Graph-Based Parallel Computing

William Cohen
Computing paradigms

1. Stream-and-sort
2. Iterative streaming ML (eg SGD)
 - with minibatch + vectorization and GPUs
3. Map-reduce (stream-and-sort + parallelism)
 - plus dataflow-language abstractions
4. Iterative parameter mixing ($\sim = 2 + 3$)
5. Spark ($\sim = 2 + \text{iteration} + \text{caching}$)
6.?
Many ML algorithms tend to have

• Sparse data dependencies
• Local computations
• Iterative updates

• Typical example: PageRank
 – repeat:
 • for each node, collect/combine incoming PRs
 • for each node, send outgoing PR
previous_pagerank =
 LOAD '$docs_in'
 USING PigStorage('	')
 AS (url: chararray, pagerank: float, links:{link: (url: chararray)});

outbound_pagerank =
 FOREACH previous_pagerank
 GENERATE
 pagerank / COUNT (links) AS pagerank,
 FLATTEN (links) AS to_url;

new_pagerank =
 FOREACH
 (COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER)
 GENERATE
 group AS url,
 (1 - $d) + $d * SUM (outbound_pagerank.pagerank) AS pagerank,
 FLATTEN (previous_pagerank.links) AS links;

STORE new_pagerank
 INTO '$docs_out'
 USING PigStorage('	');

lots of i/o happening here…
def pageRankPlanner():

 p = Planner()

 def serialize(graphView):
 return \
 Format(graphView,
 by=lambda(url,pagerank,outlinks):'\t'.join([url,'%g%pagerank'] + outlinks))

 # read in and create initial ranked graph
 p.edges = ReadLines(EDGEFILE) | Map(by=lambda line:line.strip().split(' '))
 p.initGraph = Group(p.edges, by=lambda (src,dst):src, retaining=lambda(src,dst):dst)
 p.initRankedGraph = Map(p.initGraph, by=lambda (url,outlinks):(url,1.0,outlinks))
 p.serializedInitRankedGraph = serialize(p.initRankedGraph)

 # one step of the update, reading the last iteration from a temp file
 p.prevGraph = \
 ReadLines(TMPFILE) \
 | Map(by=lambda line:line.strip().split("\t")) \
 | Map(by=lambda parts:(parts[0],float(parts[1]),parts[2:]))
 p.outboundPageRankMessages = \
 FlatMap(p.prevGraph,
 by=lambda (url,pagerank,outlinks):
 map(lambda dst:(dst,pagerank/len(outlinks)), outlinks))

 p.newPageRank = \
 Group(p.outboundPageRankMessages,
 by=lambda (dst,deltaPageRank):dst,
 retaining=lambda (dst,deltaPageRank):deltaPageRank,
 reducingTo=ReduceTo(lambda:(RESET), lambda accum,delta: accum + (1-RESET)*delta))

 p.newRankedGraph = \
 Join(p.prevGraph, by=lambda (url,pagerank,outlinks):url),
 Join(p.newPageRank, by=lambda (dst,newPageRank):dst) \
 | Map(by=lambda((url,oldPageRank,outlinks),(url_,newPageRank)):(url,newPageRank,outlinks))
 p.serializedRankedGraph = serialize(p.newRankedGraph)

 p.setup()
 return p
Many ML algorithms tend to have

• Sparse data dependencies
• Local computations
• Iterative updates

• Typical example: PageRank
 – repeat:
 • for each node, collect/combine incoming PRs
 • for each node, send outgoing PR
Many Graph-Parallel Algorithms

- Collaborative Filtering
 - Alternating Least Squares
 - Stochastic Gradient Descent
 - Tensor Factorization
- Structured Prediction
 - Loopy Belief Propagation
 - Max-Product Linear Programs
 - Gibbs Sampling
- Semi-supervised ML
 - Graph SSL
 - CoEM
- Community Detection
 - Triangle-Counting
 - K-core Decomposition
 - K-Truss
- Graph Analytics
 - PageRank
 - Personalized PageRank
 - Shortest Path
 - Graph Coloring
- Classification
 - Neural Networks
Suggested architecture

