Graph-Based Parallel Computing

William Cohen

Computing paradigms

- 1. Stream-and-sort
- 2. Iterative streaming ML (eg SGD)
 - with minibatch + vectorization and GPUs
- 3. Map-reduce (stream-and-sort + parallelism)
 - plus dataflow-language abstractions
- 4. Iterative parameter mixing ($\sim = 2 + 3$)
- 5. Spark ($\sim = 2 + iteration + caching$)
- 6. ...?

Many ML algorithms tend to have

- Sparse data dependencies
- Local computations
- Iterative updates

- Typical example: PageRank
 - -repeat:
 - for each node, collect/combine incoming PRs
 - for each node, send outgoing PR

```
previous_pagerank =
    LOAD 'Sdocs in'
    USING PigStorage('\t')
    AS ( url: chararray, pagerank: float, links:{ link: ( url: chararray ) } );
outbound_pagerank =
    FOREACH previous_pagerank
    GENERATE
        pagerank / COUNT (links) AS pagerank,
        FLATTEN ( links ) AS to_url;
new_pagerank =
    FOREACH
        ( COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER )
    GENERATE
        group AS url,
        (1 - $d) + $d * SUM (outbound_pagerank.pagerank) AS pagerank,
        FLATTEN ( previous_pagerank.links ) AS links;
STORE new_pagerank
    INTO 'Sdocs out'
   USING PigStorage('\t');
```

```
def pageRankPlanner():
    p = Planner()
   def serialize(graphView):
        return \
            Format(graphView,
                   by=lambda(url,pagerank,outlinks): '\t'.join([url,'%g'%pagerank]+outlinks))
   # read in and create initial ranked graph
    p.edges = ReadLines(EDGEFILE) | Map(by=lambda line:line.strip().split(' '))
    p.initGraph = Group(p.edges, by=lambda (src,dst):src, retaining=lambda(src,dst):dst)
    p.initRankedGraph = Map(p.initGraph, by=lambda (url,outlinks):(url,1.0,outlinks))
    p.serializedInitRankedGraph = serialize(p.initRankedGraph)
   # one step of the update, reading the last iteration from a temp file
    p.prevGraph = \
        ReadLines(TMPFILE) \
         Map(by=lambda line:line.strip().split("\t")) \
         Map(by=lambda parts:(parts[0],float(parts[1]),parts[2:]))
    p.outboundPageRankMessages = \
        FlatMap(p.prevGraph,
                by=lambda (url,pagerank,outlinks):
                map(lambda dst:(dst,pagerank/len(outlinks)), outlinks))
    p.newPageRank = \
        Group(p.outboundPageRankMessages,
              by=lambda (dst,deltaPageRank):dst,
              retaining=lambda (dst,deltaPageRank):deltaPageRank,
              reducingTo=ReduceTo(lambda:(RESET), lambda accum,delta:accum + (1-RESET)*delta))
    p.newRankedGraph = \
        Join( Jin(p.prevGraph, by=lambda (url,pagerank,outlinks):url),
              Jin(p.newPageRank, by=lambda (dst,newPageRank):dst)) \
        | Map(by=lambda((url,oldPageRank,outlinks),(url_,newPageRank)):(url,newPageRank,outlinks))
   p.serializedRankedGraph = serialize(p.newRankedGraph)
    p.setup()
                                                                                              5
    return p
```

Many ML algorithms tend to have

- Sparse data dependencies
- Local computations
- Iterative updates

- Typical example: PageRank
 - -repeat:
 - for each node, collect/combine incoming PRs
 - for each node, send outgoing PR

Many Graph-Parallel Algorithms

- Collaborative Filtering
 - Alternating Least Squares
 - Stochastic Gradient Descent
 - Tensor Factorization
- Structured Prediction
 - Loopy Belief Propagation
 - Max-Product Linear Programs
 - Gibbs Sampling
- Semi-supervised ML
 - Graph SSL
 - CoEM

- Community Detection
 - Triangle-Counting
 - K-core Decomposition
 - K-Truss
- Graph Analytics
 - PageRank
 - Personalized PageRank
 - Shortest Path
 - Graph Coloring
- Classification
 - Neural Networks

