Phrase Finding;
Stream-and-Sort vs
“Request-and-Answer”
William W. Cohen

Announcement

* Two-day extension for all on HW1B:
—now due Thursday 1/29

Correction...

Using Large-vocabulary Naive Bayes

, i . [For assignment]
* For each example id, y, x,....,x,; in tesk train:

* Sort the event-counter update “messages”

* Scan and add the sorted messages and output the final
counter values Model size: O(| V)

e Initialize a HashSet NEEDED and a hashtable C
* For each example id, y, x4,....,x,; in test: _ _
Time: O(n,), size of test
— Add x,....,.x; to NEEDED Memory: same
» For each event, C(event) in the summed counters
— If event involves a NEEDED term x read it into C

Time: O(n,)

* For each example id, y, x4,....,x,; in test: Memory: same

— For each y’" in dom(Y):

* Compute log Pr(y’,xy,.....x;) = Time: O(11,)
Memory: same

4

Review of NB algorithms

Suggested data

HashMap HashMap RCV1

1B Msgs =» Disk HashMap Wikipedia
(for subset)

--- Msgs =» Disk Msgs on Disk ~ ---
(coming....)

Outline

* Even more on stream-and-sort and naive
Bayes

* Another problem: “meaningful” phrase
finding

* Implementing phrase finding etficiently

* Some other phrase-related problems

Last Week

* How to implement Naive Bayes
— Time is linear in size of data (one scan!)
— We need to count, e.g. C(X=word ™ Y=label)

* How to implement Naive Bayes with large vocabulary and
small memory

— General technique: “Stream and sort”
* Very little seeking (only in merges in merge sort)
* Memory-efficient

Flaw: Large-vocabulary Naive Bayes is
Expensive to Use

* For each example id, y, x4,....,x,; In train:
* Sort the event-counter update “messages”

* Scan and add the sorted messages and output the final
counter values Model size: max O(n), O(| V| |dom(Y)|)

* For each example id, y, x4,....,x,; in test:
— For each y’" in dom(Y):
« Compute log Pr(y’,x,,.....x,) =
C(X=x,AY=Yy)+mgqg, CY =y")+mg
= Elog ! +log 4
- C(X=ANYAY =y)+m ClY =ANY)+m

The workaround | suggested

* For each example id, y, x4,....,x,; in train:
* Sort the event-counter update “messages”

* Scan and add the sorted messages and output the final
counter values

* Initialize a HashSet NEEDED and a hashtable C
* For each example id, y, x4,....,x,; in test:
— Add x,....,.x; to NEEDED

» For each event, C(event) in the summed counters
— If event involves a NEEDED term x read it into C

* For each example id, y, x4,....,x,; in test:

— For each y’" in dom(Y):
* Compute log Pr(y’,xy,.....x;) =

Can we do better?

Can we do better?

Test data Event counts
ld; Wy Wy, W3 ... Wypg X=w,;NY=sports 5245
idy) Wy Wy, Wy3 ... X=w,NY=worldNews 1054
id; w3 ,W3, ... X=.. 2120
ldy Wy Wy ... X=w,N\Y=... 37
id; W5 Ws, ... X=... 3
What we’d like

1d; Wy Wy, Wy3 .. Wypy C[X=w, "Y=sports]=5245, C[X=w, " Y=..] C[X=w,,"...]

idy) Wy Wy, Wy3 ... C[X=w, NY=....]=1064,..., C[X=w, ,"...]

id; W3,W3, ... C[X=w; ,NY=....]=...

id; Wy Wy, ...

Can we do better?

Event counts

X=w,NY=sports 5245
Step 1: group counters by word w X=w;"Y=worldNews 1054
How- =.. 2120
* Stream and sort: A=Wy Y=, 37
* for each C[X=w"Y=y]=n X=. 3
* print “w C[Y=y]=n"
* sort and build a list of values

associated with each key w
Like an inverted index

Counts associated with W

aardvark C[w”Y=sports]=2
agent C[w”Y=sports]=1027,C[w”Y=worldNews]|=564

zynga C[w”Y=sports]=21,C[w”Y=worldNews]|=4464

If these records were in a key-value DB we
would know what to do....

