

Announcements

•  Guest lectures schedule:
– D. Sculley, Google Pgh, 3/26
– Alex Beutel, SGD for tensors, 4/7
– Alex Smola, something cool, 4/9

Projects

•  Students in 805:
– First draft of project proposal due 2/17.
– Some more detail on projects is on the

wiki.

Quiz

•  https://qna-app.appspot.com/view.html?
aglzfnFuYS1hcHByGQsSDFF1ZXN0aW9uT
GlzdBiAgICAg-n-Cww

How do you debug a learning
algorithm?

•  Unit tests
•  Simple artificial problems

How do you debug a learning
algorithm?

•  Unit tests
•  Simple artificial problems

[rain|sleet|snow|showers|
 [snow flurries|snow showers|light snow|…]]
 [Monday|Tuesday|…]
 and overcast

Beyond Naïve Bayes:
Other Efficient Learning

Methods
William W. Cohen

Two fast algorithms

•  Naïve Bayes: one pass
•  Rocchio: two passes

– if vocabulary fits in memory
•  Both method are algorithmically similar

– count and combine
•  Thought experiment: what if we duplicated

some features in our dataset many times?
– e.g., Repeat all words that start with “t” 10

times.

Limitations of Naïve Bayes/Rocchio

•  Naïve Bayes: one pass
•  Rocchio: two passes

–  if vocabulary fits in memory
•  Both method are algorithmically similar

–  count and combine
•  Thought thought thought thought thought thought

thought thought thought thought experiment: what if we
duplicated some features in our dataset many times times
times times times times times times times times?
–  e.g., Repeat all words that start with “t” “t” “t” “t” “t”

“t” “t” “t” “t” “t” ten ten ten ten ten ten ten ten ten
ten times times times times times times times times
times times.

–  Result: those features will be over-weighted in
classifier by a factor of 10

This isn’t silly – often there are
features that are “noisy”
duplicates, or important
phrases of different length

Limitations of Naïve Bayes/Rocchio

•  Naïve Bayes: one pass
•  Rocchio: two passes

– if vocabulary fits in memory
•  Both method are algorithmically similar

– count and combine
•  Thought oughthay experiment experiment-day:

what we add a Pig latin version of each word
starting with “t”?
– Result: those features will be over-weighted
– You need to look at interactions between

features somehow

This isn’t silly – often there are
features that are “noisy”
duplicates, or important
phrases of different length

Naïve Bayes is a linear algorithm

logP(y, x1,.., xn) = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+mj

∑
#

$
%%

&

'
((+ log

C(Y = y)+mqy
C(Y = ANY)+m

= g(x j, y)
j
∑
#

$
%%

&

'
((+ f (y)

= f (x,d)g(x, y)
x∈V
∑
#

$
%

&

'
(+ f (y)

= v(y,d) ⋅w(y)

Naïve Bayes

where g(x j, y) = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+m

where f (x,d) = TF(x,d)

sparse vector of
TF values for
each word in
the
document…
plus a “bias”
term for f(y)

dense vector of g(x,y) scores for each
word in the vocabulary .. plus f(y) to
match bias term

One way to look for interactions:
on-line, incremental learning

logP(y, x1,.., xn) = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+mj

∑
#

$
%%

&

'
((+ log

C(Y = y)+mqy
C(Y = ANY)+m

= g(x j, y)
j
∑
#

$
%%

&

'
((+ f (y)

= f (x,d)g(x, y)
x∈V
∑
#

$
%

&

'
(+ f (y)

= v(y,d) ⋅w(y)

Naïve Bayes

where g(x j, y) = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+m

dense vector of g(x,y) scores for each
word in the vocabulary

Scan thu data:
•  whenever we see x with y we increase g(x,y)
•  whenever we see x with ~y we increase g(x,~y)

One simple way to look for
interactions

prediction = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+mj

∑
#

$
%%

&

'
((+ log

C(Y = y)+mqy
C(Y = ANY)+m

= g(x j, y)
j
∑
#

$
%%

&

'
((+ f (y)

