
Big ML and GPUs

1

2

Parallel computing with map-reduce:
• Stream-and-sort in parallel
• Enormous datasets
• Tasks are i/o bound
• Many unreliable processors

• which are basically commodity PCs
• Parallelize with mapreduce

• loosely coupled, heavy-weight jobs
• communicate via network/disk

• Don’t iterate (typically)

3

Streaming SGD:

• Iterative
• Sequential
• Fast
• Scale up by

bounding memory

• You can handle
very large datasets
… but slowly

x1
x2
x3

w

x4
x5
x6

4

Streaming SGD:

• Iterative
• Sequential
• Fast
• Scale up by

bounding memory

• You can handle
very large datasets
… but slowly

• You can speed it
up by making the
tasks in the stream
bigger and doing
them in parallel

• A GPU is a good
way of doing that

x1
x2
x3

w

x4
x5
x6

5

Parallel ML computing with GPUS:
• Iterative streaming ML in parallel
• Big-but-not-too-big datasets
• Tasks are compute bound
• Many fast-but-simple processors
• Replace streaming operations

with medium-sized
computations that can be done
in parallel

• Usually iterate many times

Parallel computing with map-reduce:
• Stream-and-sort in parallel
• Enormous datasets
• Tasks are i/o bound
• Many unreliable processors

• which are basically commodity PCs
• Parallelize with mapreduce

• loosely coupled, heavy-weight jobs
• communicate via network/disk

• Don’t iterate (typically)

WHAT ARE GPUS?

6

What is a GPU?

7

A graphics processing unit (GPU) is a specialized electronic
circuit designed to rapidly manipulate and alter memory to
accelerate the creation of images in a frame buffer intended for
output to a display device. [wikipedia]

The term GPU was popularized
by Nvidia in 1999, who marketed
the GeForce 256 as "the world's first
…Graphics Processing Unit.” It was
presented as a "single-chip processor
with integrated transform, lighting,
triangle setup/clipping, and rendering
engines".[3]

8

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs are faster than CPUs:
maximum FLOPS/clock cycle

9

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs compute faster because they are parallel

10

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs compute faster because they are parallel

11

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs have more cores than CPUs
hi-end CPU: 32
hi-end GPU: 2000

GPUs have less memory than CPUs
hi-end CPU: 256 Gb
hi-end GPU: 8 Gb

12

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs also read memory faster
(memory bandwidth: bits/sec)
because they are parallel

13

Summary of GPUs vs CPUs

• less total memory
• more cores and more parallelism

• Multicore CPUs are mostly multiple-instruction multiple-data (MIMD)
• GPUs are mostly single-instruction multiple-data (SIMD)

14

Summary of GPUs vs CPU clusters

• way way less total memory, and memory is RAM not disk
• SIMD vs MIMD
• Expensive and reliable vs cheap and fault-tolerant

15

https://www.youtube.com/watch?v=-P28LKWTzrI

HOW DO YOU USE A GPU?

16

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/
cuda_language/Introduction_to_CUDA_C.pptx

Using GPUs for ML

• Programming	parallel	machines	is	complicated
• To	use	the	parallelism	of	a	GPU	in	an	ML	
algorithm	we	almost	always	use	matrix	
algebra as	an	abstraction	layer	– i.e.	vectorize

17

def logisticRegression(….):
….
for	X,Y	in	….:
Z	=	W.matrix_multiply(X)
P	=	logistic(Z)
W	=	W	+	learning_rate *	(P	– Y)	*	X
…..

Using GPUs for ML

18

def logisticRegression(….):
….
for	X,Y	in	….:
Z	=	W.matrix_multiply(X)
P	=	logistic(Z)
W	=	W	+	learning_rate *	(P	– Y)	*	X
…..

Using GPUs for ML
#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

serial code

parallel code

serial code

parallel fn

19

Simple Processing Flow

1. Copy input data from CPU memory
to GPU memory

PCI Bus

20

Simple Processing Flow

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for performance

PCI Bus

21

Simple Processing Flow

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

PCI Bus

22

SOME EXAMPLE CODE

23

Hello World!

int main(void) {
printf("Hello World!\n");
return 0;

}

Standard C that runs on the host
(the CPU)

NVIDIA compiler (nvcc)

We can also write code for the
device (the GPU)

Output:

$ nvcc
hello_world.
cu
$ a.out
Hello World!
$

24

Hello World! with Device Code

__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

§ Two new things here…

25

Hello World! with Device Code
__global__ void mykernel(void) {
}

• CUDA	C/C++	keyword	__global__ indicates	a	function	that:
– Runs	on	the	device
– Is	called	from	host	code

