan phrase records producing word-freq requests: O(mC ) 

producing 2mC requests 
3.  Sort requests with word records: O((2mC + vC )log(2mC + vC)) 

 = O(mClog mC) since vC < mC 
4.  Scan through and answer requests: O(mC) 
5.  Sort answers with phrase records: O(mClog mC)  
6.  Repeat 1-5 for background corpus: O(nB + mBlogmB) 
7.  Combine the two phrase tables: O(m log m), m = mB + mC 
8.  Compute all the statistics: O(m) 



More cool work with phrases 
•  Turney: Thumbs up or thumbs down?: semantic orientation 

applied to unsupervised classification of reviews.ACL ‘02. 
•  Task: review classification (65-85% accurate, depending on 

domain) 
–  Identify candidate phrases (e.g., adj-noun bigrams, using POS 

tags) 
–  Figure out the semantic orientation of each phrase using 

“pointwise mutual information” and aggregate 

SO(phrase) = PMI(phrase,'excellent') − PMI(phrase,'poor') 





 
“Answering Subcognitive Turing Test 

Questions: A Reply to French” - Turney 
 



More from Turney 
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HIGHER 
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More cool work with phrases 
•  Locating Complex Named Entities in Web Text. Doug 

Downey, Matthew Broadhead, and Oren Etzioni, IJCAI 
2007.  

•  Task: identify complex named entities like “Proctor and 
Gamble”, “War of 1812”, “Dumb and Dumber”, 
“Secretary of State William Cohen”, … 

•  Formulation: decide whether to or not to merge nearby 
sequences of capitalized words axb, using variant of 

•   For k=1, ck is PM (w/o the log).  For k=2, ck is 
“Symmetric Conditional Probability” 



Downey et al results 



Outline 
•  Even more on stream-and-sort and naïve Bayes 
– Request-answer pattern 

•  Another problem: “meaningful” phrase finding 
– Statistics for identifying phrases (or more 

generally correlations and differences) 
– Also using foreground and background corpora 

•  Implementing “phrase finding” efficiently 
– Using request-answer 

•  Some other phrase-related problems 
– Semantic orientation 
– Complex named entity recognition 


