Map-Reduce With
Hadoop

Announcement - 1

* Assignment 1B:

* Autolab is not secure and assignments aren’t
designed for adversarial interactions

* Our policy: deliberately “gaming” an
autograded assignment is considered
cheating.
e The default penalty for cheating is failing

the course.

» Getting perfect test scores should not be

possible: you're either cheating, or it’s a bug.

Announcement - 2

e Paper presentations: 3/3 and 3/5
 Projects:
* see “project info” on wiki
 1-2 page writeup of your idea: 2/17
* Response to my feedback: 3/5
* Option for 605 students to collaborate:
* Proposals will be posted; proposers can
advertise slots for collaborators, who can be
605 students (1-2 per project max)
e “Pay”:1 less assignment, no exam

Today: from stream-+sort to hadoop

e Looked at algorithms consisting of
« Sorting (to organize messages)
» Streaming (low-memory, line-by-line) file
transformations (“map” operations)
* Streaming “reduce” operations, like summing
counts, that input files sorted by keys and operate
on contiguous runs of lines with the same keys

e =>» Our algorithms could be expressed as sequences of
map-sort-reduce triples (allowing identity maps and
reduces) operating on sequences of key-value pairs

e =>» To parallelize we can look at parallelizing these ...

Today: from stream-+sort to hadoop

e Important point:
* Our code is not CPU-bound
« It'sI/Obound
* To speed it up, we need to add more disk drives, not

more CPUs.
* Example: finding a particular line in 1 TB of data

e =>» Our algorithms could be expressed as sequences of
map-sort-reduce triples (allowing identity maps and
reduces) operating on sequences of key-value pairs

e =>» To parallelize we can look at parallelizing these ...

-‘ v-l
.

e 1
W DTl

M

/
v c l:/" /
H E ‘, -
q,

"\\s,

Assmnm;u-r >

.

levmf _
IEXISQ‘[D

)
; 9
i

Write code to run assignment 1B
in parallel

® What infrastructure would you need?

® How could you run a generic “stream-and-sort” algorithm in
parallel?

® catinput.txt | MAP | sort | REDUCE > output.txt

I ITN\N

Key-val
Key-value pairs eya\i/fsue Sorted Key-value pairs
(one/line) P key-val (one/line)
e.g., labeled docs (one/line) pairs e.g., aggregate
’ e.g. event ,counts

counts

How would you run assignment
1B in parallel?

® What infrastructure would you need?

® How could you run a generic “stream-and-sort” algorithm in
parallel?

® catinput.txt | MAP | sort | REDUCE > output.txt

Step |:split input
data, by key, into
“shards” and ship
each shard to a
different box

Key-value pairs
(one/line)
e.g., labeled docs

7/

How would you run assignment
1 B 11N par all(°Open sockets to receive data to ~wcohen/

kludge / mapinput.txt on each of the K boxes
*For each key,val pair:
» Send key,val pair to boxFor (key)
® How could you run a generic “stream-and-sort” algorithm in
parallel?

® What infrastructure 1

® catinput.txt | MAP | sort | REDUCE > output.txt

Step |:split input
data, by key, into
“shards” and ship
each shard to a
different box

How would you run assignment

1 B 11N pa] °Open sockets to receive data to boxk:/kludge/

mapin.txt on each of the K boxes
® What infrastr “For each key,val pair in input.txt:
* Send key,val pair to boxFor (key)
® How could y¢* RunK processes: rsh boxk ‘MAP < mapin. txt >

p arallel? mapout. txt’

® catinput.txt | MAP | sort | REDUCE > output.txt

- =) Boxl -b- Step 2: run
- = Box? _’- the maps in

--’ — -’- parallel
OX
- =) Box4 -V-

*Open sockets to receive data to boxk: /kludge /mapin.txt on each of the K
boxes
*For each key,val pair in input.txt: t
» Send key,val pair to socket[boxFor (key)]
e Run K processes: rsh ... MAP <> ...” to completion
* On each box:
*Open sockets to receive and sort data to boxk:/kludge/redin.txt on
each of the K boxes
*For each key,val pair in mapout.txt:
* Send key,val pair to socket[boxFor (key)]

-t/ AL CUALILIN1v¢

® catinput.txt | MAP | sort | REDUCE > output.txt

— - Step 3:

= - redistribute
the map

= - output

->-

*Open sockets to receive data to boxk: /kludge /mapin.txt on each of the K
boxes
*For each key,val pair in input.txt:
» Send key,val pair to socket[boxFor (key)]
* Run K processes: rsh MAP ...
* On each box:
*Open sockets to receive and sort data to boxk:/kludge/redin.txt on each of
the K boxes
*For each key,val pair in mapout.txt:
* Send key,val pair to socket[boxFor (key)]

® catinput.txt | MAP | sort | REDUCE > output.txt

=) Box1 --’ Boxl ~ Step 3:

=) Box2 redistribute
the map
output

*Open sockets to receive data to boxk: /kludge /mapin.txt on each of the K
boxes
For each key,val pair in input.txt:
» Send key,val pair to socket[boxFor (key)]
* Run K processes: rsh MAP < mapin.txt > mapout.txt

« Shuffle the data back to the right box

* Do the same steps for the reduce processes
- vyvlidt 11111d5t1uUucCtiul© vwwouull .)/Ul/l 11ICCU .

