
Phrase Finding;
Stream-and-Sort vs

“Request-and-Answer”
William W. Cohen

Announcement

•  Two-day extension for all on HW1B:
– now due Thursday 1/29

Correction…

Using Large-vocabulary Naïve Bayes

•  For each example id, y, x1,….,xd in test: train:
•  Sort the event-counter update “messages”
•  Scan and add the sorted messages and output the final

counter values
•  Initialize a HashSet NEEDED and a hashtable C
•  For each example id, y, x1,….,xd in test:
–  Add x1,….,xd to NEEDED

•  For each event, C(event) in the summed counters
–  If event involves a NEEDED term x read it into C

•  For each example id, y, x1,….,xd in test:
–  For each y’ in dom(Y):

•  Compute log Pr(y’,x1,….,xd) = ….

[For assignment]

Model size: O(|V|)

Time: O(n2), size of test
Memory: same

Time: O(n2)
Memory: same

Time: O(n2)
Memory: same

4

Review of NB algorithms

HW Train events Test events Suggested data

1A HashMap HashMap RCV1

1B Msgs è Disk HashMap
(for subset)

Wikipedia

--- Msgs è Disk Msgs on Disk
(coming….)

Outline

•  Even more on stream-and-sort and naïve
Bayes

•  Another problem: “meaningful” phrase
finding

•  Implementing phrase finding efficiently
•  Some other phrase-related problems

Last Week
•  How to implement Naïve Bayes
–  Time is linear in size of data (one scan!)
–  We need to count, e.g. C(X=word ^ Y=label)

•  How to implement Naïve Bayes with large vocabulary and
small memory
–  General technique: “Stream and sort”
•  Very little seeking (only in merges in merge sort)
•  Memory-efficient

Flaw: Large-vocabulary Naïve Bayes is
Expensive to Use
•  For each example id, y, x1,….,xd in train:
•  Sort the event-counter update “messages”
•  Scan and add the sorted messages and output the final

counter values
•  For each example id, y, x1,….,xd in test:
–  For each y’ in dom(Y):

•  Compute log Pr(y’,x1,….,xd) =

Model size: max O(n), O(|V||dom(Y)|)

€

= log
C(X = x j ∧Y = y ') +mqx
C(X = ANY ∧Y = y ') +mj

∑
$

%
& &

'

(
)) + log

C(Y = y ') +mqy
C(Y = ANY) +m

The workaround I suggested
•  For each example id, y, x1,….,xd in train:
•  Sort the event-counter update “messages”
•  Scan and add the sorted messages and output the final

counter values
•  Initialize a HashSet NEEDED and a hashtable C
•  For each example id, y, x1,….,xd in test:
–  Add x1,….,xd to NEEDED

•  For each event, C(event) in the summed counters
–  If event involves a NEEDED term x read it into C

•  For each example id, y, x1,….,xd in test:
–  For each y’ in dom(Y):

•  Compute log Pr(y’,x1,….,xd) = ….

Can we do better?

Can we do better?

id1 w1,1 w1,2 w1,3 …. w1,k1
id2 w2,1 w2,2 w2,3 ….
id3 w3,1 w3,2 ….
id4 w4,1 w4,2 …
id5 w5,1 w5,2 ….
..

X=w1^Y=sports
X=w1^Y=worldNews
X=..
X=w2^Y=…
X=…
…

5245
1054
2120

37
3

…

Test data Event counts

id1 w1,1 w1,2 w1,3 …. w1,k1

id2 w2,1 w2,2 w2,3 ….

id3 w3,1 w3,2 ….

id4 w4,1 w4,2 …

C[X=w1,1^Y=sports]=5245, C[X=w1,1^Y=..],C[X=w1,2^…]

C[X=w2,1^Y=….]=1054,…, C[X=w2,k2^…]

C[X=w3,1^Y=….]=…

…

What we’d like

Can we do better?

X=w1^Y=sports
X=w1^Y=worldNews
X=..
X=w2^Y=…
X=…
…

5245
1054
2120

37
3

…

Event counts

w Counts associated with W

aardvark C[w^Y=sports]=2

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564

… …
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464

Step 1: group counters by word w

How:
•  Stream and sort:

•  for each C[X=w^Y=y]=n
•  print “w C[Y=y]=n”

•  sort and build a list of values
associated with each key w
Like an inverted index

If these records were in a key-value DB we
would know what to do….

id1 w1,1 w1,2 w1,3 …. w1,k1
id2 w2,1 w2,2 w2,3 ….
id3 w3,1 w3,2 ….
id4 w4,1 w4,2 …
id5 w5,1 w5,2 ….
..

