


Announcements 

•  Guest lectures schedule: 
– D. Sculley, Google Pgh, 3/26 
– Alex Beutel, SGD for tensors, 4/7 
– Alex Smola, something cool, 4/9 



Projects 

•  Students in 805: 
– First draft of project proposal due 2/17. 
– Some more detail on projects is on the 

wiki. 



Quiz 

•  https://qna-app.appspot.com/view.html?
aglzfnFuYS1hcHByGQsSDFF1ZXN0aW9uT
GlzdBiAgICAg-n-Cww  



How do you debug a learning 
algorithm? 

•  Unit tests 
•  Simple artificial problems 



How do you debug a learning 
algorithm? 

•  Unit tests 
•  Simple artificial problems 
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  [snow flurries|snow showers|light snow|…]] 
  [Monday|Tuesday|…] 
  and overcast 



Beyond Naïve Bayes:  
Other Efficient Learning 

Methods 
William W. Cohen 



Two fast algorithms 

•  Naïve Bayes: one pass 
•  Rocchio: two passes 

– if vocabulary fits in memory 
•  Both method are algorithmically similar 

– count and combine 
•  Thought experiment: what if we duplicated 

some features in our dataset many times? 
– e.g., Repeat all words that start with “t” 10 

times. 



Limitations of Naïve Bayes/Rocchio 

•  Naïve Bayes: one pass 
•  Rocchio: two passes 

–  if vocabulary fits in memory 
•  Both method are algorithmically similar 

–  count and combine 
•  Thought thought thought thought thought thought 

thought thought thought thought experiment: what if we 
duplicated some features in our dataset many times times 
times times times times times times times times? 
–  e.g., Repeat all words that start with “t” “t” “t” “t” “t” 

“t” “t” “t” “t” “t” ten ten  ten  ten  ten  ten  ten  ten  ten  
ten  times times times times times times times times 
times times. 

–  Result: those features will be over-weighted in 
classifier by a factor of 10 

This isn’t silly – often there are 
features that are “noisy” 
duplicates, or important 
phrases of different length  



Limitations of Naïve Bayes/Rocchio 

•  Naïve Bayes: one pass 
•  Rocchio: two passes 

– if vocabulary fits in memory 
•  Both method are algorithmically similar 

– count and combine 
•  Thought oughthay experiment experiment-day: 

what we add a Pig latin version of each word 
starting with “t”?  
– Result: those features will be over-weighted 
– You need to look at interactions between 

features somehow 

This isn’t silly – often there are 
features that are “noisy” 
duplicates, or important 
phrases of different length  



Naïve Bayes is a linear algorithm 

logP(y, x1,.., xn ) = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+mj
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Naïve Bayes 

where g(x j, y) = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+m

where f (x,d) = TF(x,d)

sparse vector of 
TF values for 
each word in 
the 
document…
plus a “bias” 
term for  f(y) 

dense vector of g(x,y) scores for each 
word in the vocabulary .. plus f(y) to 
match bias term 



One way to look for interactions: 
on-line, incremental learning 
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Naïve Bayes 

where g(x j, y) = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+m

dense vector of g(x,y) scores for each 
word in the vocabulary 

Scan thu data: 
•  whenever we see x with y we increase g(x,y) 
•  whenever we see x with ~y we increase g(x,~y) 



One simple way to look for 
interactions 

prediction = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+mj
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Naïve Bayes – 
two class 
version 

where g(x j, y) = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+m

dense vector of g(x,y) scores for each 
word in the vocabulary 

Scan thru data: 
•  whenever we see x with y we increase g(x,y)-g(x,~y) 
•  whenever we see x with ~y we decrease g(x,y)-g(x,~y) 

We do this regardless of whether it seems to help or not 
on the data….if there are duplications, the weights will 
become arbitrarily large 

To detect interactions: 
•  increase/decrease g(x,y)-g(x,~y) only if we need to 

(for that example) 
•  otherwise, leave it unchanged 



One simple way to look for 
interactions 

B 
instance xi Compute: yi = vk . xi  

^ 

  +1,-1: label yi 
If mistake: vk+1 = vk  +  correction Train Data 

To detect interactions: 
•  increase/decrease vk only if we need to (for that example) 
•  otherwise, leave it unchanged 

•  We can be sensitive to duplication by stopping updates 
when we get better performance 



Theory: the prediction game 

•  Player A:  
–  picks a “target concept” c  

•  for now - from a finite set of possibilities C (e.g., all 
decision trees of size m) 

–   for t=1,…., 
•  Player A picks x=(x1,…,xn) and sends it to B 

–  For now, from a finite set of possibilities (e.g., all binary 
vectors of length n) 

•  B predicts a label, ŷ, and sends it to A 
•  A sends B the true label y=c(x) 
•  we record if B made a mistake or not 

– We care about the worst case number of mistakes B 
will make over all possible concept & training 
sequences of any length 

•  The “Mistake bound” for B, MB(C),  is this bound 



The prediction game 

•  Are there practical algorithms where we can 
compute the mistake bound? 