Test data Record of all event counts for each word
ld; Wy Wy, W3 ... Wypg Counts associated with W
Z.dZ Wo,1 Wi W3 - aardvark C[w”Y=sports]=2
1.213 “51%32 - agent C[w”Y=sports]=1027,C[w”Y=worl
ty Wy1Wyp -
id; W5 Ws, ...
zynga C[w”Y=sports]|=21,C[w”Y=world}
A
i Step 2: stream through and for each test case
1d; W;W;, W;3.... Wi
request the event counters needed to classify
Classification id; from the event-count DB, then classify
logic using the answers
>

Is there a stream-and-sort analog of this
request-and-answer pattern?

Test data Record of all event counts for each word
ld; Wy Wy, W3 ... Wypg Counts associated with W
Z.dZ Wo,1 Wi W3 - aardvark C[w”Y=sports]=2
1.213 “51%32 - agent C[w”Y=sports]=1027,C[w”Y=worl
ty Wy1Wyp -
id; W5 Ws, ...
zynga C[w”Y=sports]|=21,C[w”Y=world}
A
i Step 2: stream through and for each test case
1d; W;W;, W;3.... Wi
request the event counters needed to classity
Classification id; from the event-count DB, then classify
logic using the answers
>

Recall: Stream and Sort Counting: sort messages so

__

...

* example 1 « C[x1] += D1
* example 2 * C[x1] +=D2
* example 3 3 e

|

Counting logic >

Machine A

..

“C[x] +=D”" Logic to
combine
counter
updates

Machine C

..

Machine B

Is there a stream-and-sort analog of this
request-and-answer pattern?

Test data Record of all event counts for each word
ld; Wy Wy, W3 ... Wypg Counts associated with W
%dZ Wo,1 Wi W3 - aardvark C[w”Y=sports]=2
1.33 Ws1Wsp - agent C[w”Y=sports]=1027,C[w”Y=worl
ty Wy1Wyp -
id; W5 Ws, ...
zynga C[w”Y=sports]|=21,C[w”Y=world}
A

I W, ; counters to id,

W, , counters to id,

Classification W, ; counters to id;
logic

Is there a stream-and-sort analog of this
request-and-answer pattern?

Test data Record of all event counts for each word
id; found an aarvark in Counts associated with W
zynga’s farmuille today! aardvark C[w/Y=sports]=2
id, ...
; di agent C[w”Y=sports]=1027,C[w”Y=worl
id, ...
ds ... zynga C[w”Y=sports]|=21,C[w”Y=worldD
A
[1

I found ctrs to id,

aardvark ctrs to id,

Classification today ctrs toid,
logic

Is there a stream-and-sort analog of this
request-and-answer pattern?

Test data Record of all event counts for each word
id; found an aarvark in Counts associated with W
Zc]i/ nga’s farmoille today! aardvark C[w”Y=sports]=2
id, ...
; di agent C[w”Y=sports]|=1027,C[w”Y=worl
id, ...
ds ... zynga C[w”Y=sports]|=21,C[w”Y=worldD

A
. ~ is the last ascii character
found ~ctrs to id;

aardvark ~ctrs to id, % export LC_COLLATE=C

means that it will sort after
anything else with unix sort

Classification today ~ctrs to id,
logic

Is there a stream-and-sort analog of this
request-and-answer pattern?

Test data Record of all event counts for each word
id; found an aardvark in Counts associated with W
zynga’s farmuille today! aardvark C[w/Y=sports]=2
id, ...
; di agent C[w”Y=sports]=1027,C[w”Y=worl
id, ...
ds ... zynga C[w”Y=sports]|=21,C[w”Y=worldD

[]

Counter records
found ~ctr to id,

aardvark ~ctr to id,

Classification today ~ctr to id;
logic

5> Combine and sort =

requests

A stream-and-sort analog of the request-and-

answer pattern...

Record of all event counts sardvark ClwAY=sports]=2

for each word

aardvark ~ctr to id1
wW Counts

aardvark C[w”Y=sports]=2 agent C[w”Y=sports]=...
- agent ~ctr to 1d345
agent ~ctr to id9854
zynga ... ~ctr to id345
agent ~ctr to 1d34742
Counter records zynga C[...]
found ~ctr to id, zynga ~ctr to id1

aardvark ~ctr to id,

today ~ctr to id, i
» Combine and sort Request-handling logic
requests

A stream-and-sort analog of the request-and-

answer pattern...

