’ Ta|é$ of

Lm%ﬁ@ﬁf

 BEYOND
NAIVE
YES -;_‘j _-\"(l

2] y”ﬁ ,‘
Wﬂsrﬁfﬁw&\ 71

X s AN of e s~
J!xavm HERCYT Meygavewﬂllﬁmf ﬁ

el l-—-‘

Announcements

 Guest lectures schedule:
—D. Sculley, Google Pgh, 3/26

— Alex Beutel, SGD for tensors, 4/7
— Alex Smola, something cool, 4/9

Projects

* Students in 8005:
—First draft of project proposal due 2/17.

—Some more detail on projects is on the
wiki.

Quiz

* https://gna-app.appspot.com/view.html?

A K =

aglztnFuYS1hcHByGQsSDFF1ZXN0aW9uT
GlzdBiAgICAg-n-Cww

How do you debug a learning
algorithm?

* Unit tests
* Simple artificial problems

How do you debug a learning
algorithm?

* Unit tests
* Simple artificial problems

[rain | sleet | snow | showers |
[snow flurries | snow showers | light snow | ...]]

[Monday | Tuesday | ...]
and overcast

Beyond Naive Bayes:
Other Efficient Learning

Methods
William W. Cohen

Two fast algorithms

* Naive Bayes: one pass

* Rocchio: two passes
—if vocabulary fits in memory

* Both method are algorithmically similar
—count and combine

* Thought experiment: what if we duplicated
some features in our dataset many times?

—e.g., Repeat all words that start with “t” 10
times.

Limitations of Naive Bayes/Rocchio

y This isn’t silly - often there are
* Naive Bayes: one pass e
features that are “noisy

* Rocchio: two passes duplicates, or important
— if vocabulary fits in memory | phrases of different length

* Both method are algorithmically similar

— count and combine

* Thought thought thought thought thought thought
thought thought thought thought experiment: what if we
duplicated some features in our dataset many times times
times times times times times times times times?

— e.g., Re;peat all words that start with “t” “t” “t” “t” “t”
“ Y Y Y Y7 ten ten ten ten ten ten ten ten ten
ten times times times times times times times times
times times.

— Result: those features will be over-weighted in
classifier by a factor of 10

Limitations of Naive Bayes/Rocchio

3 This isn’t silly - often there are
* Naive BayeS: Oone pass features that are “noisy”

f e duplicates, or important
[]
Rocchio: two passes phrases of different length

—if vocabulary fits in memory
* Both method are algorithmically similar
—count and combine

* Thought oughthay experiment experiment-day:
what we add a Pig latin version of each word
starting with “t”?

— Result: those features will be over-weighted

—You need to look at interactions between
features somehow

Naive Bayes is a linear algorithm

Naive Bayes

log P(y,x,,..,x,)=

/ C(X=x,AY=y)+mgq, C(Y=y)+mg
Elog +log .
|5 C(X=ANY AY =y)+m C(Y =ANY)+m

+ f(y)

sparse vector of
TF values for
each word in
the
document...
plus a “bias”
term for f(y)

(Ef(x,d>g<x,y>)+f<y>

(
\gg(xj’y) C(X=x,AY=y)+mq,

where g(x.,y)=10
8;.) gC(X=ANY/\Y=y')+m

x&VvV

=v(y,d)-w(y) where f(x,d)=TF(x,d)

e

One way to look for interactions:
on-line, incremental learning

Scan thu data:

Naive Bayes « whenever we see x with y we increase g(x,y)

* whenever we see x with ~y we increase g(x,~y)

C(X=x,AY=y)+mgq, CY =y)+mq
/ +log >

C(X=ANY AY =y)+m C(Y =ANY)+m

(
log P(y,x,,..,x,)= Elog
\ J

+f(y)
where g(x;,y) = log

(
\gg(xjay) C(X=xj/\Y=)7)+qu

C(X=ANY AY =y)+m
=(E f(x,d)g(x, y))+f(y)

x&VvV

=v(y,d) w(y)