• A large **mutable** graph stored in distributed memory
 – Repeat some node-centric computation until convergence
 – Node values change and edges (mostly) don’t
 – Node updates depend (mostly) on their neighbors in the graph
 – Node updates are done in parallel
Sample system: Pregel
Pregel (Google, Sigmod 2010)

• Primary data structure is a graph
• Computations are sequence of supersteps, in each of which
 – user-defined function (UDF) is invoked (in parallel) at each vertex v, can get/set value
 – UDF can also issue requests to get/set edges
 – UDF can read messages sent to v in the last superstep and schedule messages to send to in the next superstep
 – Halt when every vertex votes to halt
• Output is directed graph
• Also: aggregators (like ALLREDUCE)
• Bulk synchronous processing (BSP) model: all vertex operations happen simultaneously
Pregel (Google, Sigmod 2010)

• One master: partitions the graph among workers
• Workers keep graph “shard” in memory
• Messages to other partitions are buffered

• Communication across partitions is expensive, within partitions is cheap
 – quality of partition makes a difference!
template <typename VertexValue,
 typename EdgeValue,
 typename MessageValueValue>

class Vertex {
 public:
 virtual void Compute(MessageIterator* msgs) = 0;

 const string& vertex_id() const;
 int64 superstep() const;

 const VertexValue& GetValue();
 VertexValue* MutableValue();
 OutEdgeIterator GetOutEdgeIterator();

 void SendMessageTo(const string& dest_vertex,
 const MessageValueValue& message);
 void VoteToHalt();
};

Figure 3: The Vertex API foundations.

everyone computes in parallel

simplest rule: stop when everyone votes to halt
Streaming PageRank: with some long rows

- Repeat until converged:

 \[
 v^{t+1} = cu + (1-c)Wv^t
 \]

- Store \(A \) as a list of edges: each line is: “i d(i) j”
- Store \(v' \) and \(v \) in memory: \(v' \) starts out as \(cu \)
- For each line “i d j“
 - \(v'[j] += (1-c)v[i]/d \)

We need to get the degree of \(i \) and store it locally

note we need to scan through the graph each time
class PageRankVertex : public Vertex<double, void, double> {
public:
 virtual void Compute(MessageIterator* msgs) {
 if (superstep() >= 1) {
 double sum = 0;
 for (; !msgs->Done(); msgs->Next())
 sum += msgs->Value();
 *MutableValue() =
 0.15 / NumVertices() + 0.85 * sum;
 }

 if (superstep() < 30) {
 const int64 n = GetOutEdgeIterator().size();
 SendMessageToAllNeighbors(GetValue() / n);
 } else {
 VoteToHalt();
 }
 }
};
Another task: single source shortest path

class ShortestPathVertex
 : public Vertex<int, int, int> {

 void Compute(MessageIterator* msgs) {
 int mindist = IsSource(vertex_id()) ? 0 : INF;
 for (; !msgs->Done(); msgs->Next())
 mindist = min(mindist, msgs->Value());
 if (mindist < GetValue()) {
 *MutableValue() = mindist;
 OutEdgeIterator iter = GetOutEdgeIterator();
 for (; !iter.Done(); iter.Next())
 SendMessageTo(iter.Target(),
 mindist + iter.GetValue());
 }
 VoteToHalt();
 }
};

edge weight
Figure 7: SSSP—1 billion vertex binary tree: varying number of worker tasks scheduled on 300 multicore machines
Sample system: Signal-Collect
Signal/collect model vs Pregel

- Integrated with RDF/SPARQL
- Vertices can be non-uniform types
- **Vertex:**
 - `id, mutable state, outgoing edges, most recent received signals` (map: neighbor `id`→`signal`), `uncollected signals`
 - user-defined `collect` function
- **Edge:** `id, source, dest`
 - user-defined `signal` function
- Allows *asynchronous* computations....via `v.scoreSignal, v.scoreCollect`

