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Computing paradigms

1. Stream-and-sort
2. Iterative	streaming	ML	(eg SGD)
– with	minibatch +	vectorization	and	GPUs

3. Map-reduce	(stream-and-sort	+	parallelism)
– plus	dataflow-language	abstractions

4. Iterative	parameter	mixing	(~=	2	+	3)
5. Spark	(~=	2	+	iteration	+	caching)
6. ….?
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Many ML algorithms tend to have

• Sparse	data	dependencies
• Local	computations
• Iterative	updates

• Typical	example:	PageRank
– repeat:
• for	each	node,	collect/combine	incoming	PRs
• for	each	node,	send	outgoing	PR
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4lots of i/o happening here…
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Many Graph-Parallel Algorithms

• Collaborative Filtering
– Alternating Least Squares
– Stochastic Gradient Descent
– Tensor Factorization

• Structured Prediction
– Loopy Belief Propagation
– Max-Product Linear Programs
– Gibbs Sampling

• Semi-supervised ML
– Graph SSL 
– CoEM

• Community Detection
– Triangle-Counting
– K-core Decomposition
– K-Truss

• Graph Analytics
– PageRank
– Personalized PageRank
– Shortest Path
– Graph Coloring

• Classification
– Neural Networks
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Suggested architecture

• A	large	mutable graph	stored	in	distributed	
memory
–Repeat	some	node-centric	computation	until	
convergence
–Node	values	change	and	edges	(mostly)	
don’t
–Node	updates	depend	(mostly)	on	their	
neighbors	in	the	graph
–Node	updates	are	done	in	parallel
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Sample system: Pregel
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Pregel (Google, Sigmod 2010)
• Primary	data	structure	is	a	graph
• Computations	are	sequence	of	supersteps, in	each	of	
which
– user-defined	function	(UDF)	is	invoked	(in	
parallel)	at	each	vertex	v,	can	get/set	value

– UDF	can	also	issue	requests	to	get/set	edges
– UDF	can	read	messages	sent	to	v in	the	last	
superstep and	schedule	messages	to	send	to	in	the	
next	superstep

– Halt	when	every	vertex	votes	to	halt
• Output	is	directed	graph
• Also:	aggregators	(like	ALLREDUCE)
• Bulk	synchronous	processing	(BSP)	model:	all	vertex	
operations	happen	simultaneously

vertex value changes

communication
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Pregel (Google, Sigmod 2010)

• One	master:	partitions	the	graph	among	
workers

• Workers	keep	graph	“shard”	in	memory
• Messages	to	other	partitions	are	buffered

• Communication	across	partitions	is	expensive,	
within	partitions	is	cheap
–quality	of	partition	makes	a	difference!
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simplest rule: stop 
when everyone votes to 
halt

everyone 
computes in 
parallel
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Streaming PageRank: 
with some long rows
• Repeat	until	converged:
– Let	vt+1	=	cu +	(1-c)Wvt

• Store	A	as	a	list	of	edges:	each	line	is:	“i d(i)	j”
• Store	v’	and	v in	memory:	v’ starts	out	as	cu
• For	each	line	“i d	j“

• v’[j]	+=	(1-c)v[i]/d

We need to get the 
degree of i and store 
it locally
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recap

note we need to scan 
through the graph 
each time
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edge weight

Another task: single source shortest path
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a little bit of a cheat
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Sample system: Signal-Collect
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Signal/collect model vs Pregel
• Integrated	with	RDF/SPARQL
• Vertices	can	be	non-uniform	types
• Vertex:
– id,	mutable	state,	outgoing	edges,	most	recent	
received	signals	(map:	neighbor	idàsignal),	
uncollected	signals
– user-defined	collect	function

• Edge:	id,	source,	dest
– user-defined	signal function

• Allows	asynchronous computations….via	
v.scoreSignal,	v.scoreCollect

For “data-flow” operations

On multicore architecture: shared memory for workers 
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Signal/collect model

signals are made 
available in a list and 
a map

next state for a vertex is 
output of the collect() 
operation

relax “num_iterations” soon
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Signal/collect examples