= f (x,d)g(x, y)
x∈V
∑
#

$
%

&

'
(+ f (y)

= v(y,d)[w(y)−w(~ y)]

Naïve Bayes –
two class
version

where g(x j, y) = log
C(X = x j ∧Y = y)+mqx
C(X = ANY ∧Y = y ')+m

dense vector of g(x,y) scores for each
word in the vocabulary

Scan thru data:
•  whenever we see x with y we increase g(x,y)-g(x,~y)
•  whenever we see x with ~y we decrease g(x,y)-g(x,~y)

We do this regardless of whether it seems to help or not
on the data….if there are duplications, the weights will
become arbitrarily large

To detect interactions:
•  increase/decrease g(x,y)-g(x,~y) only if we need to

(for that example)
•  otherwise, leave it unchanged

One simple way to look for
interactions

B
instance xi Compute: yi = vk . xi

^

 +1,-1: label yi
If mistake: vk+1 = vk + correction Train Data

To detect interactions:
•  increase/decrease vk only if we need to (for that example)
•  otherwise, leave it unchanged

•  We can be sensitive to duplication by stopping updates
when we get better performance

Theory: the prediction game

•  Player A:
–  picks a “target concept” c

•  for now - from a finite set of possibilities C (e.g., all
decision trees of size m)

–  for t=1,….,
•  Player A picks x=(x1,…,xn) and sends it to B

–  For now, from a finite set of possibilities (e.g., all binary
vectors of length n)

•  B predicts a label, ŷ, and sends it to A
•  A sends B the true label y=c(x)
•  we record if B made a mistake or not

– We care about the worst case number of mistakes B
will make over all possible concept & training
sequences of any length

•  The “Mistake bound” for B, MB(C), is this bound

The prediction game

•  Are there practical algorithms where we can
compute the mistake bound?

The voted perceptron

A B
instance xi Compute: yi = vk . xi

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

u

-u

2γ

u

-u

2γ

+x1 v1

(1) A target u (2) The guess v1 after one
positive example.

u

-u

2γ

u

-u

2γ

v1

+x2

v2

+x1 v1

-x2

v2

(3a) The guess v2 after the two
positive examples: v2=v1+x2

(3b) The guess v2 after the one positive and
one negative example: v2=v1-x2

If mistake: vk+1 = vk + yi xi

u

-u

2γ

u

-u

2γ

v1

+x2

v2

+x1 v1

-x2

v2

(3a) The guess v2 after the two
positive examples: v2=v1+x2

(3b) The guess v2 after the one positive and
one negative example: v2=v1-x2

>γ

u

-u

2γ

u

-u

2γ

v1

+x2

v2

+x1 v1

-x2

v2

(3a) The guess v2 after the two
positive examples: v2=v1+x2

(3b) The guess v2 after the one positive and
one negative example: v2=v1-x2

2

2

2

2

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

γ
R

Summary
•  We have shown that

–  If : exists a u with unit norm that has margin γ on examples in
the seq (x1,y1),(x2,y2),….

–  Then : the perceptron algorithm makes < R2/ γ2 mistakes on the
sequence (where R >= ||xi||)

–  Independent of dimension of the data or classifier (!)
–  This doesn’t follow from M(C)<=VCDim(C)

•  We don’t know if this algorithm could be better
–  There are many variants that rely on similar analysis (ROMMA,

Passive-Aggressive, MIRA, …)
•  We don’t know what happens if the data’s not separable

–  Unless I explain the “Δ trick” to you
•  We don’t know what classifier to use “after” training

The Δ Trick
•  The proof assumes the data is separable by a

wide margin
•  We can make that true by adding an “id” feature

to each example
– sort of like we added a constant feature

x1 = (x1
1, x2

1,..., xm
1)→ (x1

1, x2
1,..., xm

1 , Δ, 0,...., 0)
x2 = (x1

2, x2
2,..., xm

2)→ (x1
2, x2

2,..., xm
2 , 0,Δ,...., 0)