*previousKey = somethingImpossible
aardvark C[w”Y=sports]=2

* For each (key,val) in input:

* If key==previousKey aardvark ~ctr to id1
» Answer(recordForPrevKey,val)
e Else agent C[w”Y=sports]=...
* previousKey = key agent ~ctr to 1d345
* recordForPrevKey = val agent ~ctr to id9854
~ctr to 1d345

define Answer (record,request):

« find id where “request = ~ctr to id” SRl ~ctr to id34742
* print “id ~ctr for request is record”
zynga Cl...]
zynga ~ctr to id1
» Combine and sort S Tline loo

requests

A stream-and-sort analog of the request-and-

answer pattern...

*previousKey = somethingImpossible
aardvark C[w”Y=sports]=2

* For each (key,val) in input:

* If key==previousKey aardvark ~ctr to id1
» Answer(recordForPrevKey,val)
e Else agent C[w”Y=sports]=...
* previousKey = key agent ~ctr to 1d345
* recordForPrevKey = val agent ~ctr to id9854
~ctr to id345

define Answer (record,request):

« find id where “request = ~ctr to id” SRl ~ctr to id34742
* print “id ~ctr for request is record”

zynga Cl...]
Output: zynga ~ctr to id1

id1 ~ctr for aardvark is C[w”Y=sports]=2

id1 ~ctr for zynga is @

» Combine and sort ' |:>
requests

A stream-and-sort analog of the request-and-
answer pattern...

aardvark C[w”Y=sports]=2 Output:
id1 ~ctr for aardvark is C[w”Y=sports]=2

aardvark ~ctr to id1
agent C[w/Y=sports]=... id1 ~ctr for zyngais
agent ~ctr to 1d345
agent ~ctr to id9854 id, found an aardvark in
~ctr to id345 zynga's farmuille today!
agent ~ctr to id34742 i, ...

ids ...

id, ...
zynga C[...] id. ...
zynga ~ctr to id1

m | > Combine and sort ﬁ 277?

What we’d wanted

d; Wy Wy, Wy3.... Wy C[X=w, ;"Y=sports[=5245, C[X=w, ;"Y=.[,C[X=w; ,"...]
ldy) Wy Wy, Wy3 ... C[X=w, NY=....]=1064,..., C[X=w, ,"...]
id; w3 ,W3, ... C[X=w; NY=....]=...
ld, Wy Wy, ...
What we ended up with
Key
id1 found aardvark zynga farmuille today

~ctr for aardvark is C[w”Y=sports]=2
~ctr for found is C[w”Y=sports]=1027,C[w”Y=worldNews]|=564

id2 Wy Wy Wy3 ...

~ctr for w, ;is ...

Implementation summary

java CountForNB train.dat ... > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat
| cat - words.dat | sort | java answerWordCountRequests
| cat - test.dat| sort | testNBUsingRequests

train.dat counts.dat
ld; Wy Wy, W3 ... Wypg X=wlNY=sports 5245
idy, Wy Wy, W3 X=wlNY=worldNews 1054
id; W3 ,W3, ... X=.. 2120
ldy Wy Wy ... X=w2NY=... 37

lds W5, Ws; ... X=... 3

Implementation summary

java CountForNB train.dat ... > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat
| cat - words.dat | sort | java answerWordCountRequests
| cat - test.dat| sort | testNBUsingRequests

words.dat
Counts associated with W
aardvark C[w”Y=sports]=2
agent C[w”Y=sports]=1027,C[w”Y=worldNews]|=564

zynga C[w”Y=sports]|=21,C[w”Y=worldNews]|=4464

Implementation summary

java CountForNB train.dat ... > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat output looks like this
| cat - words.dat | sort | java answerWordCountRequests input looks
| cat - test.dat| sort | testNBUsingRequests like this
words.dat
found ~ctr to id,
aardvark ~ctr to 1d2 aardvark C[w/Y=sports]=2 aardvark C[WAY=SpOI'tS] =2
today ~ctr to 1d1 agent aardvark ~ctr to id1
Zynga agent C[w”Y=sports]=...
agent ~ctr to 1d345
agent ~ctr to 1d9854

~ctr to id345

Implementation summary

java CountForNB train.dat ... > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat Output
| cat - words.dat | sort | java answerWordCountRequests 11(1(;5ks like
| cat - test.dat | sort | testNBUsingRequests
Output: test.dat
id1 ~ctr for aardvark is C[w”Y=sports]|=2 id, found an aardvark in
zynga’s farmuille today!
id1 ~ctr for zyngais id, ...
id, ...
id, ...

id, ...