® How could you run a generic “stream-and-sort” algorithm in
parallel?

® catinput.txt | MAP | sort | REDUCE > output.txt

=>Box1 Step 4:run
=) Box2 the reduce
processes
in parallel

*Open sockets to receive data to boxk:/kludge /mapin.txt on each of the K
boxes
*For each key,val pair in input.txt:
» Send key,val pair to socket[boxFor (key)]
* Run K processes: rsh MAP < mapin.txt > mapout.txt
« Shuffle the data back to the right box
* Do the same steps for the reduce process

* (If the keys for reduce process don’t change, you don’t need to reshuffle
thevln}—lUW COUuI yULl I'ull d geuenc OLICAIII=dIIU~-50I1 dlgUfltIlIIl 11l

parallel?

® catinput.txt | MAP | sort T REDUCE > output.txt

REDUCE

0"
ol SRR v T ARG -

\‘ k‘ “ |. This would be pretty

\‘ kv ~ systems-y (remote copy
I(I [l ([files, waiting for remote
Y Q,,, ...{ processes, ...)

@2 2. It would take work to

/"\ N
T"E 3 \\ e make it useful....

v \

ASSIGNMENT R

;>

 THAT i
Nl;vmf ~
[XISQED

Motivating Example

® Wikipedia is a very small part of the internet*

ClueWeb(09
5Tb

Wikipedia
abstracts
650MDb

\ \‘ 3

\i

—I(IEI(E

- T HE
 ASSIGNME
" THAT
Nr.vmfi
EXISTED

"

)

N \((\ |
I ,' ’\ C

' e *

This would be pretty
systems-y (remote copy
files, waiting for remote
processes, ...)

It would take work to
make run for 500 jobs

Reliability: Replication,
restarts, monitoring jobs,...
Efficiency: load-balancing,
reducing file/network i/o,
optimizing file/network ilo,

Useability: stream defined
datatypes, simple reduce
functions,

Update
< I oooo | 8 Job Status

Job Tracker

ASSlgr \gsggns

lson - ‘ \. HDFS
4J oooo ;/ Map PCRead Blocks
Data node™—~"
/ Reduce ;‘
" Datanode

_,r/oooo ;/ Map]

bl Reduce)
D > files
— RPCRead ata node
,r/oooo / Map

\ ‘ HDFS

. Data node ™ Blocks

Splits L ocal Write

Summing

Event Counting Counts

on Subsets of
Documents

\\ W

. THE
Assu:.nmz
THAT
levmf -
[XISQIED

*- %

NT““‘-‘

This would be pretty
systems-y (remote copy
files, waiting for remote
processes, ...)

It would take work to
make run for 500 jobs

Reliability: Replication,
restarts, monitoring jobs,...
Efficiency: load-balancing,
reducing file/network i/o,
optimizing file/network ilo,

Useability: stream defined
datatypes, simple reduce
functions,

Parallel and Distributed
Computing:
MapReduce

® pilfered from: Alona Fyshe

Inspiration not Plagiarism

®* This is not the first lecture ever on Mapreduce

* Iborrowed from Alona Fyshe and she borrowed from:
®* Jimmy Lin

http://www.umiacs.umd.edu/~jimmylin/cloud-computing/SIGIR-2009/Lin-MapReduce-
SIGIR2009.pdf

* Google
® http:/ /code.google.com /edu/submissions/mapreduce-minilecture /listing.html
®* http:/ /code.google.com/edu/submissions/mapreduce/listing.html

o

Cloudera

®* http://vimeo.com /3584536

Surprise, you mapreduced!

® Mapreduce has three main phases
® Map (send each input record to a key)
® Sort (put all of one key in the same place)

® handled behind the scenes

® Reduce (operate on each key and its set of values)

® Terms come from functional programming;:

® map(lambda x:x.upper(),["william","w","cohen"])= [WILLIAM,
'W', 'COHEN'"]

® reduce(lambda x,y:x+"-"+y,["william","w","cohen"])= "william-
w-cohen”

Mapreduce overview

((C)) 4)
| '@ :8 >
R
: f
1@ - |
s N
@ A
'@ :% >
@
A
L Se= -
‘O
Map) (Shuffle/Sort) (Reduce

Mapreduce: slow motion

® The canonical mapreduce example is word count
® Example corpus:

Joe likes toast

Jane likes toast with jam

Joe burnt the toast

MR: slow motion: Map

Input Output

T T T o o S S N o o Y

MR: slow motion: Sort

Input

Joe
likes

toast

Output

Jane
likes
toast
with

jam

toast

toast

toast

Joe
burnt

the

toast

with

jam

burnt

the

MR: slow mo: Reduce

Input

Joe

Joe

likes

likes

toast

toast

toast

with

jam

burnt

the

Reduce 1

Reduce 2

Reduce 3

Reduce 4

Reduce 5
Reduce 6

Reduce 7

Reduce 8

Output

toast

with

jam

burnt

the

Distributing NB

® (uestions:
® How will you know when each machine is done?
® Communication overhead

® How will you know if a machine is dead?