...
xn = (x1

n, x2
n,..., xm

n)→ (x1
n, x2

n,..., xm
n , 0, 0,...,Δ)

n new features

The Δ Trick
•  Replace xi with x’i so X becomes [X | I Δ]
•  Replace R2 in our bounds with R2 + Δ2

•  Let di = max(0, γ - yi xi u)
•  Let u’ = (u1,…,un, y1d1/Δ, … ymdm/Δ) * 1/Z

– So Z=sqrt(1 + D2/ Δ2), for D=sqrt(d1
2+…+dm

2)
–  Now [X|IΔ] is separable by u’ with margin γ

•  Mistake bound is (R2 + Δ2)Z2 / γ2

•  Let Δ = sqrt(RD) è k <= ((R + D)/ γ)2

•  Conclusion: a little noise is ok

Summary
•  We have shown that

–  If : exists a u with unit norm that has margin γ on
examples in the seq (x1,y1),(x2,y2),….

–  Then : the perceptron algorithm makes < R2/ γ2 mistakes
on the sequence (where R >= ||xi||)

–  Independent of dimension of the data or classifier (!)
•  We don’t know what happens if the data’s not

separable
–  Unless I explain the “Δ trick” to you

•  We don’t know what classifier to use “after”
training

On-line to batch learning

1.  Pick a vk at random
according to mk/m, the
fraction of examples it
was used for.

2.  Predict using the vk
you just picked.

3.  (Actually, use some
sort of deterministic
approximation to this).

Complexity of perceptron
learning

•  Algorithm:
•  v=0
•  for each example x,y:

–  if sign(v.x) != y
•  v = v + yx

•  init hashtable

•  for xi!=0, vi += yxi

O(n)

O(|x|)=O(|d|)

Complexity of averaged perceptron

•  Algorithm:
•  vk=0
•  va = 0
•  for each example x,y:

–  if sign(vk.x) != y
•  va = va + vk
•  vk = vk + yx
•  mk = 1

–  else
•  nk++

•  init hashtables

•  for vki!=0, vai += vki

•  for xi!=0, vi += yxi

O(n) O(n|V|)

O(|x|)=O(|d|)

O(|V|)

The kernel trick

You can think of a perceptron as a weighted nearest-neighbor
classifier….

where K(v,x) = dot product of v and x (a similarity function)

The kernel trick

Here’s yet another similarity function: K(v,x) is

Here’s another similarity function: K’(v,x)=dot product of H’(v),H’(x)) where

The kernel trick

1,2,...,2,,,...,,)(1
2

121
2
1 nnnn xxxxxxxxH −≡x

Claim: K(v,x)=dot product of H(x),H(v) for this H:

Parallelizing perceptrons

Instances/labels

Instances/labels – 1 Instances/labels – 2 Instances/labels – 3

vk/va -1 vk/va- 2 vk/va-3

vk

Split into example
subsets

Combine somehow?

Compute vk’s on subsets

Parallelizing perceptrons

Instances/labels

Instances/labels – 1 Instances/labels – 2 Instances/labels – 3

vk/va -1 vk/va- 2 vk/va-3

vk/va

Split into example
subsets

Combine somehow

Compute vk’s on subsets

Synchonization cost
vs Inference (classification)
cost

Review/outline
•  How to implement Naïve Bayes

–  Time is linear in size of data (one scan!)
–  We need to count C(X=word ^ Y=label)

•  Can you parallelize Naïve Bayes?
–  Trivial solution 1

1.  Split the data up into multiple subsets
2.  Count and total each subset independently
3.  Add up the counts

–  Result should be the same
•  This is unusual for streaming learning algorithms

–  Why? no interaction between feature weight updates
–  For perceptron that’s not the case

A hidden agenda
•  Part of machine learning is good grasp of theory
•  Part of ML is a good grasp of what hacks tend to work
•  These are not always the same

–  Especially in big-data situations

•  Catalog of useful tricks so far
–  Brute-force estimation of a joint distribution
–  Naive Bayes
–  Stream-and-sort, request-and-answer patterns
–  BLRT and KL-divergence (and when to use them)
–  TF-IDF weighting – especially IDF