Implementation summary

java CountForNB train.dat ... > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat
| cat - words.dat | sort | java answerWordCountRequests
| cat-test.dat| sort | testNBUsingRequests 154t 1o0ks like this

id1 found aardvark zynga farmville today
~ctr for aardvark is C[w”Y=sports|=2
~ctr for found is C[w”Y=sports]=1027,C[w”Y=worldNews]|=564

id2 Wy Woo Wys ...

~ctr for w, ,is ...

Outline

* Even more on stream-and-sort and naive
Bayes

* Another problem: “meaningful” phrase
finding

* Implementing phrase finding etficiently

* Some other phrase-related problems

A Language Model Approach to Keyphrase Extraction

Takashi Tomokiyo and Matthew Hurst
Applied Research Center
Intelliseek, Inc.
Pittsburgh, PA 15213
{ttomokiyo,mhurst}@intelliseek.com

A Language Model Approach to Keyphrase Extraction

Takashi Tomokiyo and Matthew Hurst
Applied Research Center
Intelliseek, Inc.
Pittsburgh, PA 15213
{ttomokiyo,mhurst}@intelliseek.com

ACL Workshop 2003

1 civic hybrd 21 mustang gt
2 honda civic hybrid 22 ford escape
3 toyota prius 23 steering wheel
4 electric motor 24 toyota prius today
5 honda civic 25 electric motors
6 fuelcell 26 gasoline engine
7 hybrd cars 27 internal combustion engine
8 honda nsight 28 gasengine
9 Dbattery pack 29 front wheels
10 sports car 0 key sense wire

11 ciic st CIVIC type r
12 hybrid car test drive
3 cviclx street race
14 focus fcv united states
15 fuel cells hybrid powertrain

16 hybrid vehicles
17 tour de sol

18 years ago

19 daily driver

20 jetta tdi

rear bumper

ford focus

detroit auto show
parking lot

rear wheels

OO 0 -1\ N LI

s 00 0D D LD LD LD LI L) L) W)

Figure 1: Top 40 keyphrases automatically extracted from
messages relevant to “civic hybrid” using our system

Why phrase-finding?

* There are lots of phrases

* There’s not supervised data
* It's hard to articulate

— What makes a phrase a phrase, vs just an
n-gram?

* a phrase is independently meaningful (“test

drive”, “red meat”) or not (“are interesting”,
“are lots”)

—What makes a phrase interesting?

The breakdown: what makes a
good phrase

* Two properties:

— Phraseness: “the degree to which a given word
sequence is considered to be a phrase”

* Statistics: how often words co-occur together vs
separately

— Informativeness: “how well a phrase captures or
illustrates the key ideas in a set of documents” -

something novel and important relative to a domain

* Background corpus and foreground corpus; how
often phrases occur in each

“Phraseness”; - based on BLRT

* Binomial Ratio Likelihood Test (BLRT):
— Draw samples:
* n, draws, k; successes

* n, draws, k, successes

* Are they from one binominal (i.e., k;/n; and k,/n,
were different due to chance) or from two distinct
binomials?

— Define
* pi=ki/ 1y, po=ky/ny p=(k;tk,)/(ny+n,),
* L(p,k,n) = pk(1-p)"-*

BLRT(nl,kl’nz,kz) _ L(plakl anl)L(p29k29n2)
L(p’kl ’nl)L(pakzanz)

“Phraseness”; - based on BLRT

* Binomial Ratio Likelihood Test (BLRT):
— Draw samples:
* n, draws, k; successes

* n, draws, k, successes

* Are they from one binominal (i.e., k;/n; and k,/n,
were different due to chance) or from two distinct
binomials?

— Define
* p=kym;, p=(k;tky)/(n;+n,),
* L(p k,n) = pk(1-p)*

BLRT (n,,k,,n,,k,)=2log L(p,,k, ,n,)L(p,,k,,n,)
L(p’kl ’nl)L(pakzanz)

“Phraseness”; - based on BLRT

—Define
) pi:ki/ni/ P=(k1+k2)/(n1+n2),
° L(p,k,n) = pk(l_p)n_k
n29k2) = 210g L(pl’kl ’nl)L(pzakzanz)
L(p,k, ,n))L(p,k,,n,)
| Jeommem

k, C(W,=x * W,=y) how often bigram x y occurs in corpus C

¢p (nlakla

n, C(W;=x) how often word x occurs in corpus C
k, C(W,;#x"W,=y) how often y occurs in C after a non-x
n, C(W;#x) how often a non-x occurs in C

Does y occur at the same frequency after x as in other positions?