Failure

® How big of a deal is it really?
® A huge deal. In a distributed environment disks fail ALL THE TIME.
® [Large scale systems must assume that any process can fail at any time.

® [t may be much cheaper to make the software run reliably on unreliable
hardware than to make the hardware reliable.

® Ken Arnold (Sun, CORBA designer):

® TFailure is the defining difference between distributed and local
programming, so you have to design distributed systems with the
expectation of failure. Imagine asking people, "If the probability of
something happening is one in 10'%, how often would it happen?" Common
sense would be to answer, "Never." That is an infinitely large number in
human terms. But if you ask a physicist, she would say, "All the time. In a
cubic foot of air, those things happen all the time.”

Well, that’s a pain

® What will you do when a task fails?

Well, that’s a pain

® What’s the difference between slow and dead?
® Who cares? Start a backup process.

® [f the process is slow because of machine issues, the backup
may finish first

® [fit’s slow because you poorly partitioned your data...
waiting is your punishment

What else is a pain?

® Losing your work!
® [f a disk tails you can lose some intermediate output

® [gnoring the missing data could give you wrong
answers

® Who cares? if I'm going to run backup processes I
might as well have backup copies of the intermediate
data also

Update

Job Status

Job Tracker

ASS'QF/ \xwagns

J 2, [oees Map - PC Read gl%ilfs

Data node
.
— Reduce l |

| - Data node

| e r:°°° Map
Data node _/.‘ocal Write 8 J

— Output
>

‘ - RPC Read Data node files
- |/°°°° Map

J Data node :;IE;EES
Splits Local Write

HDFS: The Hadoop File System

® Distributes data across the cluster

® distributed file looks like a directory with shards
as files inside it

® makes an effort to run processes locally with the
data

® Replicates data
® default 3 copies of each file
® Optimized for streaming

® really really big “blocks”

$ hadoop fs -Is rcv1 /small / sharded

Found 10 items

-rw-r--r-- 3 ... 606405 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00000
-rw-r--r-- 3 ... 1347611 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded /part-00001
-rw-r--r-- 3 ... 939307 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00002
-rw-r--r-- 3 ... 1284062 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded /part-00003
-rw-r--r-- 3 ... 1009890 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded /part-00004
-rw-r--r-- 3 ... 1206196 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded /part-00005
-rw-r--r-- 3 ... 1384658 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00006
-rw-r--r-- 3 ... 1299698 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded /part-00007
-rw-r--r-- 3 ... 928752 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded /part-00008
-rw-r--r-- 3 ... 806030 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded /part-00009

$ hadoop fs -tail rcvl/small/sharded / part-00005
weak as the arrival of arbitraged cargoes from the West has put the local market under pressure...

M14,M143, MCAT The Brent crude market on the Singapore International ...

Update
< B Job Status
Job Tracker
Assigns
HDFS
JSon :
> | °°°° [Map - PC Read HoFs
Data node

0
— ,

l/ ‘ - Data node

— | oooe Map

AJ Data node _/ . — AJ
L ocal Write 8 Output

S >

‘ - RPC Read Data node files
- |/°°°° Map

HDFS
J Data node eyl

Splits L ocal Write

MR Overview

split 0

split 1

split 2

split 3

split 4

Input
files

3) read (4) local write
worker >

User
Program
1)fork . . "
ek (1) fork (1) fork
. 2
Q) assign
. as'sign reduce . .
" map

(6) write output

worker) file 0

(5) remote read

@ output
file 1

worker

Map Intermediate files Reduce Output
phase (on local disks) phase files

Hadoop job_201301231150_0778 on hadoopijt

User: wcohen

Job Name: streamjob6055532903853567038.jar

Job File: hdfs://hdfsname.opencloud/l/a2/scratch/hadoop-data/global/mapred/system/job 201301231150 0778
fjiob.xml

Job Setup: Successful

Status: Failed

Started at: Wed Jan 30 11:46:47 EST 2013

Failed at: Wed Jan 30 11:47:28 EST 2013

Failed in: 41sec

Job Cleanup:_Successful

Black-listed TaskTrackers: 2

Job Scheduling information: 5 running map tasks using 5 map slots, 0 running reduce tasks using 0 reduce slots.