Suggested architecture

- A large mutable graph stored in distributed memory
 - Repeat some node-centric computation until convergence
 - Node values change and edges (mostly) don't
 - Node updates depend (mostly) on their neighbors in the graph
 - Node updates are done in parallel

Sample system: Pregel

Pregel (Google, Sigmod 2010)

- Primary data structure is a graph
- Computations are sequence of supersteps, in each of which

 vertex value changes
 - user-defined function (UDF) is invoked (in parallel) at each vertex v, can get/set value
 - UDF can also issue requests to get/set edges
 - UDF can read *messages* sent to *v* in the last superstep and schedule messages to *send* to in the next superstep
 - Halt when every vertex votes to halt
- Output is directed graph
- Also: aggregators (like ALLREDUCE)
- Bulk synchronous processing (BSP) model: all vertex operations happen **simultaneously**

Pregel (Google, Sigmod 2010)

- One master: partitions the graph among workers
- Workers keep graph "shard" in memory
- Messages to other partitions are buffered

- Communication across partitions is expensive, within partitions is cheap
 - quality of partition makes a difference!

```
template <typename VertexValue,
                                               everyone
          typename EdgeValue,
                                               computes in
          typename MessageValue>
                                               parallel
class Vertex {
 public:
  virtual void Compute(MessageIterator* msgs) = 0;
  const string& vertex_id() const;
  int64 superstep() const;
  const VertexValue& GetValue();
  VertexValue* MutableValue();
  OutEdgeIterator GetOutEdgeIterator();
  void SendMessageTo(const string& dest_vertex,
                      const MessageValue& message);
  void VoteToHalt();
                                        simplest rule: stop
};
                                        when everyone votes to
                                        halt
```

Figure 3: The Vertex API foundations.

recap

Streaming PageRank: with some long rows

• Repeat until converged:

$$- \operatorname{Let} \mathbf{v}^{t+1} = c\mathbf{u} + (1-c)\mathbf{W}\mathbf{v}^{t}$$

- Store **A** as a list of edges: each line is: "i d(i) j"
- Store v' and v in memory: v' starts out as cu
- For each line "i d j"
 - v'[j] += (1-c)v[i]/d

note we need to scan through the **graph** each time

We need to get the degree of *i* and store it locally

```
class PageRankVertex
    : public Vertex<double, void, double> {
public:
  virtual void Compute(MessageIterator* msgs) {
    if (superstep() >= 1) {
      double sum = 0;
      for (; !msgs->Done(); msgs->Next())
        sum += msgs->Value();
      *MutableValue() =
          0.15 / NumVertices() + 0.85 * sum;
    }
    if (superstep() < 30) {
      const int64 n = GetOutEdgeIterator().size();
      SendMessageToAllNeighbors(GetValue() / n);
    } else {
      VoteToHalt();
```

Another task: single source shortest path

```
class ShortestPathVertex
    : public Vertex<int, int, int> {
 void Compute(MessageIterator* msgs) {
    int mindist = IsSource(vertex_id()) ? 0 : INF;
    for (; !msgs->Done(); msgs->Next())
      mindist = min(mindist, msgs->Value());
    if (mindist < GetValue()) {
      *MutableValue() = mindist;
      OutEdgeIterator iter = GetOutEdgeIterator();
      for (; !iter.Done(); iter.Next())
        SendMessageTo(iter.Target(),
                      mindist + iter.GetValue());
                                      edge weight
   VoteToHalt();
```


Figure 7: SSSP—1 billion vertex binary tree: varying number of worker tasks scheduled on 300 multicore machines

Sample system: Signal-Collect

Signal/collect model vs Pregel

- Integrated with RDF/SPARQL
- Vertices can be non-uniform types
- Vertex:

For "data-flow" operations

- id, mutable state, outgoing edges, most recent received signals (map: neighbor id→signal), uncollected signals
- user-defined collect function
- Edge: id, source, dest
 - user-defined signal function
- Allows asynchronous computations....via v.scoreSignal, v.scoreCollect