• nvcc separates	source	code	into	host	and	device	
components
– Device	functions	(e.g.	mykernel())	processed	by	NVIDIA	
compiler

– Host	functions	(e.g.	main())	processed	by	standard	host	
compiler

• gcc,	cl.exe

26

Hello World! with Device COde
mykernel<<<1,1>>>();

• Triple	angle	brackets	mark	a	call	from	host
code	to	device code
–Also	called	a	“kernel	launch”
–We’ll	get	to	the	parameters	(1,1)	soon

27

Hello World! with Device Code

__global__ void mykernel(void){
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

• mykernel() does nothing at all in
this example …. so let’s fix that.

Output:

$ nvcc
hello.cu
$ a.out
Hello World!
$

28

Addition on the Device
• A	simple	kernel	to	add	two	integers	(coming	up:	
adding	two	arrays)

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}

• As	before	__global__ is	a	CUDA	C/C++	keyword	
meaning
– add() will	execute	on	the	device
– add() will	be	called	from	the	host

29

Addition on the Device

• Note	that	we	use	pointers	for	the	variables

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}

• add() runs	on	the	device,	so	a,	b and	cmust	
point	to	device	memory

• We	need	to	allocate	memory	on	the	GPU

30

Memory Management

• Host	and	device	memory	are	separate	entities
– Device pointers	point	to	GPU	memory

May	be	passed	to/from	host	code
May	not	be	dereferenced	in	host	code

– Host	pointers	point	to	CPU	memory
May	be	passed	to/from	device	code
May	not	be	dereferenced	in	device	code

• Simple	CUDA	API	for	handling	device	memory
– cudaMalloc(),	cudaFree(),	cudaMemcpy()
– Similar	to	the	C	equivalents	malloc(),	free(),	
memcpy()

31

Addition on the Device: add()

• Returning	to	our	add() kernel

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}

• Let’s	take	a	look	at	main()…

32

Addition on the Device: main()

int main(void) {
int a, b, c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
a = 2;
b = 7;

33

We’re getting ready to do this…

1. Copy input data from CPU memory
to GPU memory is coming up next!

PCI Bus

34

Addition on the Device: main()

// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}

35

Next: Vector Addition on the Device

• With	add() running	in	parallel	we	can	do	vector	addition

• Terminology:	each	parallel	invocation	of	add() is	referred	
to	as	a	block
– The	set	of	blocks	is	referred	to	as	a	grid
– Each	invocation	can	refer	to	its	block	index	using	

blockIdx.x

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• By	using	blockIdx.x to	index	into	the	array,	each	block	
handles	a	different	index

36

Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• On	the	device,	each	block	can	execute	in	parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

37

Vector Addition on the Device: add()

• Returning	to	our	parallelized	add() kernel
__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

• Let’s	take	a	look	at	main()…

38

Vector Addition on the Device: main()
#define N 512
int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

39

Vector Addition on the Device: main()

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}

a little more magic…

40

Coordinating Host & Device

• Kernel	launches	are	asynchronous
–Control	returns	to	the	CPU	immediately

• CPU	needs	to	synchronize	before	consuming	
the	results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls
have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA
calls have completed

41

MORE DETAILS ON GPU
PROGRAMMING

42

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/
cuda_language/Introduction_to_CUDA_C.pptx

43

Summary of GPUs vs CPUs

• less total memory
• more cores and more parallelism

• Multicore CPUs are mostly multiple-instruction multiple-data (MIMD)
• GPUs are mostly single-instruction multiple-data (SIMD)

Blocks, Grids, Threads, Warps

• Recall	blocks	are		the	things	that	work	in	
parallel,	and	blocks	are	arranged	in	grids

• c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

44

• That	would	be	SIMD	(single	instruction	
multiple	data)

• It’s	actually	more	complicated	than	that….

MIMD

45

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

1

2

3

4

SIMD

46

SIMD: Zooming in

47

SIMT: Single Instruction Multiple
Threads

48

SIMT: Single Instruction Multiple
Threads

49

A thread can access its own block id and also thread id.
Blocks and threads are in a grid, which is 2D or 3D (there’s a
.x and a .y part)

Comparison

50

What’s in a GPU?