For “data-flow” operations

On multicore architecture: shared memory for workers
Signal/collection model

v.doSignal()

lastSignalState := state

for all (e ∈ outgoing Edges) do
 e.target.uncollectedSignals.append(e.signal())
 e.target.signalMap.put(e.sourceId, e.signal())
end for

v.doCollect()

state := collect()

uncollectedSignals := Nil

next state for a vertex is output of the collect() operation

Algorithm 1: Synchronous execution

for i ← 1..num_iterations do
 for all v ∈ V parallel do
 v.doSignal()
 end for
 for all v ∈ V parallel do
 v.doCollect()
 end for
end for

signals are made available in a list and a map

relax “num_iterations” soon
Signal/collect examples

Single-source shortest path

<table>
<thead>
<tr>
<th>initialState</th>
<th>if (isSource) 0 else infinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>return min(oldState, min(signals))</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state + edge.weight</td>
</tr>
</tbody>
</table>

initial

step 1

step 2
Signal/collect examples

Life

<table>
<thead>
<tr>
<th>initialState</th>
<th>if (isInitiallyAlive) 1 else 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>switch (sum(signals))</td>
</tr>
<tr>
<td></td>
<td>case 0: return 0</td>
</tr>
<tr>
<td></td>
<td>case 1: return 0</td>
</tr>
<tr>
<td></td>
<td>case 2: return oldState</td>
</tr>
<tr>
<td></td>
<td>case 3: return 1</td>
</tr>
<tr>
<td></td>
<td>other: return 0</td>
</tr>
<tr>
<td></td>
<td>// dies of loneliness</td>
</tr>
<tr>
<td></td>
<td>// dies of loneliness</td>
</tr>
<tr>
<td></td>
<td>// same as before</td>
</tr>
<tr>
<td></td>
<td>// becomes alive if dead</td>
</tr>
<tr>
<td></td>
<td>// dies of overcrowding</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state</td>
</tr>
</tbody>
</table>

PageRank

<table>
<thead>
<tr>
<th>initialState</th>
<th>baseRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>return baseRank + dampingFactor * sum(signals)</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state * edge.weight / sum(edgeWeights(source))</td>
</tr>
</tbody>
</table>
class Document(id: Any) extends Vertex(id, 0.15) {
 def collect = 0.15 + 0.85 * signals[Double].foldLeft(0.0)(_ + _)
 override def processResult = if (state > 5) println(id + ":: " + state)
 override def scoreSignal = (state - lastSignalState.getOrElse(0)).abs
}

class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
 override type SourceVertexType = Document
 def signal = source.state * weight / source.sumOfOutWeights
}

object Algorithm {
 def executeCitationRank(db: SparqlAccessor) {
 val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
 val citations = new SparqlTuples(db, "select ?source ?target where {
 + "?source <http://lsdis.cs.uga.edu/projects/semdis/opus#cites> ?target}"
 citations foreach {
 case (citer, cited) =>
 computeGraph.addVertex[Document](citer)
 computeGraph.addVertex[Document](cited)
 computeGraph.addEdge[Citation](citer, cited)
 }
 computeGraph.execute(signalThreshold = 0)
 }
}
Signal/collect examples

Co-EM/wvRN/Harmonic fields

<table>
<thead>
<tr>
<th>Function</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>initialState</code></td>
<td><code>if (isTrainingData) trainingData else avgProbDist</code></td>
</tr>
<tr>
<td><code>collect()</code></td>
<td><code>if (isTrainingData) return oldState</code></td>
</tr>
<tr>
<td></td>
<td><code>else return signals.sum.normalise</code></td>
</tr>
<tr>
<td><code>signal()</code></td>
<td><code>return source.state</code></td>
</tr>
<tr>
<td>Code snippet</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td><code>initialState</code></td>
<td>Set(id)</td>
</tr>
<tr>
<td><code>collect()</code></td>
<td>return union(oldState, union(signals))</td>
</tr>
<tr>
<td><code>signal()</code></td>
<td>return source.state</td>
</tr>
</tbody>
</table>

Fig. 8. Transitive closure (data-graph/data-flow).