On multicore architecture: shared memory for workers

Signal/collect model

```
v.doSignal()
                                                             signals are made
  lastSignalState := state
                                                             available in a list and
  for all (e \in outgoingEdges) do
                                                             a map
    e.target.uncollectedSignals.append(e.signal())
    e.target.signalMap.put(e.sourceId, e.signal())
  end for
                                            relax "num iterations" soon
v.doCollect()
                                  Algorithm 1 Synchronous execution
  state := collect()
                                     for i \leftarrow 1..num_iterations do
  uncollectedSignals := Nil
                                        for all v \in V parallel do
   next state for a vertex is
                                          v.doSignal()
   output of the collect()
                                        end for
   operation
                                        for all v \in V parallel do
                                          v.doCollect()
                                        end for
                                     end for
```

Signal/collect examples

Single-source shortest path

initialState	if (isSource) 0 else infinity
collect()	<pre>return min(oldState, min(signals))</pre>
signal()	return source.state + edge.weight

Signal/collect examples

Life

PageRank

initialState	baseRank
collect()	return baseRank + dampingFactor * sum(signals)
signal()	<pre>return source.state * edge.weight / sum(edgeWeights(source))</pre>

PageRank + Preprocessing and Graph Building

```
class Document(id: Any) extends Vertex(id, 0.15) {
      def collect = 0.15 + 0.85 * signals[Double].foldLeft(0.0)(_ + _)
      override def processResult = if (state > 5) println(id + ": " + state)
Algorithm
      override def scoreSignal = (state - lastSignalState.getOrElse(0)).abs
    class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
      override type SourceVertexType = Document
      def signal = source.state * weight / source.sumOfOutWeights
    object Algorithm {
Initialization
      def executeCitationRank(db: SparqlAccessor) {
        val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
        val citations = new SparqlTuples(db, "select ?source ?target where {"
          + "?source <a href="http://lsdis.cs.uga.edu/projects/semdis/opus#cites">http://lsdis.cs.uga.edu/projects/semdis/opus#cites</a> ?target}")
        citations foreach {
          case (citer, cited) =>
             computeGraph.addVertex[Document](citer)
             computeGraph.addVertex[Document](cited)
Execution
             computeGraph.addEdge[Citation](citer, cited)
        computeGraph.execute(signalThreshold = 0)
```

22

Signal/collect examples

Co-EM/wvRN/Harmonic fields

initialState	if (isTrainingData) trainingData else avgProbDist
collect()	<pre>if (isTrainingData) return oldState else return signals.sum.normalise</pre>
signal()	return source.state

initialState	Set(id)
collect()	<pre>return union(oldState, union(signals))</pre>
signal()	return source.state

Fig. 8. Transitive closure (data-graph/data-flow).

initialState	randomColour
collect()	<pre>if (contains(signals, oldState)) return randomColorExcept(oldState) else return oldState</pre>
signal()	return source.state

Fig. 9. Vertex colouring (data-graph).

initialState	0
collect()	return 1 / (1 + $e^{-\text{signals.sum}}$)
signal()	return source.state * edge.weight

Fig. 15. Artificial neural networks (data-graph).

Signal/collect examples

Matching path queries: dept(X) -[member] \rightarrow postdoc(Y) -[recieved] \rightarrow grant(Z)

initialState	emptySet
collect()	<pre>matched = successfulMatchesWithVertex(signals) (fullyMatched, partiallyMatched) = partition(matched) reportResults(fullyMatched) return union(oldState - lastSignalState, partiallyMatched)</pre>
signal()	return successfulMatchesWithEdge(source.state)

Signal/collect examples: data flow

Matching path queries: dept(X) -[member] \rightarrow postdoc(Y) -[recieved] \rightarrow grant(Z)

initialState	emptySet
collect()	<pre>matched = successfulMatchesWithVertex(signals) (fullyMatched, partiallyMatched) = partition(matched) reportResults(fullyMatched) return union(oldState - lastSignalState, partiallyMatched)</pre>
signal()	return successfulMatchesWithEdge(source.state)

Signal/collect examples

Matching path queries: dept(X) -[member] \rightarrow postdoc(Y) -[recieved] \rightarrow grant(Z)

initialState	emptySet
collect()	<pre>matched = successfulMatchesWithVertex(signals) (fullyMatched, partiallyMatched) = partition(matched) reportResults(fullyMatched) return union(oldState - lastSignalState, partiallyMatched)</pre>
signal()	return successfulMatchesWithEdge(source.state)

