Big ML and GPUs

Parallel computing with map-reduce:

- Stream-and-sort in parallel
- Enormous datasets
- Tasks are i/o bound
- Many unreliable processors
- which are basically commodity PCs
- Parallelize with mapreduce
- loosely coupled, heavy-weight jobs
- communicate via network/disk
- Don't iterate (typically)

Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory
- You can handle very large datasets ... but slowly

Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory
- You can handle very large datasets ... but slowly
- You can speed it up by making the tasks in the stream bigger and doing them in parallel
- A GPU is a good way of doing that

Parallel computing with map-reduce:

- Stream-and-sort in parallel
- Enormous datasets
- Tasks are i/o bound
- Many unreliable processors
- which are basically commodity PCs
- Parallelize with mapreduce
- loosely coupled, heavy-weight jobs
- communicate via network/disk
- Don't iterate (typically)

Parallel ML computing with GPUS:

- Iterative streaming ML in parallel
- Big-but-not-too-big datasets
- Tasks are compute bound
- Many fast-but-simple processors
- Replace streaming operations with medium-sized computations that can be done in parallel
- Usually iterate many times

WHAT ARE GPUS?

What is a GPU?

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the creation of images in a frame buffer intended for output to a display device. [wikipedia]

The term GPU was popularized by Nvidia in 1999, who marketed the GeForce 256 as "the world's first ...Graphics Processing Unit." It was presented as a "single-chip processor with integrated transform, lighting, triangle setup/clipping, and rendering engines"."3]

Theoretical Peak Floating Point Operations per Clock Cycle, Double Precision

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Theoretical Peak Performance per Core/Multiprocessor, Double Precision

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Number of Physical Cores/Multiprocessors, High-End Hardware

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Theoretical Peak Memory Bandwidth Comparison

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Summary of GPUs vs CPUs

- less total memory
- more cores and more parallelism
- Multicore CPUs are mostly multiple-instruction multiple-data (MIMD)
- GPUs are mostly single-instruction multiple-data (SIMD)

Summary of GPUs vs CPU clusters

- way way less total memory, and memory is RAM not disk
- SIMD vs MIMD
- Expensive and reliable vs cheap and fault-tolerant

Art, Science and GPU's
 Adam Savage \& Jamie Hyneman
 Explain Parallel Processing

@ RVIDIA.
$>$ > $0: 03 / 1: 33$
https://www.youtube.com/watch?v=-P28LKWTzrI

HOW DOYOU USE A GPU?

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/ cuda_language/Introduction_to_CUDA_C.pptx

Using GPUs for ML

- Programming parallel machines is complicated
- To use the parallelism of a GPU in an ML algorithm we almost always use matrix algebra as an abstraction layer - i.e. vectorize

def logisticRegression(....):

for X, Y in:
$\mathrm{Z}=\mathrm{W}$. matrix_multiply(X)
$\mathrm{P}=\operatorname{logistic}(\mathrm{Z})$
$\mathrm{W}=\mathrm{W}+$ learning_rate $*(\mathrm{P}-\mathrm{Y}) * \mathrm{X}$

Using GPUs for ML

Using GPUs for ML

Simple Processing Flow

Simple Processing Flow

Simple Processing Flow

SOME EXAMPLE CODE

Hello World!

```
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```


Output:

- Standard C that runs on the host (the CPU)
- NVIDIA compiler (nvcc)
\$ nvec hello_world. Cu
\$ a.out
Hello World!
- We can also write code for the \$ device (the GPU)

Hello World! with Device Code

```
__global__ void mykernel(void) {
}
int main(void) {
        mykernel<<<1,1>>>();
        printf("Hello World!\n");
    return 0;
}
```

- Two new things here...

Hello World! with Device Code