51

Threads (SIMT,
synchronous
threads) are
grouped into
cores (which are
decoupled, like a
MIMD machine)

IDs and Dimensions

– A	kernel	is	launched	as	a	
grid	of	blocks	of	threads

• blockIdx and	
threadIdx are	3D

• We	showed	only	one	
dimension	(x)

• Built-in	variables:
– threadIdx
– blockIdx
– blockDim
– gridDim

Device

Grid 1

Block
(0,0,0)

Block
(1,0,0)

Block
(2,0,0)

Block
(1,1,0)

Block
(2,1,0)

Block
(0,1,0)

Block (1,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

Thread
(4,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(4,1,0)

Thread
(0,2,0)

Thread
(1,2,0)

Thread
(2,2,0)

Thread
(3,2,0)

Thread
(4,2,0)

52

Thread and block parallelism

53

How Do You REALLY Use a
GPU?

54

Recap: Using GPUs for ML

• Programming	parallel	machines	is	complicated
• To	use	the	parallelism	of	a	GPU	in	an	ML	
algorithm	we	almost	always	use	matrix	
algebra as	an	abstraction	layer	– i.e.	vectorize

55

def logisticRegression(….):
….
for	X,Y	in	….:
Z	=	W.matrix_multiply(X)
P	=	logistic(Z)
W	=	W	+	learning_rate *	(P	– Y)	*	X
…..

Recap: Using GPUs for ML

56

def logisticRegression(….):
….
for	X,Y	in	….:
Z	=	W.matrix_multiply(X)
P	=	logistic(Z)
W	=	W	+	learning_rate *	(P	– Y)	*	X
…..

Recap: Using GPUs for ML
#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

serial code

parallel code

serial code

parallel fn

57

Example: Vectorizing Logistic Regression
with Stochastic Gradient Descent

58

How Do You REALLY Use a
GPU?

Vectorizing ML Algorithms

• We	want	to	specify	an	algorithm	so	that
– It’s	concise
– It’s	easy	to	verify	correctness
– It	reveals	to	a	compiler	what	can	be	done	in	
parallel	on	a	GPU

–Matrix-vector	computations!

59

Vectorizing logistic regression

• Conditional	probability	of	an	example:

• Conditional	log	likelihood	of	an	example:

60

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch,	compute

• For	each	feature	j:	update	wj using

61

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch Xbatch,	compute

62

Note	:	x・w can	be	partially	computed	in	
parallel…

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch Xbatch,	compute

63

Note:		Xbatch・w
can	be	
computed	in	
parallel…

𝑋jklmn = 	
𝑥pp ⋯ 𝑥p

r

⋮ ⋱ ⋮
𝑥up ⋯ 𝑥u

r

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch Xbatch,	compute

64

𝑋jklmn𝒘	 = 	
𝑥pp ⋯ 𝑥p

r

⋮ ⋱ ⋮
𝑥up ⋯ 𝑥u

r

𝑤p

⋮
𝑤r

=
𝒘 x 𝒙𝟏
⋮

𝒘 x 𝒙𝑩

We’re	most	of	the	way	now…

65

Streaming SGD:

• Iterative
• Sequential
• Fast
• Scale up by

bounding memory

• You can handle
very large datasets
… but slowly

x1
x2
x3

w

x4
x5
x6

66

Streaming SGD:

• Iterative
• Sequential
• Fast
• Scale up by

bounding memory

• You can handle
very large datasets
… but slowly

• You can speed it
up by making the
tasks in the stream
bigger and doing
them in parallel

• A GPU is a good
way of doing that

x1
x2
x3

w

x4
x5
x6

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch Xbatch,	compute

67

𝑋jklmn𝒘	 = 	
𝑥pp ⋯ 𝑥p

r

⋮ ⋱ ⋮
𝑥up ⋯ 𝑥u

r

𝑤p

⋮
𝑤r

=
𝒘 x 𝒙𝟏
⋮

𝒘 x 𝒙𝑩

We’re	most	of	the	way	now…

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch Xbatch,	compute

68

𝒘 x 𝒙𝟏
⋮

𝒘 x 𝒙𝑩
+ 1 We	can	overload	the	

operator	for	the	
vector/matrix	class	so	that	
adding	1	will	”work”

Vectorizing logistic regression

69

𝒘 x 𝒙𝟏
⋮

𝒘 x 𝒙𝑩
+ 1

We	can	overload	the	operator	
for	the	vector/matrix	class	so	
that	adding	c	will	create	a	copy	
with	c	added	component-wise

class	Matrix(object):
…
def __add__(self,addend):
result	=	Matrix()
….
return	result

m	=	Matrix(…)
z	=	m+1

Vectorizing logistic regression

70

exp(
𝒘 x 𝒙𝟏
⋮

𝒘 x 𝒙𝑩
+ 1)