One simple way to look for
Interactions

Naive Bayes - Scan thru data: | |

Cone Flas * whenever we see x with y we increase g(x,y)-g(x,~y)

version / * whenever we see x with ~y we decrease g(x,y)-g(x,~y)
\

prediction =| | We do this regardless of whether it seems to help or not
\ | on the data....if there are duplications, the weights will
(| become arbitrarily large

C(X=x,AY=y)+mq,

g(x ,-,y)J + /()
\ J

(V L£Loae ANl o 1.\\ L LN
To detect interactions:
* increase/decrease g(x,y)-g(x,~y) only if we need to
(for that example)
* otherwise, leave it unchanged

where g(x.,y)=10
8x;.) gC(X=ANY/\Y=y')+m

One simple way to look for

Interactions

A
instance X; Compute: y; =V, . X;

If mistake: v,,, = v, + correction

+1,-1: label y;

To

detect interactions:

increase/ decrease v, only if we need to (for that example)
otherwise, leave it unchanged

We can be sensitive to duplication by stopping updates
when we get better performance

Theory: the prediction game

* Player A:

— picks a “target concept” c

* for now - from a finite set of possibilities C (e.g., all
decision trees of size m)

— for t=1,....,

 Player A picks x=(x4,...,x,) and sends it to B

— For now, from a finite set of possibilities (e.g., all binary
vectors of length n)

* B predicts a label, ¥, and sends it to A
* A sends B the true label y=c(x)
* we record if B made a mistake or not
— We care about the worst case number of mistakes B

will make over all possible concept & training
sequences of any length

* The “Mistake bound” for B, My(C), is this bound

The prediction game

* Are there practical algorithms where we can
compute the mistake bound?

The voted perceptron

A
instance X ‘ Compute: y;= v, . X;

A "B

A

\ Y

Margin v. A must provide examples that can be separated with some vector
u with margin v > 0, ie

A

If mistake: v,,., =V, + Y X

Yi

Ju : V(x;,y;) given by A, (u-x)y; >y

and furthermore, |u| = 1.

Radius R. A must provide examples “near the origin”, ie

¥x; given by A4, |x|? < R

(1) Atargetu (2) The guess v, after one
" positive example.

u

A
v
A
v

7
/2

v v
(38) The guess v, after the two (3b) The guess v, after the one positive and
positive examples: v,=v,+X, one negative example: v,=v,-X,

%

Y Y

A
v

%

v v If mistake: v, =V, + VX

Y

(38) The guess v, after the two (3b) The guess v, after the one positive and
positive examples: v,=v,+X, one negative example: v,=v,-X,

A
v
A
v

%

Y

Lemma 1 Yk, vi-u > kvy. In other words, the dot product between vy and
u wncreases with each mistake, at a rate depending on the margin .

Proof:

Vit - u = (Vi +yx;) - u
= Vg u = (v -u)+y(x; - u)
= Vigl U 2 Vi su 7y
- Vi -u > ky

(38) The guess v, after the two (3b) The guess v, after the one positive and
positive examples: v,=v,+X, one negative example: v,=v,-X,

A

v
A
v

%

Y

v

Lemma 2 Vk, |vi|* < kR?. In other words, the norm of vi grows “slowly”,
at a rate depending on RZ.

Proof:

Vil s Vi = (Vi +¥iXi) - (Vi + 4ix3)
Vi1]? = Ive]® + 2yixi - vie + y2xi)®
IVis1]® = |vil? + [something negative] + 1|x;|”
Ivieer]® < Ivie]® + %)

IVisa]® < Jvi]® + R?

Ivi|® < kR?

44 ey

Lemma 1 Yk, vi-u > kv. In other words, the dot product between v, and
u ncreases with each mistake, at a rate depending on the margin .