•  it’s often useful even when we don’t understand why
–  Perceptron/mistake bound model

•  often leads to fast, competitive, easy-to-implement methods
•  parallel versions are non-trivial to implement/understand

The Voted Perceptron for Ranking and
Structured Classification

William Cohen

The voted perceptron for ranking

A B
instances x1 x2 x3 x4… Compute: yi = vk . xi

Return: the index b* of the “best” xi

^

b*

 b

If mistake: vk+1 = vk + xb - xb*

u

-u

x x

x

x

x

γ

Ranking some x’s
with the target
vector u

u

-u

x x

x

x

x

γ

v

Ranking some x’s
with some guess
vector v – part 1

u

-u

x x

x

x

x

v

Ranking some x’s
with some guess
vector v – part 2.

The purple-circled
x is xb* - the one
the learner has
chosen to rank
highest. The green
circled x is xb, the
right answer.

u

-u

x x

x

x

x

v

Correcting v by
adding xb – xb*

x x

x

x

x

vk

Vk+1

Correcting v by
adding xb – xb*

(part 2)

u

-u

2γ

v1

+x2

v2

(3a) The guess v2 after the two
positive examples: v2=v1+x2

>γ

u

-u

u

-u

xx

x

x

x

v

u

-u

2γ

v1

+x2

v2

(3a) The guess v2 after the two
positive examples: v2=v1+x2

>γ

3

u

-u

u

-u

xx

x

x

x

v

u

-u

2γ

v1

+x2

v2

(3a) The guess v2 after the two
positive examples: v2=v1+x2

>γ

3

u

-u

u

-u

xx

x

x

x

v

u

-u

2γ

v1

+x2

v2

(3a) The guess v2 after the two
positive examples: v2=v1+x2

>γ

u

-u

u

-u

xx

x

x

x

v

Notice this doesn’t depend at all on the number of x’s being ranked

Neither proof depends on the dimension of the x’s.

Ranking perceptrons è structured
perceptrons

•  The API:
–  A sends B a (maybe

huge) set of items to
rank

–  B finds the single best
one according to the
current weight vector

–  A tells B which one
was actually best

•  Structured
classification on a
sequence
–  Input: list of words:

x=(w1,…,wn)
–  Output: list of labels:

y=(y1,…,yn)
–  If there are K classes,

there are Kn labels
possible for x

51

Borkar et al’s: HMMs for segmentation

–  Example: Addresses, bib records
–  Problem: some DBs may split records up differently (eg no “mail

stop” field, combine address and apt #, …) or not at all
–  Solution: Learn to segment textual form of records

P.P.Wangikar, T.P. Graycar, D.A. Estell, D.S. Clark, J.S. Dordick (1993)
Protein and Solvent Engineering of Subtilising BPN' in Nearly
Anhydrous Organic Media J.Amer. Chem. Soc. 115, 12231-12237.

Author Year Title Journal
Volume Page

IE with Hidden Markov Models

52

Title

Journal

Author 0.9

0.5

0.5
0.8

0.2

0.1

Transition
probabilities

Year

Learning

Convex

…

0.06

0.03

..

Comm.

Trans.

Chemical

0.04

0.02

0.004

Smith

Cohen

Jordan

…

0.01

0.05

0.3

…

Emission
probabilities

dddd

dd

 0.8

 0.2

Inference for linear-chain
MRFs

When will prof Cohen post the notes …

Idea 1: features are properties of two adjacent
tokens, and the pair of labels assigned to them.

•  (y(i)==B or y(i)==I) and (token(i) is capitalized)

•  (y(i)==I and y(i-1)==B) and (token(i) is
hyphenated)

•  (y(i)==B and y(i-1)==B)

• eg “tell Ziv William is on the way”

Idea 2: construct a graph where each path is a
possible sequence labeling.