```
__global__ void mykernel(void) {
```

- CUDA C/C++ keyword __g1obal_ indicates a function that:
- Runs on the device
- Is called from host code
- nvcc separates source code into host and device components
- Device functions (e.g. mykerne1() processed by NVIDIA compiler
- Host functions (e.g. main()) processed by standard host compiler
- gcc, cl.exe

Hello World! with Device COde

mykernel<<<1, 1>>>();

- Triple angle brackets mark a call from host code to device code
- Also called a "kernel launch"
-We'll get to the parameters $(1,1)$ soon

Hello World! with Device Code

```
__global__ void mykernel (void) {
}
int main(void) {
        mykernel<<<1,1>>>();
        printf("Hello World!\n");
        return 0;
}
```


Output:

\$ nvcc
hello.cu
\$ a.out
Hello World!
\$

- mykernel () does nothing at all in this example so let's fix that.

Addition on the Device

- A simple kernel to add two integers (coming up: adding two arrays)

```
__global_ void add(int *a, int *b, int *c) \{
    \(*_{c}=* \mathrm{a}+\mathrm{tb}_{\mathrm{b}}\);
\}
```

- As before _global_ is a CUDA C/C++ keyword meaning
- add() will execute on the device
- add() will be called from the host

Addition on the Device

- Note that we use pointers for the variables

- add() runs on the device, so a, b and c must point to device memory
- We need to allocate memory on the GPU

Memory Management

- Host and device memory are separate entities
- Device pointers point to GPU memory May be passed to/from host code May not be dereferenced in host code
- Host pointers point to CPU memory May be passed to/from device code May not be dereferenced in device code
- Simple CUDA API for handling device memory
- cudaMalloc (), cudaFree (), cudaMemcpy ()
- Similar to the C equivalents malloc (), free (), memcpy()

Addition on the Device: add()

- Returning to our add() kernel

```
_global__ void add(int *a, int *b, int *c) \{
        \(*_{c}=* a+* b ;\)
\}
```

- Let's take a look at main()...

Addition on the Device:main()

int main(void) \{
int $a, b, c ; \quad / /$ host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size $=$ sizeof (int);
// Allocate space for device copies of a, b, c
cudaMalloc ((void **) \&d_a, size);
cudaMalloc((void **)\&d_b, size);
cudaMalloc((void **)\&d_c, size);
// Setup input values
$\mathrm{a}=2$;
$\mathrm{b}=7$;

We're getting ready to do this...

Addition on the Device:main()

// Copy inputs to device
cudaMemcpy(d_a, \&a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, \&b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
add<<<<1,1>>>(d_a, d_b, d_c);
// Copy result back to host cudaMemcpy(\&c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree (d_a) ; cudaFree (d_b) ; cudaFree (d_c) ; return 0;

Next:Vector Addition on the Device

- With add() running in parallel we can do vector addition
- Terminology: each parallel invocation of add() is referred to as a block
- The set of blocks is referred to as a grid
- Each invocation can refer to its block index using blockIdx.x
__global_ void add(int *a, int *b, int *c) \{ $\mathrm{c}[\mathrm{blockIdx} . \mathrm{x}]=\mathrm{a}[\mathrm{blockIdx} . \mathrm{x}]+\mathrm{b}[\mathrm{blockIdx} . \mathrm{x}]$;
$\}$
- By using blockidx.x to index into the array, each block handles a different index

Vector Addition on the Device

```
__global__ void add(int *a, int *b, int *c) {
        c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

- On the device, each block can execute in parallel:

Block 0

Block I

$$
c[1]=a[1]+b[1]
$$

Block 2

Block 3

Vector Addition on the Device: add()

- Returning to our parallelized add() kernel

```
__global__ void add(int *a, int *b, int *c) {
        c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

- Let's take a look at main()...

Vector Addition on the Device: $\operatorname{main}()$