Kind | % Complete | Num Tasks | Pending | Running | Complete | Killed ngzﬂ::?ﬁg
map 190.00% 10 0 0 0| 10 35/5
reduce \’0\71 10 0 0 o 10 0/0
Counter Map | Reduce | Total
Rack-local map tasks 0 0 38
Launched map tasks 0 0 40
Job Counters
Data-local map tasks 0 0 2
Failed map tasks 0 0 1

Map Completion Graph - close

Hadoop map task list for job 201301231150 0778 on hadoop

All Tasks

Task

Complete

Status

Start Time

Finish Time

Errors

task 201301231150 0778 m 000000

0.00%

30-Jan-2013
11:47:01

30-Jan-2013
11:47:25
(24sec)

java.lang.RuntimeException: PipeMa

at
at
at
at
at
at
at
at

org.apache.hadoop.strea
org.apache.hadoop.strea
org.apache.hadoop.strea
org.apache.hadoop.mapre
org.apache.hadoop.strea
org.apache.hadoop.mapre
org.apache.hadoop.mapre
org.apache.hadoop.mapre

java.lang.RuntimeException: PipeMa

at
at
at
at
at
at
at
at

org.apache.hadoop.strea
org.apache.hadoop.strea
org.apache.hadoop.strea
org.apache.hadoop.mapre
org.apache.hadoop.strea
org.apache.hadoop.mapre
org.apache.hadoop.mapre
org.apache.hadoop.mapre

java.lang.RuntimeException: PipeMa

at
at
at
at
at
at
at
at

org.apache.hadoop.strea
org.apache.hadoop.strea
org.apache.hadoop.strea
org.apache.hadoop.mapre
org.apache.hadoop.strea
org.apache.hadoop.mapre
org.apache.hadoop.mapre
org.apache.hadoop.mapre

java.lang.RuntimeException: PipeMa

at

org.apache.hadoop.strea

JoD Job 201301231150 0/78

All Task Attempts

Task Attempts Machine Status | Progress Start Time Finish Time | Error
java.

attempt_201301231150_0778_m_000000_0 %’M&m FAILED |0.00% |30-Jan-2013 ?jzgdgow
java.

attempt_201301231150_0778_m_000000_1 | Metaul. @ @ encioud | FAILED |000% |30-1an2013 ?‘E‘z‘;’}‘fow

me |Errors Logs Counters | Actions
java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed
at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads (PipeMapRed.)
at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:
013 at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:132)
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:57) 1
at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:36) .
at org.apache.hadoop.mapred.MapTask.runOldMapper (MapTask.java:358) OIS
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:307) All
at org.apache.hadoop.mapred.Child.main(Child.java:170)
java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1
at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads (PipeMapRed. java:311)
at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:540) Last
013 at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:132) 4KB
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:57) I}Eﬁ 1
at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:36) ~v— |
at org.apache.hadoop.mapred.MapTask.runOldMapper (MapTask.java:358) Qbﬂi
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:307) All
at org.apache.hadoop.mapred.Child.main(Child.java:170)
java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1
at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads (PipeMapRed. java:311)
at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:540) Last
013 at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:132) 4KB
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:57) IEEﬁ 1
at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:36) ~v—4 |
at org.apache.hadoop.mapred.MapTask.runOldMapper (MapTask.java:358) 8KB
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:307) All

at

ora.avache.hadoon.mavred.Child.main(Child.7ava:170)

Task Logs: 'attempt_201301231150_0778_m_000000_0'

stdout logs

stderr logs

Exception in thread "main" java.lang.NoClassDefFoundError: com/wcohen/StreamNB
“aused by: java.lang.ClassNotFoundException: com.wcohen.StreamNB

at java.net.URLClassLoader$l.run(URLClassLoader.java:202)

at java.security.AccessController.doPrivileged(Native Method)

at java.net.URLClassLoader.findClass(URLClassLoader.java:190)

at java.lang.ClassLoader.loadClass(ClassLoader.java:306)

at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:301)

at java.lang.ClassLoader.loadClass(ClassLoader.java:247)
“ould not find the main class: com.wcohen.StreamNB. Program will exit.

- - - " -] = s -~ LA . L . -

\ \‘ 3

\i

—I(IEI(E

- T HE
 ASSIGNME
" THAT
Nr.vmfi
EXISTED

"

)

N \((\ |
I ,' ’\ C

' e *

This would be pretty
systems-y (remote copy
files, waiting for remote
processes, ...)

It would take work to
make work for 500 jobs

Reliability: Replication,
restarts, monitoring jobs,...
Efficiency: load-balancing,
reducing file/network i/o,
optimizing file/network ilo,

Useability: stream defined
datatypes, simple reduce
functions,

Map reduce with Hadoop
streaming

Breaking this down...

® What actually is a key-value pair? How do you interface with
Hadoop?

