Midterm Exam Review Notes

William Cohen
When and where the exam will be

- This room seats 217
- Enrollment as of this morning
 - 10-605A: 171
 - 10-605B: 63
 - 10-805: 10
 - total: 244
- So we have an overflow room: NSH 1507
 - It seats 63
 - Go there if you are enrolled in 10-605B and your last name starts with D,E,...Z
 - Margin is now 7 😊
 - Otherwise come to this room
General hints in studying

• Understand what you’ve done and *why*
 – There will be questions that test your *understanding* of the techniques implemented
 • why will/won’t this shortcut work?
 • what does the analysis say about the method?
• We’re mostly about learning meets computation here
 – there won’t be many “pure 601” questions
 – but 601 topics that are discussed in lecture are fair game for questions
General hints in studying

• Techniques covered in class but not assignments:
 – When/where/how to use them
 – That usually includes understanding the \textit{analytic} results presented in class
 – Eg:
 • is the lazy regularization update an approximation or not? when does it help? when does it not help?
General hints in studying

• What about assignments you haven’t done?
 – You should read through the assignments and be familiar with the algorithms being implemented
• There won’t be questions about programming details that you could look up on line
 – but you should know how architectures like Hadoop work (eg, when and where they communicate, how they recover from failure,)
 – you should be able to sketch out simple map-reduce algorithms and answer questions about GuineaPig
 – you should be able to read programs in workflow operators and discuss how they’d be implemented and/or how to optimize them
General hints in studying

• There are not detailed questions on the guest speakers
• There might be high-level questions
General hints in exam taking

• You can bring in one 8 ½ by 11” sheet (front and back)
• Look over everything quickly and skip around
 – probably nobody will know everything on the test
• If you’re not sure what we’ve got in mind: state your assumptions clearly in your answer.
 – This is ok even on true/false
• If you look at a question and don’t know the answer:
 – we probably haven’t told you the answer
 – but we’ve told you enough to work it out

 – imagine arguing for some answer and see if you like it
Outline – major topics before midterm

• Hadoop
 – stream-and-sort is how I ease you into that, not really a topic on its own
• Phrase finding
• Similarity joins
• Parallelizing learners (perceptron, ...)
• Hash kernels and streaming SGD
• Distributed SGD for Matrix Factorization

• Some of these are easier to ask questions about than others.
MORE REVIEW SLIDES
HADOOP
What data gets lost if the job tracker is rebooted? If I have a 1Tb file and shard it 1000 ways will it take longer than sharding it 10 ways? Where should a combiner run?
$ hadoop fs -ls rcv1/small/sharded
Found 10 items
-rw-r--r- 3 ... 606405 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00000
-rw-r--r- 3 ... 1347611 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00001
-rw-r--r- 3 ... 939307 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00002
-rw-r--r- 3 ... 1284062 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00003
-rw-r--r- 3 ... 1009890 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00004
-rw-r--r- 3 ... 1206196 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00005
-rw-r--r- 3 ... 1384658 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00006
-rw-r--r- 3 ... 1299698 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00007
-rw-r--r- 3 ... 928752 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00008
-rw-r--r- 3 ... 806030 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00009

$ hadoop fs -tail rcv1/small/sharded/part-00005
weak as the arrival of arbitrated cargoes from the West has put the local market under pressure…
M14,M143,MCAT The Brent crude market on the Singapore International ...

Where is this data? How many disks is it on?
If I set up a directory on /afs that looks the same will it work the same? what about a local disk?
Hadoop job_201301231150_0778 on hadoopjt

User: wcohen
Job Name: streamjob6055532903853567038.jar
Job Setup: Successful
Status: Failed
Started at: Wed Jan 30 11:46:47 EST 2013
Failed in: 41sec
Job Cleanup: Successful
Black-listed TaskTrackers: 2
Job Scheduling information: 5 running map tasks using 5 map slots, 0 running reduce tasks using 0 reduce slots.

<table>
<thead>
<tr>
<th>Kind</th>
<th>% Complete</th>
<th>Num Tasks</th>
<th>Pending</th>
<th>Running</th>
<th>Complete</th>
<th>Killed</th>
<th>Failed/Killed Task Attempts</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>100.00%</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>35 / 5</td>
</tr>
<tr>
<td>reduce</td>
<td>00%</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0 / 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Counter</th>
<th>Map</th>
<th>Reduce</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack-local map tasks</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Launched map tasks</td>
<td>0</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Data-local map tasks</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Failed map tasks</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Task</td>
<td>Complete</td>
<td>Status</td>
<td>Start Time</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Task Attempts</td>
<td>Machine</td>
<td>Status</td>
<td>Progress</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>attempt_201301231150_0778_m_000000_0</td>
<td>/default-rack/cloud3u12.opencloud</td>
<td>FAILED</td>
<td>0.00%</td>
</tr>
<tr>
<td>attempt_201301231150_0778_m_000000_1</td>
<td>/default-rack/cloud2u28.opencloud</td>
<td>FAILED</td>
<td>0.00%</td>
</tr>
<tr>
<td>Name</td>
<td>Errors</td>
<td>Task Logs</td>
<td>Counters</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----------</td>
<td>----------</td>
</tr>
</tbody>
</table>

Why do I see this same error over and over again?
PARALLEL LEARNERS
Parallelizing perceptrons – take 2

Split into example subsets

Compute local \(v_k \)'s

Combine by some sort of weighted averaging
A theorem

Theorem 3. Assume a training set T is separable by margin γ. Let $k_{i,n}$ be the number of mistakes that occurred on shard i during the nth epoch of training. For any N, when training the perceptron with iterative parameter mixing (Figure 3),

$$
\sum_{n=1}^{N} \sum_{i=1}^{S} \mu_{i,n} k_{i,n} \leq \frac{R^2}{\gamma^2}
$$

Corollary: if we weight the vectors uniformly, then the number of mistakes is still bounded.

i.e., this is “enough communication” to guarantee convergence.

I probably won’t ask about the proof, but I could definitely ask about the theorem.
What does the word “structured” mean here? why is it important? would the results be better or worse with a regular perceptron?
STREAMING SGD
Learning as optimization for regularized logistic regression

• Algorithm:

\[w^j = w^j + \lambda(y - p)x^j - \lambda^2\mu w^j \]

1. Initialize a hashtable \(W \)

2. For \(t = 1, \ldots, T \)
 - For each example \(x_i, y_i \):
 - Compute the prediction for \(x_i \):
 \[p_i = \frac{1}{1 + \exp(-\sum_{j:x^j_i > 0} x^j_i w^j)} \]
 - For each non-zero feature of \(x_i \) with index \(j \) and value \(x^j \):
 * If \(j \) is not in \(W \), set \(W[j] = 0 \).
 * Set \(W[j] = W[j] + \lambda(y - p)x^j - \lambda^2\mu w^j \)

3. Output the hash table \(W \).

what if you had a different update for the regularizer?

Time goes from \(O(nT) \) to \(O(mVT) \) where
- \(n = \) number of non-zero entries,
- \(m = \) number of examples
- \(V = \) number of features
- \(T = \) number of passes over data
Formalization of the “Hash Trick”:

First: Review of Kernels

What is it? how does it work? what aspects of performance does it help? What did we say about it formally?
Matrix factorization

What is this picture trying to show?
Matrix factorization

What is this picture trying to show?
What would be another possible “stratum”?