<table>
<thead>
<tr>
<th>Code snippet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>initialState</code></td>
<td>randomColour</td>
</tr>
</tbody>
</table>
| `collect()` | if (contains(signals, oldState))
 return randomColorExcept(oldState)
 else
 return oldState |
| `signal()` | return source.state |

Fig. 9. Vertex colouring (data-graph).
<table>
<thead>
<tr>
<th>Function</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>initialState</td>
<td>0</td>
</tr>
<tr>
<td>collect()</td>
<td><code>return 1 / (1 + e^{−signals.sum})</code></td>
</tr>
<tr>
<td>signal()</td>
<td><code>return source.state * edge.weight</code></td>
</tr>
</tbody>
</table>

Fig. 15. Artificial neural networks (data-graph).
Signal/collection examples

Matching path queries:
\[\text{dept}(X) -[\text{member}] \Rightarrow \text{postdoc}(Y) -[\text{recieved}] \Rightarrow \text{grant}(Z) \]

<table>
<thead>
<tr>
<th>initialState</th>
<th>emptySet</th>
</tr>
</thead>
</table>
| collect() | \(\text{matched} = \text{successfulMatchesWithVertex} (\text{signals})\)
\(\text{reportResults} (\text{fullyMatched})\) = \text{partition} (\text{matched})
\(\text{return} \ \text{union} (\text{oldState} - \text{lastSignalState}, \text{partiallyMatched})\) |
| signal() | \(\text{return} \ \text{successfulMatchesWithEdge} (\text{source.state})\) |

dept\((X) -[\text{member}] \Rightarrow \text{postdoc}(Y) -[\text{recieved}] \Rightarrow \text{grant}(Z)\)
Signal/collect examples: data flow

Matching path queries:

\[
\text{dept}(X) \rightarrow \text{[member]} \rightarrow \text{postdoc}(Y) \rightarrow \text{[recieved]} \rightarrow \text{grant}(Z)
\]

<table>
<thead>
<tr>
<th>initialState</th>
<th>emptySet</th>
</tr>
</thead>
</table>
| collect() | matched = successfulMatchesWithVertex(signals)
(fullyMatched, partiallyMatched) = partition(matched)
reportResults(fullyMatched)
return union(oldState - lastSignalState, partiallyMatched) |
| signal() | return successfulMatchesWithEdge(source.state) |

Note: can be multiple input signals.
Signal/collect examples

Matching path queries:

- $\text{dept}(X) \rightarrow \text{postdoc}(Y) \rightarrow \text{grant}(Z)$

<table>
<thead>
<tr>
<th>initialState</th>
<th>emptySet</th>
</tr>
</thead>
</table>
| collect() | matched = successfulMatchesWithVertex(signals)
 (fullyMatched, partiallyMatched) = partition(matched)
 reportResults(fullyMatched)
 return union(oldState - lastSignalState, partiallyMatched) |
| signal() | return successfulMatchesWithEdge(source.state) |

Diagram:

- $\text{dept}(X=\text{MLD}) \rightarrow \text{postdoc}(Y=\text{partha}) \rightarrow \text{grant}(Z)$
Signal/collect model vs Pregel

- Integrated with RDF/SPARQL
- Vertices can be non-uniform types
- **Vertex:**
 - *id*, mutable *state*, outgoing *edges*, *most recent received signals* (map: neighbor id→signal), *uncollected signals*
 - user-defined *collect* function
- **Edge:** *id*, *source*, *dest*
 - user-defined *signal* function
- Allows *asynchronous* computations….via v.scoreSignal, v.scoreCollect
Asynchronous Parallel Computation

• **Bulk-Synchronous**: All vertices update in parallel
 – need to keep copy of “old” and “new” vertex values

• **Asynchronous**:
 – Reason 1: if two vertices are not connected, can update them in any order
 • more flexibility, less storage
 – Reason 2: not all updates are equally *important*
 • parts of the graph converge quickly, parts slowly
Algorithm 2 Score-guided synchronous execution