“Informativeness”, - based on BLRT

—Define .
°P i=ki/ n, p =(k1+k2)/ (ﬂ1+ﬂ2), and two C(.)rpora, Cand B
° L(p,k/n) — pk(l_p)n—k
kz) — 210g L(plakl 9n1)L(p29k29n2)
L(p,k, ,n)L(p,k,,n,)

ST omment

k, C(W;=x*W,=y) how often bigram x y occurs in corpus C

@, (n,,k,n,,

n, C(W=*"*W,=*) how many bigrams in corpus C
k, B(W,=x"W,=y) how often x y occurs in background corpus

n, B(W,=* " W,=%) how many bigrams in background corpus

Does x y occur at the same frequency in both corpora?

The breakdown: what makes a
good phrase

 “Phraseness” and “informativeness” are then
combined with a tiny classifier, tuned on labeled data.

1
1 +exp(—app — bp; +¢)

p 1
lo = =
(S1-p S) (p 1+e~*)

* Background corpus: 20 newsgroups dataset (20k
messages, 7.4M words)

* Foreground corpus: rec.arts.movies.current-films
June-Sep 2002 (4M words)

* Results?

'

et p— p— —
B WO = OO0~ DN B W =—

[—
)]

message news
minority report

star wars

john harkness
derek janssen
robert frenchu

sean 0 hara

box office

dawn taylor
anthony gaza

star trek

ancient race

scooby doo

austin powers
home.attbi.com hey

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

sixth sense

hey kids

gaza man

lee harrison

years ago

julia roberts
national guard
bourne identity
metrotoday www.zap2it.com
starweek magazine
eric chomko
wilner starweek
tim gueguen

jodie foster
johnnie kendricks

The breakdown: what makes a
good phrase

* 'Two properties:

— Phraseness: “the degree to which a given word sequence is
considered to be a phrase”

» Statistics: how often words co-occur together vs separately

— Informativeness: “how well a phrase captures or illustrates
the key ideas in a set of documents” - something novel and
important relative to a domain

* Background corpus and foreground corpus; how often
phrases occur in each
— Another intuition: our goal is to compare
distributions and see how different they are:

* Phraseness: estimate x y with bigram model or
unigram model

* Informativeness: estimate with foreground vs
background corpus

The breakdown: what makes a
good phrase

— Another intuition: our goal is to compare distributions
and see how different they are:

* Phraseness: estimate x y with bigram model or unigram
model

* Informativeness: estimate with foreground vs background
corpus

— To compare distributions, use KL-divergence

D(p| q) = Zp log ;

“Pointwise KL divergence”

dﬁf p(W)
dw(p || q) = p(w)logq(w)

The breakdown: what makes a

good phrase

— To compare distributions, use KL-divergence

D(p| q) = Zp log

“Pointwise KL divergence”

p(w)
q(w)

def

dw(p || ¢) = p(w)log

Bigram model: P(x y)=P(x)P(y | x)

Unigram model: P(x y)=P(x)P(y)

Phraseness: difference
between bigram and
unigram language
model in foreground

5W(LM§:; [LMflg)

The breakdown: what makes a

good phrase

— To compare distributions, use KL-divergence

.’I‘
D(p| q) = Zp) log 2o

q(z)
“Pointwise KL divergence”
Swlp ||) p(w) log 21
q(w)

Bigram model: P(x y)=P(x)P(y | x)

Unigram model: P(x y)=P(x)P(y)

Informativeness: difference
between foreground and
background models

(SW(LM‘ | LM, g), or
5

Sw (LM || LM})

The breakdown: what makes a

good phrase
— To compare distributions, use KL-divergence

Combined: difference
D(p || q) Z p(x]og between foreground bigram
) model and background

unigram model
“Pointwise KL divergence”

Sw (LM || LM,)

def P (W)
dw(p || @) = p(w)log
q(w) I
— mformattveness —_—
LMfZ; LMé‘gg
Bigram model: P(x y)=P(x)P(y | x) T
phraseness
Unigram model: P(x y)=P(x)P(y) l LM LM

fg bg

The breakdown: what makes a
good phrase
— To compare distributions, use KL-divergence

Subtle advantages: Combined: difference
* BLRT scores “more frequent in between foreground bigram
foreground” and “more frequent in model and background
background” symmetrically, unigram model
pointwise KL does not.
e Phrasiness and informativeness o (LM f?, | L Ml:l>g)
s

scores are more comparable -

straightforward combination w/o a , _
Cre < informativeness —
classifier is reasonable. LMY LN