Test data Record of all event counts for each word

w Counts associated with W

aardvark C[w^Y=sports]=2

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564

… …
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464

Step 2: stream through and for each test case

idi wi,1 wi,2 wi,3 …. wi,ki

request the event counters needed to classify
idi from the event-count DB, then classify
using the answers

Classification
logic

Is there a stream-and-sort analog of this
request-and-answer pattern?

id1 w1,1 w1,2 w1,3 …. w1,k1
id2 w2,1 w2,2 w2,3 ….
id3 w3,1 w3,2 ….
id4 w4,1 w4,2 …
id5 w5,1 w5,2 ….
..

Test data Record of all event counts for each word

w Counts associated with W

aardvark C[w^Y=sports]=2

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564

… …
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464

Step 2: stream through and for each test case

idi wi,1 wi,2 wi,3 …. wi,ki

request the event counters needed to classify
idi from the event-count DB, then classify
using the answers

Classification
logic

Recall: Stream and Sort Counting: sort messages so
the recipient can stream through them

•  example 1
•  example 2
•  example 3
•  ….

Counting logic

“C[x] +=D”

Machine A

So
rt

•  C[x1] += D1
•  C[x1] += D2
•  ….

Logic to
combine
counter
updates

Machine C

Machine B

Is there a stream-and-sort analog of this
request-and-answer pattern?

id1 w1,1 w1,2 w1,3 …. w1,k1
id2 w2,1 w2,2 w2,3 ….
id3 w3,1 w3,2 ….
id4 w4,1 w4,2 …
id5 w5,1 w5,2 ….
..

Test data Record of all event counts for each word

w Counts associated with W

aardvark C[w^Y=sports]=2

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564

… …
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464

Classification
logic

W1,1 counters to id1
W1,2 counters to id2
…
Wi,j counters to idi
…

Is there a stream-and-sort analog of this
request-and-answer pattern?

id1 found an aarvark in
zynga’s farmville today!
id2 …
id3 ….
id4 …
id5 …
..

Test data Record of all event counts for each word

w Counts associated with W

aardvark C[w^Y=sports]=2

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564

… …
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464

Classification
logic

found ctrs to id1
aardvark ctrs to id1
…
today ctrs to id1
…

Is there a stream-and-sort analog of this
request-and-answer pattern?

id1 found an aarvark in
zynga’s farmville today!
id2 …
id3 ….
id4 …
id5 …
..

Test data Record of all event counts for each word

w Counts associated with W

aardvark C[w^Y=sports]=2

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564

… …
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464

Classification
logic

found ~ctrs to id1
aardvark ~ctrs to id1
…
today ~ctrs to id1
…

~ is the last ascii character

% export LC_COLLATE=C

means that it will sort after
anything else with unix sort

Is there a stream-and-sort analog of this
request-and-answer pattern?

id1 found an aardvark in
zynga’s farmville today!
id2 …
id3 ….
id4 …
id5 …
..

Test data Record of all event counts for each word

w Counts associated with W

aardvark C[w^Y=sports]=2

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564

… …
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464

Classification
logic

found ~ctr to id1
aardvark ~ctr to id2
…
today ~ctr to idi
…

Counter records

requests

Combine and sort

A stream-and-sort analog of the request-and-
answer pattern…

Record of all event counts
for each word

w Counts
aardvark C[w^Y=sports]=2

agent …

…

zynga …

found ~ctr to id1
aardvark ~ctr to id1
…
today ~ctr to id1
…

Counter records

requests

Combine and sort

w Counts

aardvark C[w^Y=sports]=2

aardvark ~ctr to id1

agent C[w^Y=sports]=…

agent ~ctr to id345

agent ~ctr to id9854

… ~ctr to id345

agent ~ctr to id34742

…

zynga C[…]

zynga ~ctr to id1

Request-handling logic

A stream-and-sort analog of the request-and-
answer pattern…

requests

Combine and sort

w Counts

aardvark C[w^Y=sports]=2

aardvark ~ctr to id1

agent C[w^Y=sports]=…

agent ~ctr to id345

agent ~ctr to id9854

… ~ctr to id345

agent ~ctr to id34742

…

zynga C[…]

zynga ~ctr to id1

Request-handling logic

• previousKey = somethingImpossible
•  For each (key,val) in input:

•  If key==previousKey
•  Answer(recordForPrevKey,val)

•  Else
•  previousKey = key
•  recordForPrevKey = val

define Answer(record,request):
•  find id where “request = ~ctr to id”
•  print “id ~ctr for request is record”

A stream-and-sort analog of the request-and-
answer pattern…

requests

Combine and sort

w Counts

aardvark C[w^Y=sports]=2

aardvark ~ctr to id1

agent C[w^Y=sports]=…

agent ~ctr to id345

agent ~ctr to id9854

… ~ctr to id345

agent ~ctr to id34742

…

zynga C[…]

zynga ~ctr to id1

Request-handling
logic

• previousKey = somethingImpossible
•  For each (key,val) in input:

•  If key==previousKey
•  Answer(recordForPrevKey,val)

•  Else
•  previousKey = key
•  recordForPrevKey = val

define Answer(record,request):
•  find id where “request = ~ctr to id”
•  print “id ~ctr for request is record”

Output:
id1 ~ctr for aardvark is C[w^Y=sports]=2
…
id1 ~ctr for zynga is ….
…

A stream-and-sort analog of the request-and-
answer pattern…

w Counts

aardvark C[w^Y=sports]=2

aardvark ~ctr to id1

agent C[w^Y=sports]=…

agent ~ctr to id345

agent ~ctr to id9854

… ~ctr to id345

agent ~ctr to id34742

…

zynga C[…]

zynga ~ctr to id1

Request-handling
logic

Output:
id1 ~ctr for aardvark is C[w^Y=sports]=2
…
id1 ~ctr for zynga is ….
…

id1 found an aardvark in
zynga’s farmville today!
id2 …
id3 ….
id4 …
id5 …
..

Combine and sort ????

id1 w1,1 w1,2 w1,3 …. w1,k1

id2 w2,1 w2,2 w2,3 ….

id3 w3,1 w3,2 ….

id4 w4,1 w4,2 …

C[X=w1,1^Y=sports]=5245, C[X=w1,1^Y=..],C[X=w1,2^…]

C[X=w2,1^Y=….]=1054,…, C[X=w2,k2^…]

C[X=w3,1^Y=….]=…

…

Key Value

id1 found aardvark zynga farmville today

~ctr for aardvark is C[w^Y=sports]=2

~ctr for found is C[w^Y=sports]=1027,C[w^Y=worldNews]=564

…

id2 w2,1 w2,2 w2,3 ….

~ctr for w2,1 is …

… …

What we’d wanted

What we ended up with

Implementation summary

java CountForNB train.dat … > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat
| cat - words.dat | sort | java answerWordCountRequests
| cat - test.dat| sort | testNBUsingRequests

id1 w1,1 w1,2 w1,3 …. w1,k1
id2 w2,1 w2,2 w2,3 ….
id3 w3,1 w3,2 ….
id4 w4,1 w4,2 …
id5 w5,1 w5,2 ….
..

X=w1^Y=sports
X=w1^Y=worldNews
X=..
X=w2^Y=…
X=…
…

5245
1054
2120

37
3

…

train.dat counts.dat

Implementation summary

java CountForNB train.dat … > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat
| cat - words.dat | sort | java answerWordCountRequests
| cat - test.dat| sort | testNBUsingRequests

words.dat

w Counts associated with W

aardvark C[w^Y=sports]=2

agent C[w^Y=sports]=1027,C[w^Y=worldNews]=564

… …
zynga C[w^Y=sports]=21,C[w^Y=worldNews]=4464

Implementation summary

java CountForNB train.dat … > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat
| cat - words.dat | sort | java answerWordCountRequests
| cat - test.dat| sort | testNBUsingRequests

w Counts
aardvark C[w^Y=sports]=2

agent …

…

zynga …

found ~ctr to id1
aardvark ~ctr to id2
…
today ~ctr to idi
…

w Counts

aardvark C[w^Y=sports]=2

aardvark ~ctr to id1

agent C[w^Y=sports]=…

agent ~ctr to id345

agent ~ctr to id9854

… ~ctr to id345

agent ~ctr to id34742

…

zynga C[…]

zynga ~ctr to id1

output looks like this

input looks
like this

words.dat

Implementation summary

java CountForNB train.dat … > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat
| cat - words.dat | sort | java answerWordCountRequests
| cat - test.dat| sort | testNBUsingRequests