Single-source shortest path
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Signal/collect examples

PageRank

Life
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PageRank + Preprocessing and Graph Building
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Signal/collect examples
Co-EM/wvRN/Harmonic fields
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Signal/collect examples
Matching path queries: 

dept(X) -[member]à postdoc(Y) -[recieved]à grant(Z)

MLD

wcohen

partha

NSF37
8

InMind7

LTI

dept(X) -[member]à postdoc(Y) -[recieved]à grant(Z)
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Signal/collect examples: data flow
Matching path queries: 

dept(X) -[member]à postdoc(Y) -[recieved]à grant(Z)

MLD

wcohen

partha

NSF37
8

InMind7

LTI

dept(X=MLD) -[member]à postdoc(Y) -[recieved]à grant(Z)

dept(X=LTI) -[member]à postdoc(Y) -[recieved]à grant(Z)

note: can be 
multiple input 

signals
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Signal/collect examples
Matching path queries: 

dept(X) -[member]à postdoc(Y) -[recieved]à grant(Z)

MLD

wcohen

partha

NSF37
8

InMind7

LTI

dept(X=MLD) -[member]à postdoc(Y=partha) -[recieved]à grant(Z)
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Signal/collect model vs Pregel
• Integrated	with	RDF/SPARQL
• Vertices	can	be	non-uniform	types
• Vertex:
– id,	mutable	state,	outgoing	edges,	most	recent	
received	signals	(map:	neighbor	idàsignal),	
uncollected	signals
– user-defined	collect	function

• Edge:	id,	source,	dest
– user-defined	signal function

• Allows	asynchronous computations….via	
v.scoreSignal,	v.scoreCollect

For “data-flow” operations
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Asynchronous Parallel Computation

• Bulk-Synchronous:	All	vertices	
update	in	parallel
– need	to	keep	copy	of	“old”	
and	“new”	vertex	values

• Asynchronous:
– Reason	1:	if	two	vertices	are	
not	connected,	can	update	
them	in	any	order
• more	flexibility,	less	storage

– Reason	2:	not	all	updates	are	
equally	important
• parts	of	the	graph	converge	
quickly,	parts	slowly
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using:
• v.scoreSignal
• v.scoreCollect
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SSSP PageRank

33



Sample system: GraphLab
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GraphLab
• Data	in	graph,	UDF	vertex	function
• Differences:
– some	control	over	scheduling
• vertex	function	can	insert	new	tasks	in	a	queue

–messages	must	follow	graph	edges:	can	access	
adjacent	vertices	only
– “shared	data	table”	for	global	data
– library	algorithms	for	matrix	factorization,	
coEM,	SVM,	Gibbs,	…
– GraphLabà Now	Dato
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GraphLab’s descendents

• PowerGraph
• GraphChi
• GraphX
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GraphLab con’t

• PowerGraph
• GraphChi
–Goal:	use	graph	abstraction	on-disk,	not	in-
memory,	on	a	conventional	workstation

Linux	Cluster	Services	(Amazon	AWS)

MPI/TCP-IP PThreads Hadoop/HDFS

General-purpose	API

Graph	
Analytics

Graphical
Models

Computer
Vision Clustering Topic

Modeling
Collaborative

Filtering
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GraphLab con’t

• GraphChi
–Key	insight:	
• in	general	we	can’t	easily	stream	the	graph	
because	neighbors	will	be	scattered
• but	maybe	we	can	limit	the	degree	to	which	
they’re	scattered	…	enough	to	make	streaming	
possible?
–“almost-streaming”:	keep	P	cursors	in	a	file	
instead	of	one
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• Vertices	are	numbered	from	1	to	n
– P	intervals,	each	associated	with	a	shard	on	disk.
– sub-graph	=	interval	of	vertices