The voted perceptron 

A B 
instance xi Compute: yi = vk . xi  

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  
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(3b) The guess v2 after the one positive and 
one negative example: v2=v1-x2 
 

If mistake: vk+1 = vk  +  yi xi  
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Summary 
•  We have shown that  

–  If : exists a u with unit norm that has margin γ on examples in 
the seq (x1,y1),(x2,y2),…. 

–  Then : the perceptron algorithm makes < R2/ γ2 mistakes on the 
sequence (where R >= ||xi||) 

–  Independent of dimension of the data or classifier (!) 
–  This doesn’t follow from M(C)<=VCDim(C) 

•  We don’t know if this algorithm could be better 
–  There are many variants that rely on similar analysis (ROMMA, 

Passive-Aggressive, MIRA, …) 
•  We don’t know what happens if the data’s not separable 

–  Unless I explain the “Δ trick” to you 
•  We don’t know what classifier to use “after” training 



The Δ Trick 
•  The proof assumes the data is separable by a 

wide margin 
•  We can make that true by adding an “id” feature 

to each example 
– sort of like we added a constant feature 
 

x1 = (x1
1, x2

1,..., xm
1 )→ (x1

1, x2
1,..., xm

1 ,  Δ, 0,...., 0)
x2 = (x1

2, x2
2,..., xm

2 )→ (x1
2, x2

2,..., xm
2 , 0,Δ,...., 0)

...
xn = (x1

n, x2
n,..., xm

n )→ (x1
n, x2

n,..., xm
n , 0, 0,...,Δ)

n new features 



The Δ Trick 
•  Replace xi with x’i so X becomes [X | I Δ] 
•  Replace R2 in our bounds with R2 + Δ2 

•  Let di = max(0, γ - yi xi u)  
•  Let u’ = (u1,…,un, y1d1/Δ, … ymdm/Δ) * 1/Z 

– So Z=sqrt(1 + D2/ Δ2), for D=sqrt(d1
2+…+dm

2) 
–  Now [X|IΔ] is separable by u’ with margin γ 

•  Mistake bound is (R2 + Δ2)Z2 / γ2  

•  Let Δ = sqrt(RD) è k <= ((R + D)/ γ)2 

•  Conclusion: a little noise is ok 



Summary 
•  We have shown that  

–  If : exists a u with unit norm that has margin γ on 
examples in the seq (x1,y1),(x2,y2),…. 

–  Then : the perceptron algorithm makes < R2/ γ2 mistakes 
on the sequence (where R >= ||xi||) 

–  Independent of dimension of the data or classifier (!) 
•  We don’t know what happens if the data’s not 

separable 
–  Unless I explain the “Δ trick” to you 

•  We don’t know what classifier to use “after” 
training 



On-line to batch learning 

1.  Pick a vk at random 
according to mk/m, the 
fraction of examples it 
was used for. 

2.  Predict using the vk 
you just picked. 

3.  (Actually, use some 
sort of deterministic 
approximation to this). 





Complexity of perceptron 
learning 

•  Algorithm:  
•  v=0 
•  for each example x,y: 

–  if sign(v.x) != y 
•  v = v + yx 

•  init hashtable 

•  for xi!=0, vi += yxi 

 

O(n) 

O(|x|)=O(|d|) 



Complexity of averaged perceptron 

•  Algorithm:  
•  vk=0 
•  va = 0 
•  for each example x,y: 

–  if sign(vk.x) != y 
•  va = va + vk 
•  vk = vk + yx 
•  mk = 1 

–  else 
•  nk++ 

•  init hashtables 

•  for vki!=0, vai += vki 

•  for xi!=0, vi += yxi 

 

O(n)    O(n|V|) 

O(|x|)=O(|d|) 

O(|V|) 



The kernel trick 

You can think of a perceptron as a weighted nearest-neighbor 
classifier…. 

where K(v,x) = dot product of v and x (a similarity function) 



The kernel trick 

Here’s yet another similarity function: K(v,x) is  

Here’s another similarity function: K’(v,x)=dot product of H’(v),H’(x)) where 



The kernel trick 

1,2,...,2,,,...,,)( 1
2

121
2
1 nnnn xxxxxxxxH −≡x

Claim: K(v,x)=dot product of H(x),H(v) for this H: 







Parallelizing perceptrons 

Instances/labels 

Instances/labels – 1 Instances/labels – 2 Instances/labels – 3 

vk/va -1  vk/va- 2 vk/va-3 

vk 

Split into example 
subsets 

Combine somehow? 