2 “ »”
Lemma 2 Yk, |vi|® < ER. In other words, the norm of vj grows “slowly”,
at a rate depending on R.

p 2 2

(k7)? < (v - u)? 292 < vi” < kR
= K7 < [vel|ul I
= K< vl A

= k2 < R®
2
= k<% (RY

Y

Radius R. A must provide examples “near the origin”, ie

. . ' 2
¥x; given by A4, |x|? < R

Summary

« We have shown that

— If : exists a u with unit norm that has margin y on examples in

the seq (x4,¥¢),(X5,Y5),---.
— Then : the perceptron algorithm makes < R?/ y2 mistakes on the
sequence (where R >= ||x||)

— Independent of dimension of the data or classifier (!)
— This doesn't follow from M(C)<=VCDim(C)

« We don’t know if this algorithm could be better

— There are many variants that rely on similar analysis (ROMMA,
Passive-Aggressive, MIRA, ...)

« We don’t know what happens if the data’s not separable
— Unless | explain the “Atrick” to you
« We don’t know what classifier to use “after” training

The A Trick

* The proof assumes the data is separable by a
wide margin

* We can make that true by adding an “id” feature
to each example

— sort of like we added a constant feature

n new features
1 1 1 1 1 1 1
X =(X,X,.,X,) = (X, %,,....,%, , A,0,....,0)
2 p) 2 2 2 2 2
X =(X,%X),...,X,) = (X, ,%X5,....,x, ,0,A,....,0)

n

X" =(X,X) 00X,) = (X, X, ,..., X, ,0,0,...,A)

b m?

The A Trick

* Replace x; with x’. so X becomes [X | | A]
« Replace R? in our bounds with R? + A?

* Letd. = max(0, y-vy, x u)

e Letu’ = (uy,...,u,, y,d,/A, ...y, d /A)*1/Z

— So Z=sqrt(1 + D% A?), for D=sqrt(d,*+...+d_?)
— Now [X]IA] is separable by u’ with margin y

« Mistake bound is (R? + A%)Z?/ y?
e Let A =sqgrt(RD) = k <= ((R + D)/ y)?
» Conclusion: a little noise is ok

Summary

 \WWe have shown that

— If : exists a u with unit norm that has margin y on
examples in the seq (X4,¥4),(X5,Y5),- -

— Then : the perceptron algorithm makes < R?/ y? mistakes
on the sequence (where R >= ||x|)

— Independent of dimension of the data or classifier (!)

 We don’t know what happens if the data’s not
separable
— Unless | explain the “Atrick” to you

« We don’t know what classifier to use “after”
training

P(error in x) > P(error on x|picked vy,) P(picked vy)
k

;.

lm w1 %

mg m

k

Imagine we run the on-line perceptron and see this result.
¢ guess input result

1 Vo x; X (amistake) 4 piy 5 v, at random

2 Vi Xy / (correct!) according to m,/m, the
3 Vi X3 V4 fraction of examples it
1 Vi xy X (a mistake) was used for.

5 V2 X5 2. Predict using the v,

6 Vo Xg V4 you just picked.

7 V2 X7 Vv 3. (Actually, use some

8 Vo Xg X sort of deterministic

0 Va Xg 4 approximation to this).

10 Va X10 X

Test Erorr

d=1

20

15+

10 [

\\\\\
- Te
.....

......

I -
o LT TR

random (unnorm
last (unnorm
avg (unnorm
vote

e i L L L T,

TLALI A

0.1

Epoch

Complexity of perceptron
learning
 Algorithm: ©®)

« v=0 * init hashtable
* for each example x,y:

— if sign(v.x) =y
*v=v+yx O(|x])=0(|d]) * for x,!=0, v, += yx,

Complexity of averaged perceptron

Algorithm: €& O@|V])
vk=0 * init hashtables
va=0
for each example x,y:
— if sign(vk.x) I=y O(|V])

* va=va+vk @? * for vk,!=0, va, += vk,
* vk = vk + yx * for x,!=0, v, += yx,
*mk=1 O(x])=0(|d])

— else

e nk++

The kernel trick

You can think of a perceptron as a weighted nearest-neighbor
classifier....