GraphChi:  Shards and Intervals

shard(1)

interval(1) interval(2) interval(P)

shard(2) shard(P)

1 nv1 v2

39

1. Load

2. Compute

3. Write



GraphChi: Layout

Shard 1

Shards small enough to fit in memory; balance size of shards

Shard: in-edges for interval of vertices; sorted by source-id
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Vertices
701..1000

Vertices
1001..10000

Shard 2 Shard 3 Shard 4Shard 1

1. Load

2. Compute

3. Write
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Vertices
1..100

Vertices
101..700

Vertices
701..1000

Vertices
1001..10000

Load all in-edges
in memory 

Load subgraph for vertices 1..100

What about out-edges? 
Arranged in sequence in other shards

Shard 2 Shard 3 Shard 4

GraphChi: Loading Sub-graph

Shard 1
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1. Load

2. Compute

3. Write
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Shard 1

Load all in-edges
in memory 

Load subgraph for vertices 101..700

Shard 2 Shard 3 Shard 4

GraphChi: Loading Sub-graph

Vertices
1..100

Vertices
101..700

Vertices
701..1000

Vertices
1001..10000

Out-edge blocks
in memory
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GraphChi Load-Phase

Only P large reads for each interval.

P2 reads on one full pass. 
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1. Load

2. Compute

3. Write



GraphChi: Execute updates

• Update-function	is	executed	on	interval’s	vertices
• Edges	have	pointers	to	the	loaded	data	blocks
– Changes	take	effect	immediately	à asynchronous.

&Data

&Data &Data

&Data

&Data&Data&Data

&Data
&Data

&Data

Block X

Block Y
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1. Load

2. Compute

3. Write



GraphChi:  Commit to Disk

• In	write	phase,	the	blocks	are	written	back to	disk
– Next	load-phase	sees	the	preceding	writes	à
asynchronous.
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1. Load

2. Compute

3. Write

&Data

&Data &Data

&Data

&Data&Data&Data

&Data
&Data

&Data

Block X

Block Y

In total: 
P2 reads and writes / full pass on the graph.
à Performs well on both SSD and hard drive.

To make this work: 
the size of a vertex 
state can’t change 
when it’s updated (at 
last, as stored on 
disk).



Experiment Setting

• Mac	Mini	(Apple	Inc.)
– 8	GB	RAM
– 256	GB	SSD,	1TB	hard	drive
– Intel	Core	i5,	2.5	GHz

• Experiment	graphs:

Graph Vertices Edges P (shards) Preprocessing

live-journal 4.8M 69M 3 0.5 min

netflix 0.5M 99M 20 1 min

twitter-2010 42M 1.5B 20 2 min

uk-2007-05 106M 3.7B 40 31 min

uk-union 133M 5.4B 50 33 min

yahoo-web 1.4B 6.6B 50 37 min
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Comparison to Existing Systems

Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to load the 
graph from disk. GraphChi computes asynchronously, while all but GraphLab synchronously. 

PageRank

See the paper for more comparisons.

WebGraph Belief Propagation (U Kang 
et al.)

Matrix Factorization (Alt. Least 
Sqr.)

Triangle Counting

GraphLab 
v1 (8 

cores)

GraphChi 
(Mac Mini)

0 2 4 6 8 10 12

Minutes

Netflix (99B edges)

Spark (50 
machines)

GraphChi 
(Mac Mini)

0 2 4 6 8 10 12 14

Minutes

Twitter-2010 (1.5B edges)

Pegasus / 
Hadoop 

(100 
machines)

GraphChi 
(Mac Mini)

0 5 10 15 20 25 30

Minutes

Yahoo-web (6.7B edges)

Hadoop 
(1636 

machines)

GraphChi 
(Mac 
Mini)

0 100 200 300 400 500

Minutes

twitter-2010 (1.5B edges)
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GraphLab’s descendents

• PowerGraph
• GraphChi
• GraphX

On multicore architecture: shared memory for workers 

On cluster architecture (like Pregel): different memory spaces

What are the challenges moving away from shared-memory?
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Natural Graphs à Power Law

100 102 104 106 108
100

102

104

106

108

1010

degree

co
un
t

Top	1%	of	vertices	is	
adjacent	to

53%	of	the	edges!