. : f b
« Language modeling is well-studied: 1 : ¢
* extensions to n-grams, phraseness
smoothing methods, ... l) 1
. . . LM LM,
* we can build on this work in a g g

modular way

P
O OO0 JN DN B Wk -

nh B W —

Pointwise KL, combined

message news
minority report

star wars

john harkness
robert frenchu
derek janssen

box office

sean 0 hara

dawn taylor
anthony gaza

star trek

ancient race
home.attbi.com hey
scooby doo

austin powers

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

hey kids

years ago

gaza man

sixth sense

lee harrison

julia roberts
national guard
bourne identity
metrotoday www.zap2it.com
starweek magazine
eric chomko
wilner starweek
tim gueguen

jodie foster

kevin filmnutboy

Why phrase-finding?

* Phrases are where the standard supervised “bag
of words” representation starts to break.

 There’s not supervised data, so it’s hard to see
what'’s “right” and why

* It's a nice example of using unsupervised
signals to solve a task that could be formulated
as supervised learning

* It's a nice level of complexity, if you want to do
it in a scalable way.

Implementation

* Request-and-answer pattern
— Main data structure: tables of key-value pairs
* key is a phrase x y
* value is a mapping from a attribute names (like phraseness, freq-in-B,
...) to numeric values.

— Keys and values are just strings

— We'll operate mostlg bi sending messages to this data structure
and getting results back, or else streaming thru the whole table

— For really big data: we’d also need tables where key is a word and
val is set of attributes of the word (freg-in-B, freq-in-C, ...)

Key Value

old man freq(B)=10,freq(C)=13,informativeness=1.3,phrasiness=740

bad service freq(B)=8,freq(C)=25,informativeness=560,phrasiness=254

Generating and scoring phrases: 1

Stream through foreground corpus and count events “W,=x "
W,=y"” the same way we do in training naive Bayes: stream-and
sort and accumulate deltas (a “sum-reduce”)

— Don’t bother generating boring phrases (e.g., crossing a
sentence, contain a stopword, 13

Then stream through the output and convert to phrase, attributes-
of-phrase records with one attribute: freg-in-C=n

Stream through foreground corpus and count events “W,;=x" in a
(memory-based) hashtable....

This is enough* to compute phrasiness:

— wp(x y) = f(freg-in-C(x), freg-in-C(y), freq-in-C(x y))

...s0 you can do that with a scan through the phrase table that
adds an extra attribute (holding word frequencies in memory).

* actually you also need total # words and total #phrases....

Generating and scoring phrases: 2

* Stream through background corpus and count events
“W,=x " W,=y” and convert to phrase, attributes-of-
phrase records with one attribute: freg-in-B=n

* Sort the two phrase-tables: freg-in-B and freg-in-C and
run the output through another “reducer” that

— appends together all the attributes associated with
the same key, so we now have elements like

Key | Value
old man freq(B)=10,freq(C)=13 ,phrasiness=740
bad service freq(B)=8,freq(C)=25, phrasiness=254

Generating and scoring phrases: 3

* Scan the through the phrase table one more
time and add the informativeness attribute
and the overall quality attribute

Key Value

old man freq(B)=10,freq(C)=13,informativeness=1.3,phrasiness=740

bad service freq(B)=8,freq(C)=25,informativeness=560,phrasiness=254

Summary, assuming word vocabulary ny, is small:

* Scan foreground corpus C for phrases: O(n.) producing m phrase
records - of course m << n

« Compute phrasiness: O(m) Assumes word counts fit in memory

* Scan background corpus B for phrases: O(ng) producing mg

 Sort together and combine records: O(m log m), m=mg + m

* Compute informativeness and combined quality: O(m)

Ramping it up - keeping word
counts out of memory

Goal: records for xy with attributes freg-in-B, freg-in-C,
freg-of-x-in-C, freg-of-y-in-C, ...

Assume | have built built phrase tables and word
tables....how do I incorporate the word attributes into the
phrase records?

For each phrase xy, request necessary word frequencies:
— Print “x ~request=freq-in-C, from=xy”
— Print “y ~request=freq-in-C, from=xy”

Sort all the word requests in with the word tables

Scan through the result and generate the answers: for
each word w, a;=n,,a,=n,,....

— Print “xy ~request=freq-in-C, from=w"
Sort the answers in with the xy records
Scan through and augment the xy records appropriately

Generating and scoring phrases: 3

Summary

1.