Let M. be the first £ indices i where a mistake was made: then

V=) UK

ieM,,

so the prediction made on some test example X would be

Vi X = (Z YiX;) - X = Z Yi(X; - x) = Z yi K (x5, X)

iEMp teEMp 1EMj

where K(v,x) = dot product of v and x (a similarity function)

The kernel trick

Here’ s another similarity function: K’ (v,x)=dot product of H(v),H(x)) where
H'((x1,...,2n)) = (x121, 7170, . . ., TpTp, Ty...Tp, 1)
Here’ s yet another similarity function: K(v,x) is

Kv,x) = (v-x+1)(v-x+1)
= (vx)*+2vx+1
— ("l-’lll -+ ...+ 'l-"-n:p'n)2 + ‘2(171;’171 + ... T 'l-"nm-n) + 1

— Z 1;2- il}'"lf' j T j + '2 Z 'U.l- Ti —|- 1
i.j (]

Z Ui l-"j r;T j + '2 Z Ui 5 + 1

i.j (]

The kernel trick

Kv.x) = (v-x+1)(v-x+1)
— (\ X) +)\ X +].
= (niz1+...+ 'l»-'niln)2 +2(niz1 4+ ...+ vpzn) + 1

— Z U; g 'lz’jiTj + 2 Z Uiy + 1
i,j :

Z. UiU;TiT; + 2 Z UiT; + 1

i,j :

Claim: K(v,x)=dot product of H(x),H(v) for this H:

X X2 N2, fx1>

I’l

H(X) = (7, % %0

Test Erorr

Test Erorr

d=1
20 random (unnorm) ——
last (unnorm) -~
- avg (unnorm
""""""" o vote
15 F .
AL L
10 ; R
5|
0 A a2 a2l
. 10
Epoch
d=4
10 R
random (unnorm) —
last (unnorm) -