\begin{algorithm}
done := false
iter := 0
\parbox[t]{\dimexpr\linewidth-2\parindent}{while iter < max_iter and !done do
\parbox[t]{\dimexpr\linewidth-2\parindent}{done := true
iter := iter + 1
\parbox[t]{\dimexpr\linewidth-2\parindent}{for all v ∈ V parallel do
\parbox[t]{\dimexpr\linewidth-2\parindent}{if (v.scoreSignal() > s_threshold) then
\parbox[t]{\dimexpr\linewidth-2\parindent}{done := false
v.doSignal()
\parbox[t]{\dimexpr\linewidth-2\parindent}{end if
\parbox[t]{\dimexpr\linewidth-2\parindent}{end for
\parbox[t]{\dimexpr\linewidth-2\parindent}{for all v ∈ V parallel do
\parbox[t]{\dimexpr\linewidth-2\parindent}{if (v.scoreCollect() > c_threshold) then
\parbox[t]{\dimexpr\linewidth-2\parindent}{done := false
v.doCollect()
\parbox[t]{\dimexpr\linewidth-2\parindent}{end if
\parbox[t]{\dimexpr\linewidth-2\parindent}{end for
\parbox[t]{\dimexpr\linewidth-2\parindent}{end while
\end{algorithm}

using:
• v.scoreSignal
• v.scoreCollect
Algorithm 3 Score-guided asynchronous execution

```plaintext
ops := 0
while
  ops < max_ops and \( \exists v \in V \) (v.scoreSignal() > s_threshold or v.scoreCollect() > c_threshold)
  do
    S := choose subset of V
    for all v \in S parallel do
      Randomly call either v.doSignal() or v.doCollect() iff respective threshold is reached; increment ops if an operation was executed.
  end for
end while
```
Sample system: GraphLab
GraphLab

• Data in graph, UDF vertex function
• Differences:
 – some control over scheduling
 • vertex function can insert new tasks in a queue
 – messages must follow graph edges: can access adjacent vertices only
 – “shared data table” for global data
 – library algorithms for matrix factorization, coEM, SVM, Gibbs, ...
 – GraphLab ➔ Now Dato
GraphLab’s descendents

• PowerGraph
• GraphChi
• GraphX
GraphLab con’t

- PowerGraph
- GraphChi
 - Goal: use graph abstraction on-disk, not in-memory, on a conventional workstation
GraphLab con’t

• GraphChi
 – Key **insight:**
 • in general we can’t easily stream the graph because neighbors will be scattered
 • but maybe we can *limit the degree* to which they’re scattered ... enough to make streaming possible?
 – “almost-streaming”: keep P cursors in a file instead of one
GraphChi: Shards and Intervals

- Vertices are numbered from 1 to n
 - P intervals, each associated with a **shard** on disk.
 - **sub-graph** = interval of vertices

![Diagram of GraphChi: Shards and Intervals]

1. Load
2. Compute
3. Write
GraphChi: Layout

Shard: in-edges for **interval** of vertices; sorted by source-id

<table>
<thead>
<tr>
<th>Shard 1</th>
<th>Shard 2</th>
<th>Shard 3</th>
<th>Shard 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices 1..100</td>
<td>Vertices 101..700</td>
<td>Vertices 701..1000</td>
<td>Vertices 1001..10000</td>
</tr>
</tbody>
</table>

Shards small enough to fit in memory; balance size of shards

1. Load
2. Compute
3. Write
GraphChi: Loading Sub-graph

Load subgraph for vertices 1..100

Vertices 1..100
Shard 1

Vertices 101..700
Shard 2

Vertices 701..1000
Shard 3

Vertices 1001..10000
Shard 4

1. Load
2. Compute
3. Write

Load all in-edges in memory

What about out-edges? Arranged in sequence in other shards
GraphChi: Loading Sub-graph

Load subgraph for vertices 101..700

Vertices 1..100
Shard 1

Vertices 101..700
Shard 2

Vertices 701..1000
Shard 3

Vertices 1001..10000
Shard 4

1. Load in all in-edges in memory
2. Compute
3. Write

Out-edge blocks in memory

Load all in-edges sorted by source id
GraphChi Load-Phase

Only P large reads for each interval.

P^2 reads on one full pass.

Interval 1

Shard 1 Shard 2 Shard 3 Shard 4

1. Load
2. Compute
3. Write
GraphChi: Execute updates

- Update-function is executed on interval’s vertices
- Edges have **pointers** to the loaded data blocks
 - Changes take effect immediately → *asynchronous*.

```
1. Load  
2. Compute  
3. Write
```
GraphChi: Commit to Disk

- In write phase, the blocks are written back to disk
 - Next load-phase sees the preceding writes → asynchronous.