Output:
id1 ~ctr for aardvark is C[w^Y=sports]=2
…
id1 ~ctr for zynga is ….
…

id1 found an aardvark in
zynga’s farmville today!
id2 …
id3 ….
id4 …
id5 …
..

Output
looks like
this

test.dat

Implementation summary

java CountForNB train.dat … > eventCounts.dat
java CountsByWord eventCounts.dat | sort
| java CollectRecords > words.dat

java requestWordCounts test.dat
| cat - words.dat | sort | java answerWordCountRequests
| cat -test.dat| sort | testNBUsingRequests Input looks like this

Key Value

id1 found aardvark zynga farmville today

~ctr for aardvark is C[w^Y=sports]=2

~ctr for found is C[w^Y=sports]=1027,C[w^Y=worldNews]=564

…

id2 w2,1 w2,2 w2,3 ….

~ctr for w2,1 is …

… …

Outline

•  Even more on stream-and-sort and naïve
Bayes

•  Another problem: “meaningful” phrase
finding

•  Implementing phrase finding efficiently
•  Some other phrase-related problems

ACL Workshop 2003

Why phrase-finding?

•  There are lots of phrases
•  There’s not supervised data
•  It’s hard to articulate
– What makes a phrase a phrase, vs just an

n-gram?
•  a phrase is independently meaningful (“test

drive”, “red meat”) or not (“are interesting”,
“are lots”)

– What makes a phrase interesting?

The breakdown: what makes a
good phrase
•  Two properties:
– Phraseness: “the degree to which a given word

sequence is considered to be a phrase”
•  Statistics: how often words co-occur together vs

separately
–  Informativeness: “how well a phrase captures or

illustrates the key ideas in a set of documents” –
something novel and important relative to a domain

•  Background corpus and foreground corpus; how
often phrases occur in each

“Phraseness”1 – based on BLRT
•  Binomial Ratio Likelihood Test (BLRT):
– Draw samples:
•  n1 draws, k1 successes
•  n2 draws, k2 successes
•  Are they from one binominal (i.e., k1/n1 and k2/n2

were different due to chance) or from two distinct
binomials?

– Define
•  p1=k1 / n1, p2=k2 / n2, p=(k1+k2)/(n1+n2),
•  L(p,k,n) = pk(1-p)n-k

BLRT (n1,k1,n2,k2) =
L(p1,k1 ,n1)L(p2,k2,n2)
L(p,k1 ,n1)L(p,k2,n2)

“Phraseness”1 – based on BLRT
•  Binomial Ratio Likelihood Test (BLRT):
– Draw samples:
•  n1 draws, k1 successes
•  n2 draws, k2 successes
•  Are they from one binominal (i.e., k1/n1 and k2/n2

were different due to chance) or from two distinct
binomials?

– Define
•  pi=ki/ni, p=(k1+k2)/(n1+n2),
•  L(p,k,n) = pk(1-p)n-k

BLRT (n1,k1,n2,k2) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2)
L(p,k1 ,n1)L(p,k2,n2)

“Phraseness”1 – based on BLRT

– Define
•  pi=ki /ni, p=(k1+k2)/(n1+n2),
• L(p,k,n) = pk(1-p)n-k

ϕ p(n1,k1,n2,k2) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2)
L(p,k1 ,n1)L(p,k2,n2)

comment

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C

n1 C(W1=x) how often word x occurs in corpus C

k2 C(W1≠x^W2=y) how often y occurs in C after a non-x

n2 C(W1≠x) how often a non-x occurs in C

Phrase x y: W1=x ^ W2=y

Does y occur at the same frequency after x as in other positions?