```
#define N 512
int main(void) {
    int *a *b *c // host copies of a, b, c
    int *d_a, *d_b, *d_c; // device copies of a, b, c
    int size = N * sizeof(int);
    // Alloc space for device copies of a, b, c
    cudaMalloc((void **)&d_a, size);
    cudaMalloc((void **) &d b, size);
    cudaMalloc((void **) &d_c, size);
    // Alloc space for host copies of a, b, c and setup input values
    a = (int *)malloc(size); random_ints(a, N);
    b = (int *)malloc(size); random_ints(b, N);
    c = (int *)malloc(size);
```


Vector Addition on the Device: $\operatorname{main}()$

// Copy inputs to device cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy (d_b, b, size, cudaMemcpyHostToDevice);

```
// Launch add() kernel on GPU with N blocks
```

add<<<<N, 1>>> (d_a, d_b, d_c);
// Copy result back to host
cudaMemcpy (c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
free (a); free(b); free(c);
cudaFree(d_a); cudaFree (d_b); cudaFree (d_c); return 0;

Coordinating Host \& Device

- Kernel launches are asynchronous
-Control returns to the CPU immediately
- CPU needs to synchronize before consuming the results
cudaMemcpy ()
cudaMemcpyAsync ()
cudaDeviceSynchronize()

Blocks the CPU until the copy is complete Copy begins when all preceding CUDA calls have completed

Asynchronous, does not block the CPU
Blocks the CPU until all preceding CUDA calls have completed

MORE DETAILS ON GPU PROGRAMMING

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/ cuda_language/Introduction_to_CUDA_C.pptx

Summary of GPUs vs CPUs

- less total memory
- more cores and more parallelism
- Multicore CPUs are mostly multiple-instruction multiple-data (MIMD)
- GPUs are mostly single-instruction multiple-data (SIMD)

Blocks, Grids, Threads, Warps

- Recall blocks are the things that work in parallel, and blocks are arranged in grids
- $\mathrm{c}[\mathrm{blockIdx.x]}=\mathrm{a}[\mathrm{blockIdx.x]}+\mathrm{b}[\mathrm{blockIdx} . \mathrm{x}]$;
- That would be SIMD (single instruction multiple data)
- It's actually more complicated than that....

MIMD

https://courses.cs.washington.edu/courses/cse47 I/I3sp/lectures/GPUsStudents.pdf

SIMD

SIMD: Zooming in

SIMT: Single Instruction Multiple Threads

SIMT: Single Instruction Multiple Threads

A thread can access its own block id and also thread id. Blocks and threads are in a grid, which is 2D or 3D (there's a .x and a y part)

Comparison

SIMT

What's in a GPU?

Threads (SIMT, synchronous threads) are grouped into cores (which are decoupled, like a MIMD machine)

IDs and Dimensions

- A kernel is launched as a

 grid of blocks of threads-blockIdx and threadIdx are 3D

- We showed only one dimension (x)

Thread and block parallelism

$$
\begin{aligned}
& \mathrm{tx}=\text { cuda.threadIdx: } \mathrm{x} \\
& \text { ty }=\text { cuda.threadIdx:y } \\
& \mathrm{bx}=\text { cuda.blockIdx: } \mathrm{x} \\
& \mathrm{by}=\text { cuda.blockIdx:y } \\
& \mathrm{bw}=\text { cuda.blockDim. } \mathrm{x} \\
& \mathrm{bh}=\text { cuda.blockDim:y } \\
& \mathrm{x}=\mathrm{tx}+\mathrm{bx} * \mathrm{bw} \\
& \mathrm{y}=\mathrm{ty}+\mathrm{by} * \text { bh } \\
& \text { array }[\mathrm{x}, \mathrm{y}]=\text { something }(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

How Do You REALLY Use a GPU?

Recap: Using GPUs for ML

- Programming parallel machines is complicated