® One very simple way: Hadoop’s streaming intertace.
® Mapper outputs key-value pairs as:
® One pair per line, key and value tab-separated
® Reduced reads in data in the same format

® Lines are sorted so lines with the same key are adjacent.

An example:

® SmallStreamNB.java and StreamSumReducer.java:

® the code you just wrote.

e OO0 | | annotated-log.txt
wcohen@shell2:~/naive-bayes-demo$ 1s -1

total 1170892

-rw-r--r--. 1 wcohen lcs 1288 Feb 5 11:16 Makefile

-rw-r--r--. 1 wcohen lcs 118656462 Jan 22 2013 RCV1.full_test.txt
-rw-r--r--. 1 wcohen lcs 1065782405 Jan 22 2013 RCV1.full_train.txt
-rw-r--r--. 1 wcohen lcs 1198026 Jan 22 2013 RCV1.small_test.txt
-rw-r--r--. 1 wcohen lcs 10812609 Jan 22 2013 RCV1.small_train.txt
-rw-r--r--. 1 wcohen lcs 18771 Jan 22 2013 RCV1.very_small_test.txt
-rw-r--r--. 1 wcohen lcs 99397 Jan 22 2013 RCV1.very_small_train.txt
-rw-r--r--. 1 wcohen lcs 7721 Jan 30 2013 SmallStreamNB.java
-rw-r--r--. 1 wcohen lcs 4162 Jan 26 2013 StreamNB.java
-rw-r--r--. 1 wcohen lcs 772 Jan 29 2013 StreamSumReducer.java
drwxr-xr-x. 3 wcohen lcs 4096 Jan 25 2013 classes

-rw-r--r--. 1 wcohen lcs 10802 Jan 30 2013 nb.jar

-rw-r--r--. 1 wcohen lcs 576 Jan 28 2013 notes.txt
wcohen@shell2:~/naive-bayes-demo$ cat Makefile

annotated-log.txt

Top L1

(Text)

To run locally:

test-small: small-events.txt nb.jar
time java -cp nb.jar com.wcohen.SmallStreamNB \

RCV1.small_test.txt MCAT,CCAT,GCAT,ECAT 2000 < small-events.txt \
| cut -f3 | sort | uniq -c

small-events.txt: nb.jar
time java -cp nb.jar com.wcohen.SmallStreamNB \
< RCV1.small_train.txt | sort -ki1,1 \
| java -cp nb.jar com.wcohen.StreamSumReducer> small-events.txt

To train with streaming Hadoop
you do this:

STRJAR = /usr/lib/hadoop/contrib/streaming/hadoop-streaming-1.2.0.1.3.0.0-107. jar

small-events-hs:
hadoop fs -rmr rcvl/small/events
time hadoop jar $(STRJAR) \
-input rcvl/small/sharded -output rcvl/small/events \
-mapper 'java -Xmx512m -cp ./lib/nb.jar com.wcohen.StreamNB' \
-reducer 'java -Xmx512m -cp ./lib/nb.jar com.wcohen.StreamSumReducer' \
-file nb.jar -numReduceTasks 10

But first you need to get your code and data
to the “Hadoop file system”

hadoop fts -rmr rcvl/small/events
Moved to trash: hdfs://tldisc-pnn:8020/user/wcohen/rcvl/small/events
time hadoop jar /usr/lib/hadoop/contrib/streaming/hadoop-streaming-1.2.0.1.3.0.0-107.jar \

packageJloblar:

1

-mapper
-reducer

-input rcvl/small/sharded -output rcvl/small/events \

"java -Xmx512m -cp ./lib/nb.jar com.wcohen.StreamNB' \

'java -Xmx512m -cp ./lib/nb.jar com.wcohen.StreamSumReducer' \
-file nb.jar -numReduceTasks 10

[nb.jar, /tmp/hadoop-wcohen/hadoop-unjar8935719391413249732/] [] /tmp/streamjot

14/02/05 11:24:56 INFO
14/02/05 11:24:56 INFO
08101c2729dc@c9ff3]

14/02/05 11:24:
14/02/05 11:24:
14/02/05 11:24:
14/02/05 11:24:
14/02/05 11:24:
doop/mapred]

14/02/05 11:24:
14/02/05 11:24:
14/02/05 11:24:

mu.local:50300

14/02/05 11:24:

312100900_1189

14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
14/02/05
2 .59user

11:
11:
11:
11:
11:

11

11:
11:
11:
11:
11:
11:

11

11:
11:
11:
11:
11:

11

11:
11:

24 :
:09
25:
25:
25:
:25:
25:
25:
25:
25:
25:
25:
:25:
25:
25:
25:
25:
25:
:25:
25:
25:

25

56
56
56
56
57

57
57
57

WARN
INFO
INFO
INFO
INFO

INFO
INFO
INFO

1zo.GPLNativeCodeloader:

1zo.LzoCodec:

Loaded native gpl library

Successfully loaded & initialized native-1lzo library [hac

snappy .LoadSnappy: Snappy native library is available

util.NativeCodeloader:

Loaded the native-hadoop library

snappy .LoadSnappy: Snappy native library loaded

mapred.FileInputFormat: Total input paths to process :
streaming.StreamJob:

streaming.StreamJob:
streaming.StreamJob:
streaming.Streamlob:

10
getLocalDirs(): [/1/a/hadoop/mapred, /1/b/hadoop/r

Running job: job_201312100900_1189
To kill this job, run:

/usr/1lib/hadoop/libexec/../bin/hadoop job -Dmapre

-kill job_201312100900_1189

57

58

14
15
16
17
18
19
24
25
26
27
28
31
32
33
34
35
36
37
37

INFO

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

streaming.

streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.
streaming.