Inference for a linear-chain
MRF

B

I

O

B

I

O

B

I

O

B

I

O

B

I

O

B

I

O

B

I

O

When will prof Cohen post the notes …

• Inference: find the highest-weight path
• This can be done efficiently using dynamic
programming (Viterbi)

Ranking perceptrons è structured
perceptrons

•  The API:
–  A sends B a (maybe

huge) set of items to
rank

–  B finds the single best
one according to the
current weight vector

–  A tells B which one
was actually best

•  Structured
classification on a
sequence
–  Input: list of words:

x=(w1,…,wn)
–  Output: list of labels:

y=(y1,…,yn)
–  If there are K classes,

there are Kn labels
possible for x

Ranking perceptrons !
structured perceptrons

•  The API:
–  A sends B a (maybe

huge) set of items to
rank

–  B finds the single best
one according to the
current weight vector

–  A tells B which one
was actually best

•  Structured classification
on a sequence
–  Input: list of words:

x=(w1,…,wn)
–  Output: list of labels:

y=(y1,…,yn)
–  If there are K classes,

there are Kn labels
possible for x

Ranking perceptrons !
structured perceptrons

•  New API:
–  A sends B the word

sequence x
–  B finds the single best

y according to the
current weight vector
using Viterbi

–  A tells B which y was
actually best

–  This is equivalent to
ranking pairs g=(x,y’)

•  Structured classification
on a sequence
–  Input: list of words:

x=(w1,…,wn)
–  Output: list of labels:

y=(y1,…,yn)
–  If there are K classes,

there are Kn labels
possible for x

The voted perceptron for ranking

A B
instances x1 x2 x3 x4… Compute: yi = vk . xi

Return: the index b* of the “best” xi

^

b*

 b

If mistake: vk+1 = vk + xb - xb*

Change number one is notation: replace x with g

The voted perceptron for NER

A B
instances g1 g2 g3 g4… Compute: yi = vk . gi

Return: the index b* of the “best” gi

^

b* b

If mistake: vk+1 = vk + gb - gb*

1.  A sends B feature functions, and instructions for creating the
instances g:

•  A sends a word vector xi. Then B could create the instances g1
=F(xi,y1), g2= F(xi,y2), …

•  but instead B just returns the y* that gives the best score for the
dot product vk . F(xi,y*) by using Viterbi.

2.  A sends B the correct label sequence yi.

3.  On errors, B sets vk+1 = vk + gb - gb* = vk + F(xi,y) - F(xi,y*)

EMNLP 2002

Some background…
•  Collins’ parser: generative model…
•  …New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete

Structures, and the Voted Perceptron, Collins and Duffy, ACL 2002.
•  …Ranking Algorithms for Named-Entity Extraction: Boosting and the Voted

Perceptron, Collins, ACL 2002.
–  Propose entities using a MaxEnt tagger (as in MXPOST)
–  Use beam search to get multiple taggings for each document (20)
–  Learn to rerank the candidates to push correct ones to the top, using

some new candidate-specific features:
•  Value of the “whole entity” (e.g., “Professor_Cohen”)
•  Capitalization features for the whole entity (e.g., “Xx+_Xx+”)
•  Last word in entity, and capitalization features of last word
•  Bigrams/Trigrams of words and capitalization features before and

after the entity

Some background…

EMNLP 2002, Best paper

And back to the paper…..

Collins’ Experiments

•  POS tagging
•  NP Chunking (words and POS tags from Brill’s

tagger as features) and BIO output tags
•  Compared Maxent Tagging/MEMM’s (with

iterative scaling) and “Voted Perceptron trained
HMM’s”
–  With and w/o averaging
–  With and w/o feature selection (count>5)

Collins’ results

Parallelizing perceptrons

Instances/labels

Instances/labels – 1 Instances/labels – 2 Instances/labels – 3

vk/va -1 vk/va- 2 vk/va-3

vk

Split into example
subsets

Combine somehow?

Compute vk’s on subsets

Parallelizing perceptrons

Instances/labels

Instances/labels – 1 Instances/labels – 2 Instances/labels – 3

vk/va -1 vk/va- 2 vk/va-3

vk/va

Split into example
subsets

Combine somehow

Compute vk’s on subsets

Synchonization cost
vs Inference (classification)
cost