10

d=2

last

random i
avg

unnorm

unnorm) -

unnorm
t

2}
0 L Ll
01 1 10
Epoch
d=5
10 - .
random (unnorm) ——
last (unnorm) -----

......

~~~~~
S, -

------




Table 1. Results of experiments on NIST 10-class OCR data withd = 1,2, 3. The rows marked SupVec
and Mistake give average number of support vectors and average number of mistakes. All other rows
give test error rate in percent for the various methods.

T=1_ 01 1 2 3 4 10 30
d=1 Vote 10.7 8.5 8.3 8.2 8.2 8.1
Avg. (unnorm) 10.9 8.7 8.5 8.4 8.3 83
(norm) 10.9 8.5 8.3 8.2 8.2 8.1
Last (unnorm) 16.0 14.7 13.6 13.9 13.7 13.5
(norm) 154 14.1 13.1 13.5 13.2 13.0
Rand. (unnorm) 22.0 15.7 14.7 14.3 14.1 13.8
(norm) 21.5 15.2 14.2 13.8 13.6 13.2
SupVec 2489 19,795 24263 26,704 28,322 32,994
Mistake 3342 25461 48431 70915 93,090 223,657
d=2 Vote 6.0 2.8 24 2.2 2.1 1.8 1.8
Avg. (unnorm) 6.0 2.8 24 2.2 2.1 1.9 1.8
(norm) 6.2 3.0 2.5 2.3 2.2 1.9 1.8
Last (unnorm) 8.6 4.0 3.4 3.0 2.7 2.3 2.0
(norm) 8.4 3.9 3.3 3.0 2.7 2.3 1.9
Rand. (unnorm) 13.4 5.9 4.7 4.1 3.8 2.9 24
(norm) 13.2 5.9 4.7 4.1 3.8 29 23
SupVec 1,639 8,190 9888 10818 11,424 12,963 13,861
Mistake 2,150 10,201 15,290 19,093 22,100 32,451 41,614
d =123 Vote 54 2.3 1.9 1.8 1.7 1.6 1.6
Avg. (unnorm) 5.3 2.3 1.9 1.8 1.7 1.6 1.5
(norm) 5.5 2.5 2.0 1.8 1.8 1.6 1.5
Last (unnorm) 6.9 3.1 2.5 2.2 2.0 1.7 1.6
(norm) 6.8 3.1 2.5 2.2 2.0 1.7 1.6
Rand. (unnorm) 11.6 4.9 3.7 3.2 2.9 2.2 1.8
(norm) 11.5 4.8 3.7 3.2 2.9 22 1.8
SupVec 1,460 6,774 8.073 8,715 9,102 9,883 10,094
Mistake 1,937 8475 11,739 13,7757 15,129 18,422 19473




Parallelizing perceptrons

Instances/labels Split into example

subsets
e — '
Instances/labels - 1 Instances/labels - 2

Compute vKk’s on subsets

E Combme somehow?

Instances/labels - 3




Parallelizing perceptrons

Instances/labels Split into example

subsets
e —— '
Instances/labels - 1 Instances/labels - 2

Compute vKk’s on subsets

=

Instances/labels - 3

Combine somehow
Synchonization cost w
vs Inference (classification)

cost




Review/outline

* How to implement Naive Bayes
— Time is linear in size of data (one scan!)
— We need to count C( X=word ™ Y=label)

* Can you parallelize Naive Bayes?

— Trivial solution 1
1. Split the data up into multiple subsets

2. Count and total each subset independently
3. Add up the counts

— Result should be the same

* This is unusual for streaming learning algorithms
— Why? no interaction between feature weight updates
— For perceptron that’s not the case



A hidden agenda

» Part of machine learning is good grasp of theory
« Part of ML is a good grasp of what hacks tend to work
* These are not always the same

— Especially in big-data situations

» Catalog of useful tricks so far
— Brute-force estimation of a joint distribution
— Naive Bayes
— Stream-and-sort, request-and-answer patterns
— BLRT and KL-divergence (and when to use them)
— TF-IDF weighting - especially IDF
* it’s often useful even when we don’t understand why
— Perceptron/mistake bound model

* often leads to fast, competitive, easy-to-implement methods
* parallel versions are non-trivial to implement/understand



The Voted Perceptron for Ranking and
Structured Classification

William Cohen



The voted perceptron for ranking

. N
instances X, X, X3 X,. - Compute: y;=V, . X
A < B Return: the index b* of the “best” x;

\ b If mistake: V,., =V, + X, - X«
b

Margin 7. A must provide examples that can be correctly ranked with some
vector u with margin v > 0, ie

Ju: VX, .., X, 0 given by A, Vi # L0 u-x,—u-x; >

ul* = 1.

and furthermore,

Radius R. A must provide examples “near the origin”, ie

Vx; given by A, |x|* < R?



v

A

Ranking some x’ s
with the target
vector u



v

A

Ranking some x’ s
with some guess
vector v — part 1



A

v

Ranking some x’ s
with some guess
vector v — part 2.

The purple-circled
X is X,« - the one
the learner has
chosen to rank
highest. The green
circled x is x,, the
right answer.



Correcting v by
adding X, — X

v




Vk+1

A

v

Correcting v by
adding X, — X

(part 2)



(38) The guess v, after the two !
positive examples: v,=v,+X,

A

A
v

%

Y

v