Altavista Web	Graph:	1.4B	Vertices,	6.7B	Edges
GraphLab group/Aapo 49



Touches	a	large
fraction	of	graph
(GraphLab 1)

Produces	many
messages

(Pregel,	Signal/Collect)

Edge	information
too	large	for	single

machine

Asynchronous	consistency
requires	heavy	locking	(GraphLab 1)

Synchronous	consistency	is	prone	to
stragglers	(Pregel)

Problem:	
High	Degree	Vertices	Limit	Parallelism

GraphLab group/Aapo 50



PowerGraph
• Problem:	GraphLab’s localities	can	be	large
– “all	neighbors	of	a	node”	can	be	large	for	hubs,	
high	indegree nodes

• Approach:
– new	graph	partitioning	algorithm
• can	replicate	data

– gather-apply-scatter	API:	finer-grained	
parallelism
• gather	~	combiner
• apply	~	vertex	UDF		(for	all	replicates)
• scatter	~	messages	from	vertex	to	edges
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Factorized	Vertex	Updates

Split	update	into	3	phases

+						+	…	+							à Δ

Y YY

Parallel
Sum

Y Scope

Gather

Y

YApply(							,		Δ)	à Y

Locally	apply	the	
accumulated	Δ to	vertex

Apply

Y

Update	neighbors

Scatter

Data-parallel	over	edges Data-parallel	over	edges

GraphLab group/Aapo
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Signal/collect	examples
Single-source	shortest	path
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Signal/collect	examples

PageRank

Life
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PageRank	+	Preprocessing	and	Graph	Building
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Signal/collect	examples
Co-EM/wvRN/Harmonic	fields
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PageRank	in	PowerGraph

PageRankProgram(i)
Gather(	j à i )	: return		wji * R[j]
sum(a,	b) :		return	a	+	b;
Apply(i, Σ) : R[i] = β + (1 – β) * Σ 
Scatter( i à j ) :

if (R[i] changes)  then  activate(j)

R[i] = � + (1� �)
X

(j,i)2E

wjiR[j]

57

GraphLab group/Aapo

j	edge
i vertex

gather/sum	like	a	group	by	…	reduce	or	collect

scatter	is	like	a	signal



Machine	2Machine	1

Machine	4Machine	3

Distributed	Execution	of	a	PowerGraph
Vertex-Program

Σ1 Σ2

Σ3 Σ4

+												+												+		

YYYY

Y’

Σ
Y’Y’Y’Gather

Apply

Scatter
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Minimizing	Communication	in	PowerGraph

YYY

A	vertex-cut	minimizes	
machines	each	vertex	spans

Percolation	theory	suggests	that	power	law	graphs	
have	good	vertex	cuts.	[Albert	et	al.	2000]

Communication	is	linear	in	
the	number	of	machines	

each	vertex	spans
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Partitioning	Performance
Twitter	Graph: 41M	vertices,	1.4B	edges

Oblivious	balances	partition	quality	and	partitioning	time.
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Cost Construction	Time

Better

GraphLab group/Aapo



Partitioning	matters…
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GraphLab group/Aapo
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GraphLab’s descendents
• PowerGraph
• GraphChi
• GraphX
– implementation	of	GraphLabs API	on	top	of	Spark
– Motivations:
• avoid	transfers	between	subsystems
• leverage	larger	community	for	common	infrastructure

– What’s	different:
• Graphs	are	now	immutable and	operations	transform	
one	graph	into	another	(RDD	è RDG,	resiliant
distributed	graph)
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Idea 1: Graph as Tables

Id

Rxin
Jegonzal
Franklin
Istoica

SrcId DstId

rxin jegonzal
franklin rxin
istoica franklin
franklin jegonzal

Property (E)

Friend
Advisor

Coworker
PI

Property (V)

(Stu., Berk.)
(PstDoc, Berk.)