In total:

\[P^2 \text{ reads and writes / full pass on the graph.} \]

⇒ Performs well on **both** SSD and hard drive.

To make this work: the size of a vertex state can’t change when it’s updated (at last, as stored on disk).
Experiment Setting

- Mac Mini (Apple Inc.)
 - 8 GB RAM
 - 256 GB SSD, 1TB hard drive
 - Intel Core i5, 2.5 GHz
- Experiment graphs:

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
<th>P (shards)</th>
<th>Preprocessing</th>
</tr>
</thead>
<tbody>
<tr>
<td>live-journal</td>
<td>4.8M</td>
<td>69M</td>
<td>3</td>
<td>0.5 min</td>
</tr>
<tr>
<td>netflix</td>
<td>0.5M</td>
<td>99M</td>
<td>20</td>
<td>1 min</td>
</tr>
<tr>
<td>twitter-2010</td>
<td>42M</td>
<td>1.5B</td>
<td>20</td>
<td>2 min</td>
</tr>
<tr>
<td>uk-2007-05</td>
<td>106M</td>
<td>3.7B</td>
<td>40</td>
<td>31 min</td>
</tr>
<tr>
<td>uk-union</td>
<td>133M</td>
<td>5.4B</td>
<td>50</td>
<td>33 min</td>
</tr>
<tr>
<td>yahoo-web</td>
<td>1.4B</td>
<td>6.6B</td>
<td>50</td>
<td>37 min</td>
</tr>
</tbody>
</table>
Comparison to Existing Systems

PageRank

- **Twitter-2010 (1.5B edges)**
 - GraphChi (Mac Mini)
 - Spark (50 machines)

- **Yahoo-web (6.7B edges)**
 - GraphChi (Mac Mini)
 - Pegasus / Hadoop (100 machines)

Matrix Factorization (Alt. Least)

- **Netflix (99B edges)**
 - GraphChi (Mac Mini)
 - GraphLab v1 (8 cores)

- **Twitter-2010 (1.5B edges)**
 - GraphChi (Mac Mini)
 - Hadoop (1636 machines)

WebGraph Belief Propagation (U Kang et al.)

Triangle Counting

Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to load the graph from disk. GraphChi computes asynchronously, while all but GraphLab synchronously.
GraphLab’s descendents

- PowerGraph
- GraphChi
- GraphX

On multicore architecture: shared memory for workers

On cluster architecture (like Pregel): different memory spaces

What are the challenges moving away from shared-memory?
Top 1% of vertices is adjacent to 53% of the edges!
Problem:
High Degree Vertices Limit Parallelism

Edge information too large for single machine

Touches a large fraction of graph (GraphLab 1)

Produces many messages (Pregel, Signal/Collect)

Asynchronous consistency requires heavy locking (GraphLab 1)

Synchronous consistency is prone to stragglers (Pregel)
PowerGraph

- Problem: GraphLab’s localities can be large
 - “all neighbors of a node” can be large for hubs, high indegree nodes
- Approach:
 - new graph partitioning algorithm
 - can replicate data
 - gather-apply-scatter API: finer-grained parallelism
 - gather ~ combiner
 - apply ~ vertex UDF (for all replicates)
 - scatter ~ messages from vertex to edges
Factorized Vertex Updates

Split update into 3 phases
Signal/collect examples

Single-source shortest path

<table>
<thead>
<tr>
<th>initialState</th>
<th>if (isSource) 0 else infinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>return min(oldState, min(signals))</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state + edge.weight</td>
</tr>
</tbody>
</table>

initialState: [0, ∞, ∞]

Step 1: [0, 1, ∞]

Step 2: [1, 1, 2]
Signal/collect examples

Life

<table>
<thead>
<tr>
<th>initialState</th>
<th>if (isInitiallyAlive) 1 else 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>switch (sum(signals))</td>
</tr>
<tr>
<td></td>
<td>case 0: return 0 // dies of loneliness</td>
</tr>
<tr>
<td></td>
<td>case 1: return 0 // dies of loneliness</td>
</tr>
<tr>
<td></td>
<td>case 2: return oldState // same as before</td>
</tr>
<tr>
<td></td>
<td>case 3: return 1 // becomes alive if dead</td>
</tr>
<tr>
<td></td>
<td>other: return 0 // dies of overcrowding</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state</td>
</tr>
</tbody>
</table>