Lemma 1 Yk, vi-u > kvy. In other words, the dot product between vy and
u wncreases with each mistake, at a rate depending on the margin .

Proof:

Vit - u = (Vi +yx;) - u
= Vg u = (v -u)+y(x; - u)
= Vigl - U =2 Vi -u+ 7y
- Vi -u > ky



(38) The guess v, after the two !
positive examples: v,=v,+X,

A

A

v

%

Y

v

3
Lemma 1 VEk, vi-u > kvy. In other words, the dot product between vy and
u wncreases with each mistake, at a rate depending on the margin .

Vil U= (Vi +y;X;) - u V41 -0 = (Vk: + X0 — Xi,é) “u
= Viyr-u = (vg-u)+y(x;-u) = ViU =V-u+X;y-u—X,;,-u
= Vk—{-l'uZVk'u_l_A/" = V/.H_l'llZVk'u—F’Y
= Vi -u = ky = Vi -u > ky




(38) The guess v, after the two
positive examples: v,=v,+X, u

v
\4

3
Lemma 1 VEk, vi-u > kvy. In other words, the dot product between vy and
u wncreases with each mistake, at a rate depending on the margin .

Vil U= (Vi +y;X;) - u V41 -0 = (Vk: + X0 — Xi,é) “u
= Viyr-u = (vg-u)+y(x;-u) = ViU =V-u+X;y-u—X,;,-u
= Vk—{-l'uZVk'u_l_A/" = V/.H_l'llZVk'u—F’Y
= Vi -u = ky = Vi -u > ky




1
Notice this doesn’ t depend at all on the number of x’ s being ranked

(38) The guess v, after the two !
positive examples: v,=v,+X,

A
v

%

Y

Lemma 4 Yk, |vi|* < 2kR.

Theorem 2 Under the rules of the ranking perceptron game, it is always the
case that k < 2R /~2.

Neither proof depends on the dimension of the x’ s.



Ranking perceptrons =» structured

perceptrons
* The API: » Structured
— A sends B a (maybe classification on a
huge) set of items to sequence

rank — Input: list of words:
— B finds the single best X=(Wy,...,W,)

one according to the

current weight vector

— A tells B which one
was actually best

— Output: list of labels:

y=(Y1---,¥n)
— |If there are K classes,

there are K" labels
possible for x



Borkar et al’'s: HMMs for segmentation

— Example: Addresses, bib records

— Problem: some DBs may split records up differently (eg no “mail
stop” field, combine address and apt #, ...) or not at all

— Solution: Learn to segment textual form of records

Author Year Title Journal Volume P age

P.P.Wangikar, T.P. Graycar, D.A. Estell, D.S. Clark, J.S. Dordick (1993)
Protein and Solvent Engineering of Subtilising BPN' in Nearly
Anhydrous Organic Media J.Amer. Chem. Soc. 115,/12231-12237.

51



lE with Hidden Markov Models

|

Transition

probabilities

Smith
Cohen

Jordan

0.01
0.05
0.3

Emission
probabilities
Learning | 0.06
Convex 0.03
Comm. 0.04
Trans. 0.02

Chemical

0.004

52




Inference for linear-chain
MRFs

When will prof Cohen post the notes ...

ldea 1: features are properties of two adjacent
tokens, and the pair of labels assigned to them.

* (y(i)==B or y(i)==1) and (token(i) is capitalized)

* (y()==I and y(i-1)==B) and (token(i) is
hyphenated)

* (y(i)==B and y(i-1)==B)
eg “tell Ziv William is on the way”

ldea 2: construct a graph where each path is a
possible sequence labeling.



Inference for a linear-chain
MRF

When will prof Cohen post the notes ...

Inference: find the highest-weight path
*This can be done efficiently using dynamic
programming (Viterbi)



Ranking perceptrons =» structured

perceptrons
* The API: » Structured
— A sends B a (maybe classification on a
huge) set of items to sequence

rank — Input: list of words:
— B finds the single best X=(Wy,...,W,)

one according to the

current weight vector

— A tells B which one
was actually best

— Output: list of labels:

y=(Y1---,¥n)
— |If there are K classes,

there are K" labels
possible for x



Ranking perceptrons =
structured perceptrons

* The APIL:  Structured classification
— A sends B a (maybe On a sequence
huge) set of items to — Input: list of words:
rank Xx=(Wy,...,W,)
— B finds the single best — Output: list of labels:
one according to the Y=(Y1,--/¥n)
current weight vector — If there are K classes,
— A tells B which one there are K" labels

was actually best possible for x



Ranking perceptrons =
structured perceptrons

* New APL  Structured classification
— A sends B the word onh a sequence
sequence X — Input: list of words:
— B finds the single best X=(Wy,..., Wp)
y according to the — Output: list of labels:
current weight vector Y=(Y1,--/¥n)