2.

X NS O

Scan foreground corpus C for phrases, words: O(n)
producing m phrase records, v- word records

Scan phrase records producing word-freq requests: O(m)
producing 2m. requests

Sort requests with word records: O((2m. + v)log(2m + v())
= O(mclog me) since v < m¢

Scan through and answer requests: O(m,)

Sort answers with phrase records: O(mclog m)

Repeat 1-5 for background corpus: O(ng + mglogmy)
Combine the two phrase tables: O(m log m), m = myz + m
Compute all the statistics: O(m)

More cool work with phrases

* Turney: Thumbs up or thumbs down?: semantic orientation
applied to unsupervised classification of reviews. ACL “02.

 Task: review classification (65-85% accurate, depending on
domain)

— Identity candidate phrases (e.g., adj-noun bigrams, using POS
tags)

— Figure out the semantic orientation of each phrase using
“pointwise mutual information” and aggregate

PMI(wy,ws) = logs (p(wy and ws) /p(w;)p(ws))

SO(phrase) = PMI(phrase,'excellent') — PMI(phrase,'poor")

hits(phrase NEAR 'excellent’)hits("excellent’)
hits(phrase NE AR 'poor’)hits(’poor’)

SO(phrase) = logs(

Table 3. An example of the processing of a review that

Table 2. An example of the processing of a review that the author has classified as not recommended.

the author has classified as recommended ®

Extracted Phrase

Part-of-Speech ~ Semantic

Extracted Phrase Part-of-Speech ~ Semantic

. . Tags Orientation
Tags Orientation : :
online experience JJ NN 2253 little difference JJ NN -1.615
low fees JJ NNS 0333 clever tricks JJ NNS -0.040
local branch JINN 0.421 programs such NNS JJ 0.117
small part JI NN 0.053 possible moment JJ NN -0.668
online service JINN 2.780 unethical practices JJINNS -8.484
printable version JJ NN -0.705 low funds JI NNS -6.843
direct deposit JJ NN 1.288 old man JJ NN 2566
.well othe.r RB 1 0.237 other problems JJ NNS -2.748
inconveniently "8 VBN -1.541 probably wondering RB VBG -1.830
located :
true service JJ NN -0.732 other bank JINN -0.850
Average Semantic Orientation 0.322 extra day JINN -0.286
direct deposits JJ NNS 5.771
online web JI NN 1.936
cool thing JINN 0.395
very handy RB JJ 1.349
lesser evil RBR JJ -2.288

SO(phrase) = logs (

Average Semantic Orientation

-1.218

hits(phrase NEAR 'excellent’)hits('excellent’)

hits(phrase NEAR 'poor’)hits('poor’)

)

“Answering Subcognitive Turing Test
Questions: A Reply to French” - Turney

Robert French (1990, 2000) has argued that a disembodied computer cannot pass a
Turing Test that includes subcognitive questions. He wrote (French, 2000):

No computer that had not experienced the world as we humans had could pass a
rigorously administered standard Turing Test. We show that the use of
“subcognitive” questions allows the standard Turing Test to indirectly probe the
human subcognitive associative concept network built up over a lifetime of
experience with the world.

On a scale of 1 (awful) to 10 (excellent), please rate:
* How good is the name Flugly for a glamorous Hollywood actress?

* How good is the name Flugly for an accountant in a W.C. Fields movie?
* How good is the name Flugly for a child’s teddy bear?

hits((actress NEAR Flu*) AND glamorous)

p(Flu* | actress) = LOW

hits(actress AND glamorous)

hits((accountant NEAR Flu*) AND movie)
p(Flu* | accountant) = HIGHER

hits(accountant AND movie)

hits((bear NEAR Flu*) AND teddy)
p(Flu* | bear) = HIGHEST

hits(bear AND teddy)

On a scale of 1 (terrible) to 10 (excellent), please rate:

* banana peels as musical instruments
¢ coconut shells as musical instruments
¢ radios as musical instruments

Please rate the following smells (1 = very bad, 10 = very nice):

* Newly cut grass

* Freshly baked bread
* A wet bath towel

* The ocean

* A hospital corridor

On a scale of 1 (terrible) to 10 (excellent), please rate:

* banana peels as musical instruments
¢ coconut shells as musical instruments
¢ radios as musical instruments

Please rate the foll
case rate Te 10T p(musical instruments | banana peels) =1 /2,998 = 0.00033

* Newly cut grasg
* Freshly baked H
* A wet bath towq
* The ocean

* Ahospital corril ,mygical instruments | radios) = 1,253 / 1,006,207 = 0.0012

p(musical instruments | coconut shells) =5/ 1,880 = 0.0027

p(nice | newly cut grass) =

hits((newly cut grass NEAR nice) AND smell AND NOT ((newly cut grass OR nice) NEAR "not"))

hits(newly cut grass AND smell AND NOT (newly cut grass NEAR "not"))

Pleas] —— MUCW results Tor qucstions'ab(\)ut smell.