Streamlob:

Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:
Streamlob:

Tracking URL: http://tldisc-jt.disc.pdl.cmu.local:

map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map

Job complete:
Output:

0%
20%
57%
77%
79%
79%
80%
70%
80%
80%
90%
100%
100%
100%
100%
100%
100%
100%
100%

reduce 0
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce

reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
job_

A1nputs+10800cutnuts (Oma1or+?25504minorYnaaefaul +s Aswans

%
0%
0%
0%
0%
4%
6%
7%
7%
10%
17%
20%
22%
34%
38%
40%
60%
87%
100%

201312100900_1189
rcvl/small/events
0.13system 0:42.14elapsed 6%CPU (Qavgtext+@avgdata 314512maxresident)k

To train with streaming
Hadoop:

® First, you need to prepare the corpus by splitting it into shards

® ... and distributing the shards to different machines:

wcohen@shell2:~/naive-bayes-demo$ hadoop fs --help
-help: Unknown command
Usage: java FsShell
[-1s <path>]
[-1lsr <path>]
[-du <path>]
[-dus <path>]
[-count[-q] <path>]
-mv <src> <dst>]
-cp <src> <dst>]
-rm [-skipTrash] <path>]
-rmr [-skipTrash] <path>]

ForrEre re

[-expunge]

[-put <localsrc> ... <dst>]

[-copyFromLocal <localsrc> ... <dst>]
[-moveFromLocal <localsrc> ... <dst>]

[-get [-ignoreCrc] [-crc] <src> <localdst>]
[-getmerge <src> <localdst> [addnl]]

r~ D 1 I |

wcohen@shell2:~/naive-bayes-demo$ hadoop fs -1ls rcvl/small/sharded
Found 10 items

-rw-r--r-- 3 wcohen supergroup 606405 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00000
-rw-r--r-- 3 wcohen supergroup 1347611 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00001
-rw-r--r-- 3 wcohen supergroup 939307 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00002
-rw-r--r-- 3 wcohen supergroup 1284062 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00003
-rw-r--r-- 3 wcohen supergroup 1009890 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00004
-rw-r--r-- 3 wcohen supergroup 1206196 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00005
-rw-r--r-- 3 wcohen supergroup 1384658 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00006
-rw-r--r-- 3 wcohen supergroup 1299698 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00007
-rw-r--r-- 3 wcohen supergroup 928752 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00008
-rw-r--r-- 3 wcohen supergroup 806030 2013-06-08 01:45 /user/wcohen/rcvl/small/sharded/part-00009

wcohen@shel lZ:~/naive-bayes-demo$ hadoop fs -tail rcvl/small/sharded/part-00005
weak as the arrival of arbitraged cargoes from the West has put the local market under pressure. In Singapor?2
e, May swaps fell to $21.30/%$21.50 per barrelin late trade on Thursday from $21.70/$21.90 on Wednesday. Whil=z
e in Tokyo, first-half June open-spec naphtha was assessed at $207.00/$208.00 per tonne, compared with late =@
Wednesday's $213.00/%$214.00. Added to these factors, traders said that a few petrochemicals were due to go i@®
nto turnaround in the next few weeks which would further dampen demand. -- Melanie Goodfellow, London Newsro=@
om, +44 171 542 7714.
M14,M143 ,MCAT The Brent crude market on the Singapore International Monetary Exchange (SIMEX) will be clo=®
sed on Friday and Monday, SIMEX officials said on Tuesday. The closure will mark the corresponding closure o@?
n Friday and Monday of the Brent market on the International Petroleum Exchange (IPE) in London. SIMEX Brent=
operates a mutual offset system with the IPE in London, so SIMEX tends to close in line with the U.K.. --Si@
ngapore Newsroom (+65 870 3081)

To train with streaming
Hadoop:

® One way to shard text:
® hadoop fs -put LocalFileName HDFSName
® then run a streaming job with ‘cat’ as mapper and reducer

® and specify the number of shards you want with -
numReduceTasks

To train with streaming
Hadoop:

® Next, prepare your code for upload and distribution to the
machines cluster

nb.jar: StreamSumReducer.java StreamNB.java SmallStreamNB.java
javac -d classes StreamSumReducer.java StreamNB.java SmallStreamNB. java
jar -cvf nb.jar -C classes .