PageRank

<table>
<thead>
<tr>
<th>initialState</th>
<th>baseRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>return baseRank + dampingFactor * sum(signals)</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state * edge.weight / sum(edgeWeights(source))</td>
</tr>
</tbody>
</table>
PageRank + Preprocessing and Graph Building

```scala
class Document(id: Any) extends Vertex(id, 0.15) {
  def collect = 0.15 + 0.85 * signals[Double].foldLeft(0.0)(_ + _)
  override def processResult = if (state > 5) println(id + " : " + state)
  override def scoreSignal = (state - lastSignalState.getOrElse(0)).abs
}

class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
  override type SourceVertexType = Document
  def signal = source.state * weight / source.sumOfOutWeights
}

object Algorithm {
  def executeCitationRank(db: SparqlAccessor) {
    val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
    val citations = new SparqlTuples(db, "select ?source ?target where {
      + "?source <http://lsdis.cs.uga.edu/projects/semdis/opus#cites> ?target}"
    citations foreach {
      case (citer, cited) =>
        computeGraph.addVertex[Document](citer)
        computeGraph.addVertex[Document](cited)
        computeGraph.addEdge[Citation](citer, cited)
    }
    computeGraph.execute(signalThreshold = 0)
  }
}
```
Signal/collection examples

Co-EM/wvRN/Harmonic fields

<table>
<thead>
<tr>
<th>Function</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>initialState</td>
<td><code>if (isTrainingData) trainingData else avgProbDist</code></td>
</tr>
<tr>
<td>collect()</td>
<td><code>if (isTrainingData)</code></td>
</tr>
<tr>
<td></td>
<td><code>return oldState</code></td>
</tr>
<tr>
<td></td>
<td><code>else</code></td>
</tr>
<tr>
<td></td>
<td><code>return signals.sum.normalise</code></td>
</tr>
<tr>
<td>signal()</td>
<td><code>return source.state</code></td>
</tr>
</tbody>
</table>
PageRank in PowerGraph

\[R[i] = \beta + (1 - \beta) \sum_{(j,i) \in E} w_{ji} R[j] \]

PageRankProgram(i)

Gather(j \rightarrow i) : return \ w_{ji} \ast R[j]
sum(a, b) : return a + b;
Apply(i, \Sigma) : R[i] = \beta + (1 - \beta) \ast \Sigma
Scatter(i \rightarrow j) :
if (R[i] changes) then activate(j)

scatter is like a signal
Distributed Execution of a PowerGraph Vertex-Program

Gather

Apply

Scatter
Minimizing Communication in PowerGraph

Communication is linear in the number of machines each vertex spans

A vertex-cut minimizes machines each vertex spans

Percolation theory suggests that power law graphs have good vertex cuts. [Albert et al. 2000]
Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Oblivious balances partition quality and partitioning time.
Partitioning matters...

![Bar Chart]

- **PageRank**
 - Random
 - Oblivious
 - Greedy

- **Collaborative Filtering**

- **Shortest Path**

Reduction in Runtime
GraphLab’s descendents

• PowerGraph
• GraphChi
• **GraphX**
 – implementation of GraphLabs API on top of Spark
 – Motivations:
 • avoid transfers between subsystems
 • leverage larger community for common infrastructure
 – What’s different:
 • Graphs are now *immutable* and operations transform one graph into another (RDD → RDG, resilient distributed graph)
Idea 1: Graph as Tables

Property Graph

Under the hood things can be split even more finely: eg a **vertex map table + vertex data table**. Operators maximize structure sharing and minimize communication.