Signal/collect model vs Pregel

- Integrated with RDF/SPARQL
- Vertices can be non-uniform types
- Vertex:

For "data-flow" operations

- id, mutable state, outgoing edges, most recent received signals (map: neighbor id → signal), uncollected signals
- user-defined collect function
- Edge: id, source, dest
 - user-defined signal function
- Allows asynchronous computations....via
 v.scoreSignal, v.scoreCollect

Asynchronous Parallel Computation

- **Bulk-Synchronous**: All vertices update in parallel
 - need to keep copy of "old" and "new" vertex values

Asynchronous:

- Reason 1: if two vertices are not connected, can update them in any order
 - more flexibility, less storage
- Reason 2: not all updates are equally *important*
 - parts of the graph converge quickly, parts slowly

Algorithm 2 Score-guided synchronous execution

```
done := false
iter := 0
while iter < max_iter and !done do
  done := true
  iter := iter +1
  for all v \in V parallel do
    if (v.scoreSignal() > s_threshold) then
       done := false
       v.doSignal()
    end if
  end for
  for all v \in V parallel do
    if (v.scoreCollect() > c_threshold)
    then
       done := false
       v.doCollect()
    end if
  end for
end while
```

using:

- v.scoreSignal
- v.scoreCollect

SSSP

Average Computation Time (ms) 1000 900 800 700 600 500 400 300 I 200 100 0 "Eager" Score-"Above Average" Synchronous Score-Guided

Guided

Asynchronous

Score-Guided

Asynchronous

PageRank

Algorithm 3 Score-guided asynchronous execution

Synchronous

```
ops := 0
while
ops < max_ops and ∃v ∈ V(
   v.scoreSignal() > s_threshold or
   v.scoreCollect() > c_threshold)
do
S := choose subset of V
   for all v ∈ S parallel do
      Randomly call either v.doSignal() or
      v.doCollect() iff respective threshold is
      reached; increment ops if an operation was
      executed.
   end for
end while
```

Sample system: GraphLab

GraphLab

- Data in graph, UDF vertex function
- Differences:
 - some control over scheduling
 - vertex function can insert new tasks in a queue
 - messages must follow graph edges: can access adjacent vertices only
 - "shared data table" for global data
 - library algorithms for matrix factorization, coEM, SVM, Gibbs, ...
 - GraphLab → Now Dato

GraphLab's descendents

- PowerGraph
- GraphChi
- GraphX

GraphLab con't

- PowerGraph
- GraphChi
 - Goal: use graph abstraction on-disk, not inmemory, on a conventional workstation

GraphLab con't

GraphChi

- Key insight:
 - in general we can't easily stream the graph because neighbors will be scattered
 - but maybe we can *limit the degree* to which they're scattered ... enough to make streaming possible?
 - -"almost-streaming": keep P cursors in a file instead of one

3.Write

GraphChi: Shards and Intervals Compute

- Vertices are numbered from 1 to n
 - P intervals, each associated with a shard on disk.
 - sub-graph = interval of vertices

GraphChi: Layout

Shard: in-edges for interval of vertices; sorted by source-id

Shards small enough to fit in memory; balance size of shards

I. Load

3.Write

2. Compute

GraphChi: Loading Sub-graph

I. Load

2. Compute

3.Write

Load subgraph for vertices 1..100

Load all in-edges in memory

What about out-edges?

Arranged in sequence in other shards

GraphChi: Loading Sub-graph

Load subgraph for vertices 101..700

I. Load

2. Compute

3.Write

Out-edge blocks in memory

GraphChi Load-Phase

I. Load

2. Compute

3.Write

Only P large reads for each interval.

P² reads on one full pass.

Shard 1 Shard 2 Shard 3 Shard 4

GraphChi: Execute updates

I. Load

2. Compute

3. Write

- Update-function is executed on interval's vertices
- Edges have pointers to the loaded data blocks
 - Changes take effect immediately \rightarrow asynchronous.

GraphChi: Commit to Disk

- I. Load
- 2. Compute
- 3.Write
- In write phase, the blocks are written *back* to disk
 - Next load-phase sees the preceding writes → asynchronous.