* N p(nice | newly cut grass) =1/102 =0.0098

* p(bad | newly cut grass) =0/102 =0.0

* A p(nice | freshly baked bread) =8/ 848 = 0.0094

e TI p(bad | freshly baked bread) =0/ 848 =0.0

e A p(nice | wet bath towel) =0/3 =0.0
p(bad | wet bath towel) =0/3 =0.0
p(nice | ocean) =270 /45,360 = 0.0060
p(bad | ocean) = 107 / 45,360 =0.0024
p(nice | hospital corridor) =0/134 =0.0
p(bad | hospital corridor) =0/134 =0.0

On a scale of 1 (terrible) to 10 (excellent), please rate:

* banana peels as musical instruments
¢ coconut shells as musical instruments
¢ radios as musical instruments

Please rate the following smells (1 = very bad, 10 = very nice):

* Newly cut grass

* Freshly baked bread
* A wet bath towel

* The ocean

* A hospital corridor

Newly cut grass
Freshly baked bread
A wet bath towel
The ocean

A hospital corridor

10
10

n 1 W

More cool work with phrases

* Locating Comﬁlex Named Entities in Web Text. Doug
Downey, Matthew Broadhead, and Oren Etzioni, IJCAI
2007.

 Task: identify complex named entities like “Proctor and
Gamble”, “War of 1812”7, “Dumb and Dumber”,
“Secretary of State William Cohen”, ...

* Formulation: decide whether to or not to merge nearby
sequences of capitalized words axb, using variant of

p(ab)* b p(abc)®
p(a)p(b) gr(a,b,c) = p(a)p(b)p(c)

cr(a,b) =

* For k=1, ckis PM (w/o the logg. For k=2, ck is
“Symmetric Conditional Probability”

Downey et al results

F1 Recall | Precision
SVMCMM | 0.42 0.48 0.37
CRF 0.35 0.42 0.31
MAN 0.18 0.22 0.16
LEX 0.63 (50%) 0.66 0.59

Table 2: Performance on Difficult Cases LEX’s F1 score is
50% higher than the nearest competitor, SVMCMM.

F1 Recall | Precision
SVMCMM | 0.96 0.96 0.96
CRF 0.94 0.94 0.95
MAN 0.97 0.96 0.98
LEX 0.97 0.97 0.97
CAPS 1.00 (3%) 1.00 1.00

Table 3: Performance on Easy Cases All methods perform

comparably near the perfect performance of the CAPS base-
line; CAPS outperforms LEX and MAN by 3%.

F1 Recall | Precision
SVMCMM | 0.29 0.34 0.25
CRF 0.25 0.31 0.21
MAN 0.18 0.22 0.16
LEX 0.63 (117%) 0.66 0.60

Table 4: Performance on Unseen Entity Classes (Difficult
Cases) LEX outperforms its nearest competitor (SVMCMM)
by 117%.

F1 Recall | Precision
SVMCMM | 0.93 0.92 0.94
CRF 0.94 0.93 0.95
MAN 0.97 0.96 0.98
LEX 0.95 0.95 0.95
CAPS 1.00 (3%) 1.00 1.00

Table 5: Performance on Unseen Entity Classes (Easy
Cases) CAPS outperforms all methods by a small margin,
performing 3% better than its nearest competitor (MAN).

Table 1: Performance of LEX using collocation measures

F1 Recall | Precision
LEX-PMI | 0.38 0.43 0.34
LEX-SCP | 0.63 (66%) 0.66 0.59

PMI and SCP. SCP outperforms PMI by 66% in F1.

Outline

* Even more on stream-and-sort and naive Bayes
— Request-answer pattern
* Another problem: “meaningful” phrase finding

— Statistics for identitying phrases (or more
generally correlations and differences)

— Also using foreground and background corpora
* Implementing “phrase finding” efficiently

— Using request-answer
* Some other phrase-related problems

— Semantic orientation

— Complex named entity recognition