<table>
<thead>
<tr>
<th>Id</th>
<th>Property (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rxin</td>
<td>(Stu., Berk.)</td>
</tr>
<tr>
<td>Jegonzal</td>
<td>(PstDoc, Berk.)</td>
</tr>
<tr>
<td>Franklin</td>
<td>(Prof., Berk)</td>
</tr>
<tr>
<td>Istoica</td>
<td>(Prof., Berk)</td>
</tr>
</tbody>
</table>

Edge Property Table

<table>
<thead>
<tr>
<th>SrcId</th>
<th>DstId</th>
<th>Property (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rxin</td>
<td>jegonzal</td>
<td>Friend</td>
</tr>
<tr>
<td>franklin</td>
<td>rxin</td>
<td>Advisor</td>
</tr>
<tr>
<td>Istoica</td>
<td>franklin</td>
<td>Coworker</td>
</tr>
<tr>
<td>franklin</td>
<td>jegonzal</td>
<td>PI</td>
</tr>
</tbody>
</table>
Operators

- Table (RDD) operators are inherited from Spark:

<table>
<thead>
<tr>
<th>Table (RDD) operator</th>
<th>Example operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>reduce</td>
</tr>
<tr>
<td>filter</td>
<td>count</td>
</tr>
<tr>
<td>groupBy</td>
<td>fold</td>
</tr>
<tr>
<td>sort</td>
<td>reduceByKey</td>
</tr>
<tr>
<td>union</td>
<td>groupByKey</td>
</tr>
<tr>
<td>join</td>
<td>cogroup</td>
</tr>
<tr>
<td>leftOuterJoin</td>
<td>cross</td>
</tr>
<tr>
<td>rightOuterJoin</td>
<td>zip</td>
</tr>
</tbody>
</table>
class Graph [V, E] {
 def Graph(vertices: Table[(Id, V)],
 edges: Table[(Id, Id, E)])

 // Table Views -----------------------------
 def vertices: Table[(Id, V)]
 def edges: Table[(Id, Id, E)]
 def triplets: Table[((Id, V), (Id, V),
 (Id, V),
 (Id, V))]

 // Transformations -------------------------
 def reverse: Graph[V, E]
 def subgraph(pV: (Id, V) => Boolean,
 pE: Edge[V, E] => Boolean): Graph[V, E]
 def mapV(m: (Id, V) => T): Graph[T, E]
 def mapE(m: Edge[V, E] => T): Graph[V, T]

 // Joins -----------------------------------
 def joinV(tbl: Table[(Id, T)]): Graph[(V, T), E]
 def joinE(tbl: Table[(Id, Id, T)]): Graph[V, (E, T)]

 // Computation -----------------------------
 def mrTriplets(mapF: (Edge[V, E]) => List[(Id, T)],
 reduceF: (T, T) => T): Graph[T, E]
}
The GraphX Stack
(Lines of Code)

PageRank (5)
Connected Comp. (10)
Shortest Path (10)
SVD (40)
ALS (40)
K-core (51)
Triangle Count (45)
LDA (120)

Pregel (28) + GraphLab (50)

GraphX (3575)

Spark
GraphX is roughly 3x slower than GraphLab
Wrapup
Summary

• Large immutable data structures on (distributed) disk, processing by sweeping through them and creating new data structures:
 – stream-and-sort, Hadoop, PIG, Hive, ...
• Large immutable data structures in distributed memory:
 – Spark – distributed tables
• Large mutable data structures in distributed memory:
 – parameter server: structure is a hashtable
 – Pregel, GraphLab, GraphChi, GraphX: structure is a graph
Summary

• APIs for the various systems vary in detail but have a similar flavor
 – Typical algorithms iteratively update vertex state
 – Changes in state are communicated with messages which need to be aggregated from neighbors

• Biggest wins are
 – on problems where graph is fixed in each iteration, but vertex data changes
 – on graphs small enough to fit in (distributed) memory
Some things to take away

• Platforms for iterative operations on graphs
 – GraphX: if you want to integrate with Spark
 – GraphChi: if you don’t have a cluster
 – GraphLab/Dato: if you don’t need free software and performance is crucial
 – Pregel: if you work at Google
 – Giraph, Signal/collect, ... ??

• Important differences
 – Intended architecture: shared-memory and threads, distributed cluster memory, graph on disk
 – How graphs are partitioned for clusters
 – If processing is synchronous or asynchronous