Experiment Setting

- Mac Mini (Apple Inc.)
 - 8 GB RAM
 - 256 GB SSD, 1TB hard drive
 - Intel Core i5, 2.5 GHz
- Experiment graphs:

Graph	Vertices	Edges	P (shards)	Preprocessing
live-journal	4.8M	69M	3	0.5 min
netflix	0.5M	99M	20	l min
twitter-2010	42M	1.5B	20	2 min
uk-2007-05	106M	3.7B	40	31 min
uk-union	133M	5.4B	50	33 min
yahoo-web	I.4B	6.6B	50	37 min

Comparison to Existing Systems

WebGraph Belief Propagation (U Kang

Matrix Factorization (Alt. Least

Triangle Counting

Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to load the graph from disk. GraphChi computes asynchronously, while all but GraphLab synchronously.

GraphLab's descendents

- PowerGraph
- GraphChi
- GraphX

On multicore architecture: shared memory for workers

On cluster architecture (like Pregel): different memory spaces

What are the challenges moving away from shared-memory?

Natural Graphs \rightarrow **Power Law**

Altavista Web Graph: 1.4B Vertices, 6.7B Edges

Problem:

High Degree Vertices Limit Parallelism

Edge information too large for single machine

Touches a large fraction of graph (GraphLab 1)

Produces many messages (Pregel, Signal/Collect)

Asynchronous consistency requires heavy locking (GraphLab 1)

Synchronous consistency is prone to stragglers (Pregel)

PowerGraph

- Problem: GraphLab's localities can be large
 - "all neighbors of a node" can be large for hubs, high indegree nodes
- Approach:
 - new graph partitioning algorithm
 - can **replicate** data
 - gather-apply-scatter API: finer-grained parallelism
 - gather ~ combiner
 - apply ~ vertex UDF (for all replicates)
 - scatter ~ messages from vertex to edges

Factorized Vertex Updates

Split update into 3 phases

Signal/collect examples

Single-source shortest path

initialState	if (isSource) 0 else infinity
collect()	return min(oldState, min(signals))
signal()	return source.state + edge.weight

Signal/collect examples

Life

PageRank

initialState	baseRank
collect()	<pre>return baseRank + dampingFactor * sum(signals)</pre>
signal()	return source.state * edge.weight / sum(edgeWeights(source))

PageRank + Preprocessing and Graph Building

```
Algorithm
```

```
class Document(id: Any) extends Vertex(id, 0.15) {
    def collect = 0.15 + 0.85 * signals[Double].foldLeft(0.0)(_ + _)
    override def processResult = if (state > 5) println(id + ": " + state)
    override def scoreSignal = (state - lastSignalState.getOrElse(0)).abs
}

class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
    override type SourceVertexType = Document
    def signal = source.state * weight / source.sumOfOutWeights
}
```

Initialization

ecution

```
object Algorithm {
  def executeCitationRank(db: SparqlAccessor) {
    val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
    val citations = new SparqlTuples(db, "select ?source ?target where {"
        + "?source < http://lsdis.cs.uga.edu/projects/semdis/opus#cites> ?target}")
    citations foreach {
        case (citer, cited) =>
            computeGraph.addVertex[Document](citer)
            computeGraph.addVertex[Document](cited)
            computeGraph.addEdge[Citation](citer, cited)
    }
    computeGraph.execute(signalThreshold = 0)
}
```


Signal/collect examples

Co-EM/wvRN/Harmonic fields

initialState	<pre>if (isTrainingData) trainingData else avgProbDist</pre>
collect()	<pre>if (isTrainingData) return oldState else return signals.sum.normalise</pre>
signal()	return source.state

PageRank in PowerGraph

$$R[i] = \beta + (1 - \beta) \sum_{(j,i)\in E} w_{ji} R[j]$$

gather/sum like a group by ... reduce or collect

PageRankProgram(i)

Gather($j \rightarrow i$): return $w_{ji} * R[j]$

sum(a, b): return a + b;

Apply(i, Σ): R[i] = β + (1 – β) * Σ

Scatter($i \rightarrow j$):

if (R[i] changes) then activate(j)

scatter is like a signal

j edge i vertex

Distributed Execution of a PowerGraph Vertex-Program

Gather
Apply
Scatter

Minimizing Communication in PowerGraph

A vertex-cut minimizes machines each vertex spans

Percolation theory suggests that power law graphs have good vertex cuts. [Albert et al. 2000]

Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Oblivious balances partition quality and partitioning time.