Compute vk’s on subsets 



Parallelizing perceptrons 

Instances/labels 

Instances/labels – 1 Instances/labels – 2 Instances/labels – 3 

vk/va -1  vk/va- 2 vk/va-3 

vk/va 

Split into example 
subsets 

Combine somehow 

Compute vk’s on subsets 

Synchonization cost 
vs Inference (classification) 
cost 



Review/outline 
•  How to implement Naïve Bayes 

–  Time is linear in size of data (one scan!) 
–  We need to count C( X=word ^ Y=label) 

•  Can you parallelize Naïve Bayes? 
–  Trivial solution 1 

1.  Split the data up into multiple subsets 
2.  Count and total each subset independently 
3.  Add up the counts 

–  Result should be the same 
•  This is unusual for streaming learning algorithms 

–  Why?  no interaction between feature weight updates 
–  For perceptron that’s not the case 



A hidden agenda 
•  Part of machine learning is good grasp of theory 
•  Part of ML is a good grasp of what hacks tend to work 
•  These are not always the same 

–  Especially in big-data situations 

•  Catalog of useful tricks so far 
–  Brute-force estimation of a joint distribution 
–  Naive Bayes 
–  Stream-and-sort, request-and-answer patterns 
–  BLRT and KL-divergence (and when to use them) 
–  TF-IDF weighting – especially IDF 

•  it’s often useful even when we don’t understand why 
–  Perceptron/mistake bound model 

•  often leads to fast, competitive, easy-to-implement methods 
•  parallel versions are non-trivial to implement/understand 



The Voted Perceptron for Ranking and 
Structured Classification 

William Cohen 



The voted perceptron for ranking 

A B 
instances x1 x2 x3 x4… Compute: yi = vk . xi  

Return: the index b* of the “best” xi 

^ 

b* 

   b 

If mistake: vk+1 = vk  +  xb  - xb*  
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Ranking some x’s 
with some guess 
vector v – part 1 
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Ranking some x’s 
with some guess 
vector v – part 2. 

 

The purple-circled 
x is xb* - the one 
the learner has 
chosen to rank 
highest. The green 
circled x is xb, the 
right answer. 
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Correcting v by 
adding xb – xb* 
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Correcting v by 
adding xb – xb* 

(part 2) 
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Notice this doesn’t depend at all on the number of x’s being ranked 

Neither proof depends on the dimension of the x’s. 



Ranking perceptrons è structured 
perceptrons 

•  The API: 
–  A sends B a (maybe 

huge) set of items to 
rank 

–  B finds the single best 
one according to the 
current weight vector 

–  A tells B which one 
was actually best 

•  Structured 
classification on a 
sequence 
–  Input: list of words: 

x=(w1,…,wn) 
–  Output: list of labels: 

y=(y1,…,yn) 
–  If there are K classes, 

there are Kn labels 
possible for x 



51 

Borkar et al’s: HMMs for segmentation 

–  Example: Addresses, bib records   
–  Problem: some DBs may split records up differently (eg no “mail 

stop” field, combine address and apt #, …) or not at all 
–  Solution:  Learn to segment textual form of records 

P.P.Wangikar, T.P. Graycar, D.A. Estell, D.S. Clark, J.S. Dordick (1993) 
Protein and Solvent Engineering of Subtilising BPN' in Nearly 
Anhydrous Organic Media J.Amer. Chem. Soc. 115, 12231-12237. 

Author Year Title Journal 
Volume Page 



IE with Hidden Markov Models 

52 

Title 
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Author 0.9 
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Inference for linear-chain 
MRFs 

When    will         prof      Cohen       post      the       notes   …  

Idea 1: features are properties of two adjacent 
tokens, and the pair of labels assigned to them. 

•  (y(i)==B or y(i)==I) and (token(i) is capitalized) 

•  (y(i)==I and y(i-1)==B) and (token(i) is 
hyphenated) 

•  (y(i)==B and y(i-1)==B)  

• eg “tell Ziv William is on the way” 

Idea 2: construct a graph where each path is a 
possible sequence labeling. 