(Prof., Berk)
(Prof., Berk)

R

J

F

I

Property Graph
Vertex Property Table

Edge Property Table

Under the hood things can be 
split even more finely: eg a 
vertex map table + vertex 
data table.  Operators 
maximize structure sharing 
and minimize communication.
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Operators
• Table	(RDD)	operators	are	inherited	from	Spark:

64

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...



class Graph [ V, E ] {
def Graph(vertices: Table[ (Id, V) ], 

edges: Table[ (Id, Id, E) ])
// Table Views -----------------
def vertices: Table[ (Id, V) ]
def edges: Table[ (Id, Id, E) ]
def triplets: Table [ ((Id, V), (Id, V), E) ]
// Transformations ------------------------------
def reverse: Graph[V, E]
def subgraph(pV: (Id, V) => Boolean, 

pE: Edge[V,E] => Boolean): Graph[V,E]
def mapV(m: (Id, V) => T ): Graph[T,E] 
def mapE(m: Edge[V,E] => T ): Graph[V,T]
// Joins ----------------------------------------
def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E ]
def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)]
// Computation ----------------------------------
def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)],

reduceF: (T, T) => T): Graph[T, E]
}

Graph Operators

65

Idea 2:  mrTriplets: low-
level routine similar to 
scatter-gather-apply.

Evolved to 
aggregateNeighbors,
aggregateMessages



The GraphX Stack
(Lines of Code)

GraphX (3575)

Spark

Pregel (28) + GraphLab (50)

PageRank 
(5)

Connected 
Comp. (10)

Shortest 
Path (10)

ALS
(40) LDA

(120)

K-core
(51) Triangle

Count
(45)

SVD
(40)
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Performance Comparisons

22
68

207
354

1340

0 200 400 600 800 1000 1200 1400 1600

GraphLab
GraphX
Giraph

Naïve Spark
Mahout/Hadoop

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 3x slower than GraphLab

Live-Journal: 69 Million Edges
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Wrapup
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Summary 
• Large	immutable	data	structures	on	(distributed)	
disk,	processing	by	sweeping	through	then	and	
creating	new	data	structures:	
– stream-and-sort,	Hadoop,	PIG,	Hive,	…

• Large	immutable	data	structures	in	distributed	
memory:
– Spark	– distributed	tables

• Large	mutable	data	structures	in	distributed	
memory:
– parameter	server:	structure	is	a	hashtable
– Pregel,	GraphLab,	GraphChi,	GraphX:	structure	
is	a	graph
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Summary 
• APIs	for	the	various	systems	vary	in	detail	but	
have	a	similar	flavor
– Typical	algorithms	iteratively	update	vertex	
state	
– Changes	in	state	are	communicated	with	
messages	which	need	to	be	aggregated	from	
neighbors

• Biggest	wins	are	
– on	problems	where	graph	is	fixed	in	each	
iteration,	but	vertex	data	changes
– on	graphs	small	enough	to	fit	in	(distributed)	
memory
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Some things to take away
• Platforms	for	iterative	operations	on	graphs
– GraphX:	if	you	want	to	integrate	with	Spark
– GraphChi:	if	you	don’t	have	a	cluster
– GraphLab/Dato:	if	you	don’t	need	free	software	and	
performance	is	crucial

– Pregel:	if	you	work	at	Google
– Giraph,		Signal/collect,	…	??

• Important	differences
– Intended	architecture:	shared-memory	and	threads,	
distributed	cluster	memory,	graph	on	disk

– How	graphs	are	partitioned	for	clusters
– If	processing	is	synchronous	or	asynchronous
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