….and	also	define	
operations	like	exp()	to	
work	component-wise…

class	Matrix(object):
…
def __add__(self,addend):
result	=	Matrix()
….
return	result

m	=	Matrix(…)
z	=	(m+1).exp()

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch Xbatch,	compute

71

Xb =	Matrix(…)
w	=	Matrix(…)

def logistic(X):		return	(X+1).exp().reciprocal()

p	=	logistic(Xb.dot(w))									#	B	rows,	1	column

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch,	compute

72

𝑋jklmn𝒘	 = 	
𝒘 x 𝒙𝟏
⋮

𝒘 x 𝒙𝑩
→

𝒑𝟏
⋮
𝒑𝑩

𝒚𝟏 − 𝒑𝟏
⋮

𝒚𝑩 − 𝒑𝑩

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch,	compute

73

def logistic(X):		return	(X+1).exp().reciprocal()

p	=	logistic(Xb.dot(w))				#	B	rows,	1	column
grad	=	Xb.dot(y	– p).rowsum()	*	1/B
w	=	w	+	grad*rate

EXAMPLE: NUMPY PACKAGE

74

75

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

Binary to softmax logistic regression

76

𝑋jklmn𝒘	 = 	
𝑥pp ⋯ 𝑥p

r

⋮ ⋱ ⋮
𝑥up ⋯ 𝑥u

r

𝑤p

⋮
𝑤r

=
𝒘 x 𝒙𝟏
⋮

𝒘 x 𝒙𝑩

Binary to softmax logistic regression

77

𝑝� 	≡
exp	(𝒙 x 𝒘�)

∑ exp	(𝒙 x�
�� 𝒘��)	

X𝑊	 = 	
𝑥pp ⋯ 𝑥p

r

⋮ ⋱ ⋮
𝑥up ⋯ 𝑥u

r

𝑤p

⋮
𝑤r

=
𝒘 x 𝒙𝟏
⋮

𝒘 x 𝒙𝑩

XW	= 	
𝑥pp ⋯ 𝑥p

r

⋮ ⋱ ⋮
𝑥up ⋯ 𝑥u

r

𝑤p
�p … 𝑤p

��

⋮ ⋱ ⋮
𝑤r
�p … 𝑤r

��
=

𝒘�p x 𝒙p … 𝒘�� x 𝒙p
⋮ ⋱ ⋮

𝒘�p x 𝒙u … 𝒘�� x 𝒙u

78

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

Matrix	multiply,;	then	
exponentiate

component-wise

Sum	the	columns	to	get	
the	denominator;	

keepdim=True	means…

𝑝� 	≡
exp	(𝒙 x 𝒘�)

∑ exp	(𝒙 x�
�� 𝒘��)	

XW	= 	
𝑥pp ⋯ 𝑥p

r

⋮ ⋱ ⋮
𝑥up ⋯ 𝑥u

r

𝑤p
�p … 𝑤p

��

⋮ ⋱ ⋮
𝑤r
�p … 𝑤r

��
=

𝒘�p x 𝒙p … 𝒘�� x 𝒙p
⋮ ⋱ ⋮

𝒘�p x 𝒙u … 𝒘�� x 𝒙u

… that	this	line	will	work	
correctly	even	though	’a’	

and	‘a_sum’	have	
different	shapes

prob will	have	B	rows	
and	K	columns,	and	each	

row	will	sum	to	1

79

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

80

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

Error	on	each	
example	x	in	batch	
and	each	class	y

python	bug:	should	
be	x.T (transpose)	

The	gradient	step!

x.T	dy	= 	
𝑥pp ⋯ 𝑥up
⋮ ⋱ ⋮
𝑥p
r ⋯ 𝑥u

r
x
𝑑𝑦�p

�p … 𝑑𝑦�p
��

⋮ ⋱ ⋮
𝑑𝑦�u

�p … 𝑑𝑦�u
��

So this will run in parallel on a GPU?

81

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

No: we’re not
there yet….

So this will run in parallel on a GPU?
Not yet….

82

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

Option	1:	switch	from	
numpy (old	package)	to	
cupy (new	GPU-oriented	
package)

Option	2:	switch	to	a	package	that	
will	compile	to	a	GPU	and	also	
compute	the	gradients	for	you	(like	
Theano,	Tensorflow,	Torch,	…)