Inference for a linear-chain 
MRF 
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When    will         prof      Cohen       post      the       notes   …  

• Inference: find the highest-weight path 
• This can be done efficiently using dynamic 
programming (Viterbi) 



Ranking perceptrons è structured 
perceptrons 

•  The API: 
–  A sends B a (maybe 

huge) set of items to 
rank 

–  B finds the single best 
one according to the 
current weight vector 

–  A tells B which one 
was actually best 

•  Structured 
classification on a 
sequence 
–  Input: list of words: 

x=(w1,…,wn) 
–  Output: list of labels: 

y=(y1,…,yn) 
–  If there are K classes, 

there are Kn labels 
possible for x 



Ranking perceptrons ! 
structured perceptrons 

•  The API: 
–  A sends B a (maybe 

huge) set of items to 
rank 

–  B finds the single best 
one according to the 
current weight vector 

–  A tells B which one 
was actually best 

•  Structured classification 
on a sequence 
–  Input: list of words: 

x=(w1,…,wn) 
–  Output: list of labels: 

y=(y1,…,yn) 
–  If there are K classes, 

there are Kn labels 
possible for x 



Ranking perceptrons ! 
structured perceptrons 

•  New API: 
–  A sends B the word 

sequence x 
–  B finds the single best 

y according to the 
current weight vector 
using Viterbi 

–  A tells B which y was 
actually best 

–  This is equivalent to 
ranking pairs g=(x,y’) 

•  Structured classification 
on a sequence 
–  Input: list of words: 

x=(w1,…,wn) 
–  Output: list of labels: 

y=(y1,…,yn) 
–  If there are K classes, 

there are Kn labels 
possible for x 



The voted perceptron for ranking 

A B 
instances x1 x2 x3 x4… Compute: yi = vk . xi  

Return: the index b* of the “best” xi 

^ 

b* 

   b 

If mistake: vk+1 = vk  +  xb  - xb*  

Change number one is notation: replace x with g 



The voted perceptron for NER 

A B 
instances g1 g2 g3 g4… Compute: yi = vk . gi  

Return: the index b* of the “best” gi 

^ 

b*    b 

If mistake: vk+1 = vk  +  gb  - gb*  

1.  A sends B feature functions, and instructions for creating the 
instances g: 

•  A sends a word vector xi.  Then B could create the instances g1 
=F(xi,y1), g2= F(xi,y2), … 

•  but instead B just returns the y* that gives the best score for the 
dot product vk . F(xi,y*) by using Viterbi. 

2.  A sends B the correct label sequence yi. 

3.  On errors, B sets vk+1 = vk  +  gb  - gb* = vk  + F(xi,y) - F(xi,y*)  



EMNLP 2002 



Some background… 
•  Collins’ parser: generative model… 
•  …New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete 

Structures, and the Voted Perceptron, Collins and Duffy, ACL 2002. 
•  …Ranking Algorithms for Named-Entity Extraction: Boosting and the Voted 

Perceptron, Collins, ACL 2002. 
–  Propose entities using a MaxEnt tagger (as in MXPOST) 
–  Use beam search to get multiple taggings for each document (20) 
–  Learn to rerank the candidates to push correct ones to the top, using 

some new candidate-specific features: 
•  Value of the “whole entity” (e.g., “Professor_Cohen”) 
•  Capitalization features for the whole entity (e.g., “Xx+_Xx+”) 
•  Last word in entity, and capitalization features of last word 
•  Bigrams/Trigrams of words and capitalization features before and 

after the entity 



Some background… 



EMNLP 2002, Best paper 

And back to the paper….. 



Collins’ Experiments 

•  POS tagging  
•  NP Chunking (words and POS tags from Brill’s 

tagger as features) and BIO output tags 
•  Compared Maxent Tagging/MEMM’s (with 

iterative scaling) and “Voted Perceptron trained 
HMM’s” 
–  With and w/o averaging 
–  With and w/o feature selection (count>5) 



Collins’ results 



Parallelizing perceptrons 

Instances/labels 

Instances/labels – 1 Instances/labels – 2 Instances/labels – 3 

vk/va -1  vk/va- 2 vk/va-3 

vk 

Split into example 
subsets 

Combine somehow? 

Compute vk’s on subsets 



Parallelizing perceptrons 

Instances/labels 

Instances/labels – 1 Instances/labels – 2 Instances/labels – 3 

vk/va -1  vk/va- 2 vk/va-3 

vk/va 

Split into example 
subsets 

Combine somehow 

Compute vk’s on subsets 

Synchonization cost 
vs Inference (classification) 
cost 