To train with streaming
Hadoop:

® Next, prepare your code for upload and distribution to the
machines cluster

nb.jar: StreamSumReducer.java StreamNB.java SmallStreamNB.java
javac -d classes StreamSumReducer.java StreamNB.java SmallStreamNB. java
jar -cvf nb.jar -C classes .

Now you can run streaming
Hadoop:

STRJAR = /usr/lib/hadoop/contrib/streaming/hadoop-streaming-1.2.0.1.3.0.0-107. jar

small-events-hs:
hadoop fs -rmr rcvl/small/events
time hadoop jar $(STRJAR) \
-input rcvl/small/sharded -output rcvl/small/events \
-mapper 'java -Xmx512m -cp ./lib/nb.jar com.wcohen.StreamNB' \
-reducer 'java -Xmx512m -cp ./lib/nb.jar com.wcohen.StreamSumReducer' \
-file nb.jar -numReduceTasks 10

“Real” Hadoop

® Streaming is simple but
® There’s no typechecking of inputs/outputs
® You need to parse strings a lot
® You can’t use compact binary encodings

® basically you have limited control over what you're doing

MR code: Word count Main

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = new Job(conf, "wordcount");

job.setMapperClass(Map.class); others:
job.setReducerClass(Reduce.class); ° KeyVaIueInputFormat
job.setInputFormatClass(TextInputFormat.class); ° SequenceFiIeInputFormat

job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[@]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

MR Code: Word Count Map

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context) throws <stuff> {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());

context.write(word, one);

MR code: Word count Reduce

public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

}

context.write(key, new IntWritable(sum));

[s any part of this wasteful?

® Remember - moving data around and writing to/reading from
disk are very expensive operations

® No reducer can start until:
® all mappers are done

® data in its partition has been sorted

How much does buffering help?

none 1.7M words
100 47s 1.2M

1,000 42s 1.0M
10,000 30s 0.7M
100,000 16s 0.24M
1,000,000 13s 0.16M

limit 0.05M

Combiners

® Sits between the map and the shuffle

® Do some of the reducing while you’re waiting for other stuff
to happen

® Avoid moving all of that data over the network
® Only applicable when
® order of reduce values doesn’t matter

® cffectis cumulative

public static class Combiner extends Reducer<Text, IntWritable, Text,
IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

}
context.write(key, new IntWritable(sum));

Deja vu: Combiner = Reducer

® (Often the combiner is the reducer.
® Jike for word count

® but not always

\ \‘ 3

\i

—I(IEI(E

- T HE
 ASSIGNME
" THAT
Nr.vmfi
EXISTED

"

)

N \((\ |
I ,' ’\ C

' e *

This would be pretty
systems-y (remote copy
files, waiting for remote
processes, ...)

It would take work to
make work for 500 jobs

Reliability: Replication,
restarts, monitoring jobs,...
Efficiency: load-balancing,
reducing file/network i/o,
optimizing file/network ilo,

Useability: stream defined
datatypes, simple reduce
functions,

ngrammerw
Naghtmare
\wmeEdition:

‘ 1 '\ '7‘ . ; ‘ \
pARAll.El.
UNIVERSE}gT

';':meyaauld NoGOESEEN'SINEY could not e
'SIUPPEHI mey EUUU} N{N be FUNWU[[ﬂ

Some common pittalls

® You have no control over the order in which reduces are
performed

® You have "no” control over the order in which you encounter
reduce values

® More on this later

® The only ordering you should assume is that Reducers always
start after Mappers

Some common pittalls

® You should assume your Maps and Reduces will be taking place
on different machines with different memory spaces

® Don’t make a static variable and assume that other processes can
read it

® They can’t.
® [t appear that they can when run locally, but they can’t

® No really, don’t do this.

Some common pittalls

® Do not communicate between mappers or between reducers
® overhead is high

® you don’t know which mappers/reducers are actually
running at any given point

® there’s no easy way to find out what machine they’re
running on

® because you shouldn’t be looking for them anyway

When mapreduce doesn'’t fit

® The beauty of mapreduce is its separability and independence
® It you find yourself trying to communicate between processes
® you're doing it wrong
®or

® what you're doing is not a mapreduce

When mapreduce doesn'’t fit

® Not everything is a mapreduce
® Sometimes you need more communication

® We'll talk about other programming paradigms later

What's so tricky about
MapReduce?

® Really, nothing. It’s easy.

® What's often tricky is figuring out how to write an algorithm as a
series of map-reduce substeps.

® How and when do you parallelize?

® When should you even try to do this? when should you use a
different model?