Partitioning matters...

GraphLab's descendents

- PowerGraph
- GraphChi
- GraphX
 - implementation of GraphLabs API on top of Spark
 - Motivations:
 - avoid transfers between subsystems
 - leverage larger community for common infrastructure
 - What's different:
 - Graphs are now *immutable* and operations transform one graph into another (RDD → RDG, resiliant distributed graph)

Idea I: Graph as Tables

Property Graph

Under the hood things can be split even more finely: eg a vertex map table + vertex data table. Operators maximize structure sharing and minimize communication.

Vertex Property Table

ld	Property (V)	
Rxin	(Stu., Berk.)	
Jegonzal	(PstDoc, Berk.)	
Franklin	(Prof., Berk)	
Istoica	(Prof., Berk)	

Edge Property Table

SrcId	Dstld	Property (E)
rxin	jegonzal	Friend
franklin	rxin	Advisor
istoica	franklin	Coworker
franklin	jegonzal	PI

Operators

• Table (RDD) operators are inherited from Spark:

map	reduce	sample
filter	count	take
groupBy	fold	first
sort	reduceByKey	partitionBy
union	groupByKey	mapWith
join	cogroup	pipe
leftOuterJoin	cross	save
rightOuterJoin	zip	

Graph Operators

```
class Graph [ V, E ] 
   def Graph(vertices: Table[ (Id, V) ],
                                                   Idea 2: mrTriplets: low-
              edges: Table[ (Id, Id, E) ])
                                                   level routine similar to
                                                   scatter-gather-apply.
   def vertices: Table[ (Id, V) ]
   def edges: Table[ (Id, Id, E) ]
                                                   Evolved to
   def triplets: Table [ ((Id, V), (Id, V),
                                                   aggregateNeighbors,
                                                   <u>aggregateMessages</u>
   def reverse: Graph[V, E]
   def subgraph(pV: (Id, V) => Boolean,
                  pE: Edge[V, E] \Rightarrow Boolean): Graph[V, E]
   def mapV(m: (Id, V) \Rightarrow T): Graph[T, E]
   def mapE(m: Edge[V, E] => T): Graph[V, T]
   def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E]
   def joinE(tb]: Table [(Id, Id, T)]): Graph[V, (E, T)]
   def mrTriplets(mapF: (Edge[V, E]) \Rightarrow List[(Id, T)],
                     reduceF: (T, T) \Rightarrow T: Graph[T, E]
```

The GraphX Stack (Lines of Code)

Performance Comparisons

Live-Journal: 69 Million Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 3x slower than GraphLab

Wrapup

Summary

- Large immutable data structures on (distributed) disk, processing by sweeping through then and creating new data structures:
 - stream-and-sort, Hadoop, PIG, Hive, ...
- Large immutable data structures in distributed memory:
 - Spark distributed tables
- Large mutable data structures in distributed memory:
 - parameter server: structure is a *hashtable*
 - Pregel, GraphLab, GraphChi, GraphX: structure is a graph

Summary

- APIs for the various systems vary in detail but have a similar flavor
 - Typical algorithms iteratively update vertex state
 - Changes in state are communicated with messages which need to be aggregated from neighbors
- Biggest wins are
 - on problems where graph is fixed in each iteration, but vertex data changes
 - on graphs small enough to fit in (distributed) memory

Some things to take away

- Platforms for iterative operations on graphs
 - GraphX: if you want to integrate with Spark
 - GraphChi: if you don't have a cluster
 - GraphLab/Dato: if you don't need free software and performance is crucial
 - Pregel: if you work at Google
 - Giraph, Signal/collect, ... ??
- Important differences
 - Intended architecture: shared-memory and threads, distributed cluster memory, graph on disk
 - How graphs are partitioned for clusters
 - If processing is synchronous or asynchronous