“Informativeness”1 – based on BLRT

– Define
•  pi=ki /ni, p=(k1+k2)/(n1+n2),
• L(p,k,n) = pk(1-p)n-k

Phrase x y: W1=x ^ W2=y
and two corpora, C and B

comment

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C

n1 C(W1=* ^ W2=*) how many bigrams in corpus C

k2 B(W1=x^W2=y) how often x y occurs in background corpus

n2 B(W1=* ^ W2=*) how many bigrams in background corpus

Does x y occur at the same frequency in both corpora?

ϕi (n1,k1,n2,k2) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2)
L(p,k1 ,n1)L(p,k2,n2)

The breakdown: what makes a
good phrase
•  “Phraseness” and “informativeness” are then

combined with a tiny classifier, tuned on labeled data.

•  Background corpus: 20 newsgroups dataset (20k
messages, 7.4M words)

•  Foreground corpus: rec.arts.movies.current-films
June-Sep 2002 (4M words)

•  Results?

€

log
p

1− p
= s

$
%

&

'
(⇔ p =

1
1+ es

$
%

&

'
(

The breakdown: what makes a
good phrase
•  Two properties:

–  Phraseness: “the degree to which a given word sequence is
considered to be a phrase”
•  Statistics: how often words co-occur together vs separately

–  Informativeness: “how well a phrase captures or illustrates
the key ideas in a set of documents” – something novel and
important relative to a domain
•  Background corpus and foreground corpus; how often

phrases occur in each
– Another intuition: our goal is to compare

distributions and see how different they are:
•  Phraseness: estimate x y with bigram model or

unigram model
•  Informativeness: estimate with foreground vs

background corpus

The breakdown: what makes a
good phrase
– Another intuition: our goal is to compare distributions

and see how different they are:
•  Phraseness: estimate x y with bigram model or unigram

model
•  Informativeness: estimate with foreground vs background

corpus
–  To compare distributions, use KL-divergence

“Pointwise KL divergence”

The breakdown: what makes a
good phrase
– To compare distributions, use KL-divergence

“Pointwise KL divergence”

Phraseness: difference
between bigram and
unigram language
model in foreground

Bigram model: P(x y)=P(x)P(y|x)

Unigram model: P(x y)=P(x)P(y)

The breakdown: what makes a
good phrase
– To compare distributions, use KL-divergence

“Pointwise KL divergence”

Informativeness: difference
between foreground and
background models

Bigram model: P(x y)=P(x)P(y|x)

Unigram model: P(x y)=P(x)P(y)

The breakdown: what makes a
good phrase
– To compare distributions, use KL-divergence

“Pointwise KL divergence”

Combined: difference
between foreground bigram
model and background
unigram model

Bigram model: P(x y)=P(x)P(y|x)

Unigram model: P(x y)=P(x)P(y)

The breakdown: what makes a
good phrase
– To compare distributions, use KL-divergence

Combined: difference
between foreground bigram
model and background
unigram model

Subtle advantages:
•  BLRT scores “more frequent in

foreground” and “more frequent in
background” symmetrically,
pointwise KL does not.

•  Phrasiness and informativeness
scores are more comparable –
straightforward combination w/o a
classifier is reasonable.

•  Language modeling is well-studied:
•  extensions to n-grams,

smoothing methods, …
•  we can build on this work in a

modular way

Pointwise KL, combined

Why phrase-finding?
•  Phrases are where the standard supervised “bag

of words” representation starts to break.
•  There’s not supervised data, so it’s hard to see

what’s “right” and why
•  It’s a nice example of using unsupervised

signals to solve a task that could be formulated
as supervised learning

•  It’s a nice level of complexity, if you want to do
it in a scalable way.

Implementation
•  Request-and-answer pattern

–  Main data structure: tables of key-value pairs
•  key is a phrase x y
•  value is a mapping from a attribute names (like phraseness, freq-in-B,

…) to numeric values.
–  Keys and values are just strings
–  We’ll operate mostly by sending messages to this data structure

and getting results back, or else streaming thru the whole table
–  For really big data: we’d also need tables where key is a word and

val is set of attributes of the word (freq-in-B, freq-in-C, …)

Generating and scoring phrases: 1

•  Stream through foreground corpus and count events “W1=x ^
W2=y” the same way we do in training naive Bayes: stream-and
sort and accumulate deltas (a “sum-reduce”)
–  Don’t bother generating boring phrases (e.g., crossing a

sentence, contain a stopword, …)
•  Then stream through the output and convert to phrase, attributes-

of-phrase records with one attribute: freq-in-C=n
•  Stream through foreground corpus and count events “W1=x” in a

(memory-based) hashtable….
•  This is enough* to compute phrasiness:

–  ψp(x y) = f(freq-in-C(x), freq-in-C(y), freq-in-C(x y))

•  …so you can do that with a scan through the phrase table that
adds an extra attribute (holding word frequencies in memory).