Thinking in Mapreduce

® A new task: Word co-occurrence statistics (simplified)
® Input:

® Sentences
® Output:

® P(Word B is in sentence | Word A started the sentence)

Thinking in mapreduce

® We need to calculate
® P(Bin sentence | A started sentence) =
® P(B in sentence & A started sentence)/P(A started sentence)=

® count<A, B>/ count<A,*>

Word Co-occurrence: Solution 1

® The Pairs paradigm:
® For each sentence, output a pair
® E.g Map(“Machine learning for big data”) creates:
® <Machine, learning>:1

® ~Machine, for>:1

® <Machine, big>:1

® -Machine, data>:1

® -Machine,*>:1

Word Co-occurrence: Solution 1

® Reduce would create, for example:
® <Machine, learning>:10
® ~Machine, for>:1000
® <Machine, big>:50
® ~Machine, data>:200

® ~Machine,*>:12000

Word Co-occurrence: Solution 1

® P(B in sentence | A started sentence) =

® P(B in sentence & A started sentence)/P(A started sentence)=

® A B>/<A*>

® Do we have what we need?

®Yes!

Word Co-occurrence: Solution 1

® But wait!

® There’s a problem can you see it?

Word Co-occurrence: Solution 1

® Each reducer will process all counts for a <word1,word2> pair

® We need to know <word1,*> at the same time as
<word1l,word2>

® The information is in different reducers!

Word Co-occurrence: Solution 1

® Solution1 a)
® Make the first word the reduce key
® Each reducer has:
® key: word_i

® values:
<word_i,word_j>....<word_i,word_b>.....<word_i,*>....

Word Co-occurrence: Solution 1

® Now we have all the information in the same reducer

® But, now we have a new problem, can you see it?

® Hint: remember - we have no control over the order of values

Word Co-occurrence: Solution 1

® There could be too many values to hold in memory
® We need <word_i,*> to be the first value we encounter
® Solution 1b):

® Keep <word_i,word_j> as the reduce key

® Change the way Hadoop does its partitioning.

Word Co-occurrence: Solution 1

VAL

¥ Partition based on the first part of the pair.
*/
public static class FirstCommaPartitioner extends Partitioner<Text, Text> {
@Jverride
public int getPartition(Text key, Text value, int numPartitions) {
String[] s = key.toString().split(",");
return (s[@].hashCode() & Integer.MAX_VALUE) % numPartitions;

Removes the sign bit, if set

Word Co-occurrence: Solution 1

® Ok cool, but we still have the same problem.

® The information is all in the same reducer, but we don’t know
the order

® But now, we have all the information we need in the reduce key!

Word Co-occurrence: Solution 1

® We can use a custom comparator to sort the keys we encounter in
the reducer

® One way: custom key class which implements
WriteableComparable

® Aside: if you use tab-separated values and Hadoop streaming you
can create a streaming job where (for instance) field 1 is the partition
key, and the lines are sorted by fields 1 & 2.

Word Co-occurrence: Solution 1

® Now the order of key, value pairs will be as we need:
® -Machine,*>:12000
® <Machine, big>:50
® -Machine, data>:200
® ~Machine, for>:1000
® <Machine, learning>:10

® P(“big” in sentence | “Machine” started sentence) = 50/12000

Word Co-occurrence: Solution 2

® The Stripes paradigm
® For each sentence, output a key, record pair
® E.g Map(“Machine learning for big data”) creates:
® <Machine>:<*:1,learning:1, for:1, big:1, data:1>
® E.g Map(“Machine parts are for machines”) creates:

® <Machine>:<*:1,parts:1,are:1, for:1,machines:1>

Word Co-occurrence: Solution 2

® Reduce combines the records:
® E.g Reduce for key <Machine> receives values:
® <*:1,learning:1, for:1, big:1, data:1>
® ~*:1,parts:1,are:1, for:1,machines:1>
® And merges them to create

® <*:2learning:1, for:2, big:1, data:1,parts:1,are:1,machines:1>

Word Co-occurrence: Solution 2

® This is nice because we have the * count already created

® we just have to ensure it always occurs first in the record

Word Co-occurrence: Solution 2

® There is a really big (ha ha) problem with this solution

® Canyou see it?

® The value may become too large to fit in memory

Performance

® IMPORTANT
® You may not have room for all reduce values in memory
® In fact you should PLAN not to have memory for all values
® Remember, small machines are much cheaper

® you have a limited budget

Performance

® Which is faster, stripes vs pairs?
® Stripes has a bigger value per key

® Pairs has more partition/sort overhead

Performance

Efficiency comparison of approaches to computing word co-occurrence matrices
4000 T T T T
“stripes" approach =
"pairs" approach e
3500 |- R? = 0999 .
3000 | _
)
o
S 2500 E
o
]
@
® 2000 | -
£
g
= 1500 |- —
-
~
1000 | _
500 -
0 | | | |
0 20 40 60 80 100
percentage of the APW sub-corpora of the English Gigaword
Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Conclusions

® Mapreduce
® Can handle big data

® Requires minimal code-writing

® Real algorithms are typically a sequence of map-reduce steps