using Viterbi — If there are K classes,
— A tells B which y was there are K" labels
actually best possible for x

— This is equivalent to
ranking pairs g=(x,y’)



The voted perceptron for ranking

. A
instances X, X, X3 X,. - Compute: y;=V, . X
B Return: the index b* of the “best” x,

A:

\ i / If mistake: Vi, = Vi + X, =X
b

Change number one is notation: replace x with g




The voted perceptron for NER

. A
Instances 9,9, 93 94--; Compute: y. =V, . g;

A < B Return: the index b* of the “best” g.

\ / If mistake: Vy.; = Vi + Qp -Gy
b* b

1. A sends B feature functions, and instructions for creating the
instances g:

« Asends a word vector x,. Then B could create the instances g,
=F(xiy4), 9,= F(X;Y2), ...

* but instead B just returns the y* that gives the best score for the
dot product v, . F(x,y*) by using Viterbi.

2. A sends B the correct label sequence y;

3. Onerrors,Bsetsv,,,=v, + g, -9,-=V, +F(x,y) - F(x,y*)



Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms

Michael Collins
AT&T Labs-Research, Florham Park, New Jersey.
mcollins@research.att.com

EMNLP 2002




Some background...

« Collins’ parser: generative model...

* ...New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete
Structures, and the Voted Perceptron, Collins and Duffy, ACL 2002.

» ...Ranking Algorithms for Named-Entity Extraction: Boosting and the Voted
Perceptron, Collins, ACL 2002.

— Propose entities using a MaxEnt tagger (as in MXPOST)
— Use beam search to get multiple taggings for each document (20)

— Learn to rerank the candidates to push correct ones to the top, using
some new candidate-specific features:

 Value of the “whole entity” (e.g., “Professor_Cohen”)
« Capitalization features for the whole entity (e.g., “Xx+_Xx+")
» Last word in entity, and capitalization features of last word

» Bigrams/Trigrams of words and capitalization features before and
after the entity



Some background...

P R F
Max-Ent 84.4 86.3 85.3
Boosting 87.3(18.6) | 87.9(11.6) | 87.6(15.6)
Voted 87.3(18.6) | 88.6(16.8) | 87.9(17.7)
Perceptron

Figure 5: Results for the three tagging methods.
P = precision, R = recall, F' = F-measure. Fig-
ures in parantheses are relative improvements in er-
ror rate over the maximume-entropy model. All fig-
ures are percentages.



And back to the paper.....

Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms

Michael Collins
AT&T Labs-Research, Florham Park, New Jersey.
mcollins@research.att.com

EMNLP 2002, Best paper




Collins” Experiments

« POS tagging
« NP Chunking (words and POS tags from Brill’ s
tagger as features) and BIO output tags

« Compared Maxent Tagging/MEMM' s (with
iterative scaling) and “Voted Perceptron trained
HMM’ s”

— With and w/o averaging
— With and w/o feature selection (count>5)



Collins’ results

NP Chunking Results

POS Tagging Results

Method F-Measure | Numits Method Error rate/% | Numits
Perc, avg, cc=0 93.53 13 Perc, avg, cc=0 2.93 10
Perc, noavg, cc=0 | 93.04 35 Perc, noavg, cc=0 | 3.68 20
Perc, avg, cc=5H 93.33 9 Perc, avg, cc=5H 3.03 6
Perc, noavg, cc=5 | 91.88 39 Perc, noavg, cc=5 | 4.04 17
ME. cc=0 02.34 900 ME, cc=0 3.4 100
ME, cc=5 92.65 200 ME, cc=5 3.28 200

Figure 4: Results for various methods on the part-of-
speech tagging and chunking tasks on development data.
All scores are error percentages. Numits is the number

of training iterations at which the best score is achieved.

Perc is the perceptron algorithm, ME is the maximum

entropy method. Avg/noavg is the perceptron with or
without averaged parameter vectors. cc=5 means only
features occurring 5 times or more in training are in-
cluded, cc=0 means all features in training are included.




Parallelizing perceptrons

Instances/labels Split into example

subsets
e — '
Instances/labels - 1 Instances/labels - 2

Compute vKk’s on subsets

E Combme somehow?

Instances/labels - 3




Parallelizing perceptrons

Instances/labels Split into example

subsets
e —— '
Instances/labels - 1 Instances/labels - 2

Compute vKk’s on subsets

=

Instances/labels - 3

Combine somehow
Synchonization cost w
vs Inference (classification)

cost