* actually you also need total # words and total #phrases….

Generating and scoring phrases: 2

•  Stream through background corpus and count events
“W1=x ^ W2=y” and convert to phrase, attributes-of-
phrase records with one attribute: freq-in-B=n

•  Sort the two phrase-tables: freq-in-B and freq-in-C and
run the output through another “reducer” that
– appends together all the attributes associated with

the same key, so we now have elements like

Generating and scoring phrases: 3

•  Scan the through the phrase table one more
time and add the informativeness attribute
and the overall quality attribute

Summary, assuming word vocabulary nW is small:
•  Scan foreground corpus C for phrases: O(nC) producing mC phrase

records – of course mC << nC
•  Compute phrasiness: O(mC)
•  Scan background corpus B for phrases: O(nB) producing mB
•  Sort together and combine records: O(m log m), m=mB + mC
•  Compute informativeness and combined quality: O(m)

Assumes word counts fit in memory

Ramping it up – keeping word
counts out of memory
•  Goal: records for xy with attributes freq-in-B, freq-in-C,

freq-of-x-in-C, freq-of-y-in-C, …
•  Assume I have built built phrase tables and word

tables….how do I incorporate the word attributes into the
phrase records?

•  For each phrase xy, request necessary word frequencies:
–  Print “x ~request=freq-in-C,from=xy”
–  Print “y ~request=freq-in-C,from=xy”

•  Sort all the word requests in with the word tables
•  Scan through the result and generate the answers: for

each word w, a1=n1,a2=n2,….
–  Print “xy ~request=freq-in-C,from=w”

•  Sort the answers in with the xy records
•  Scan through and augment the xy records appropriately

Generating and scoring phrases: 3

Summary
1.  Scan foreground corpus C for phrases, words: O(nC)

producing mC phrase records, vC word records
2.  Scan phrase records producing word-freq requests: O(mC)

producing 2mC requests
3.  Sort requests with word records: O((2mC + vC)log(2mC + vC))

 = O(mClog mC) since vC < mC
4.  Scan through and answer requests: O(mC)
5.  Sort answers with phrase records: O(mClog mC)
6.  Repeat 1-5 for background corpus: O(nB + mBlogmB)
7.  Combine the two phrase tables: O(m log m), m = mB + mC
8.  Compute all the statistics: O(m)

More cool work with phrases
•  Turney: Thumbs up or thumbs down?: semantic orientation

applied to unsupervised classification of reviews.ACL ‘02.
•  Task: review classification (65-85% accurate, depending on

domain)
–  Identify candidate phrases (e.g., adj-noun bigrams, using POS

tags)
–  Figure out the semantic orientation of each phrase using

“pointwise mutual information” and aggregate

SO(phrase) = PMI(phrase,'excellent') − PMI(phrase,'poor')

“Answering Subcognitive Turing Test

Questions: A Reply to French” - Turney

More from Turney

LOW

HIGHER

HIGHEST

More cool work with phrases
•  Locating Complex Named Entities in Web Text. Doug

Downey, Matthew Broadhead, and Oren Etzioni, IJCAI
2007.

•  Task: identify complex named entities like “Proctor and
Gamble”, “War of 1812”, “Dumb and Dumber”,
“Secretary of State William Cohen”, …

•  Formulation: decide whether to or not to merge nearby
sequences of capitalized words axb, using variant of

•  For k=1, ck is PM (w/o the log). For k=2, ck is
“Symmetric Conditional Probability”

Downey et al results

Outline
•  Even more on stream-and-sort and naïve Bayes
– Request-answer pattern

•  Another problem: “meaningful” phrase finding
– Statistics for identifying phrases (or more

generally correlations and differences)
– Also using foreground and background corpora

•  Implementing “phrase finding” efficiently
– Using request-answer

•  Some other phrase-related problems
– Semantic orientation
– Complex named entity recognition