- To use the parallelism of a GPU in an ML algorithm we almost always use matrix algebra as an abstraction layer - i.e. vectorize

def logisticRegression(....):

".."
for X, Y in:
Z = W.matrix_multiply(X)
$\mathrm{P}=\operatorname{logistic}(\mathrm{Z})$
$\mathrm{W}=\mathrm{W}+$ learning_rate * $(\mathrm{P}-\mathrm{Y})$ * X

Recap: Using GPUs for ML

Recap: Using GPUs for ML

How Do You REALLY Use a GPU?

Example:Vectorizing Logistic Regression with Stochastic Gradient Descent

Vectorizing ML Algorithms

- We want to specify an algorithm so that
-It's concise
-It's easy to verify correctness
- It reveals to a compiler what can be done in parallel on a GPU
-Matrix-vector computations!

Vectorizing logistic regression

- Conditional probability of an example:

$$
P(Y=y \mid X=\mathbf{x}, \mathbf{w})= \begin{cases}\frac{1}{1+e^{-x \cdot \mathbf{w}}} & \text { if } y=1 \\ 1-\frac{1}{1+e^{-x \cdot \mathbf{w}}} & \text { if } y=0\end{cases}
$$

- Conditional log likelihood of an example:

$$
\begin{gathered}
\log P(Y=y \mid X=\mathbf{x}, \mathbf{w})= \begin{cases}\log p & \text { if } y=1 \\
\log (1-p) & \text { if } y=0\end{cases} \\
p \equiv \frac{1}{1+e^{-\mathbf{x} \cdot \mathbf{w}}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)} \\
\frac{\partial}{\partial w^{j}} \log P(Y=y \mid X=\mathbf{x}, \mathbf{w})=(y-p) x^{j}
\end{gathered}
$$

Vectorizing logistic regression

- Computation we'd like to parallelize:
-For each \mathbf{x} in the minibatch, compute

$$
p \equiv \frac{1}{1+e \mathrm{x} \cdot \mathbf{w}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)}
$$

- For each feature j : update w^{j} using

$$
\frac{\partial}{\partial w^{j}} \log P(Y=y \mid X=\mathbf{x}, \mathbf{w})=(y-p) x^{j}
$$

Vectorizing logistic regression

- Computation we'd like to parallelize:
-For each \mathbf{x} in the minibatch $X_{\text {batch }}$, compute

$$
p \equiv \frac{1}{1+e-\mathbf{x} \cdot \mathbf{w}}=\frac{1}{\left.1+\exp -\sum_{j} x^{j} w^{j}\right)}
$$

Note : $\mathbf{x} \cdot \mathbf{w}$ can be partially computed in parallel...

Vectorizing logistic regression

- Computation we'd like to parallelize:
-For each x in the minibatch $X_{b a t c h}$, compute

$$
p \equiv \frac{1}{1+e^{-\mathbf{x} \cdot \mathbf{w}}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)}
$$

Note: $X_{b a t c h} \cdot \mathrm{w}$ can be computed in parallel

$$
X_{\text {batch }}=\left[\begin{array}{ccc}
x_{1}^{1} & \cdots & x_{1}^{J} \\
\vdots & \ddots & \vdots \\
x_{B}^{1} & \cdots & x_{B}^{J}
\end{array}\right]
$$

Vectorizing logistic regression

- Computationwe'd like to parallelize:
-For each x in the minibatch $X_{b a t c h}$, compute

$$
p \equiv \frac{1}{1+e^{-\mathbf{x} \cdot \mathbf{w}}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)}
$$

$X_{\text {batch }} \boldsymbol{w}=\left[\begin{array}{ccc}x_{1}^{1} & \cdots & x_{1}^{J} \\ \vdots & \ddots & \vdots \\ x_{B}^{1} & \cdots & x_{B}^{J}\end{array}\right]\left[\begin{array}{c}w^{1} \\ \vdots \\ W^{J}\end{array}\right]=\left[\begin{array}{c}\boldsymbol{w} \cdot \boldsymbol{x}_{\mathbf{1}} \\ \vdots \\ \boldsymbol{w} \cdot \boldsymbol{x}_{B}\end{array}\right]$
We're most of the way now...

Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory
- You can handle very large datasets ... but slowly

Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory
- You can handle very large datasets ... but slowly
- You can speed it up by making the tasks in the stream bigger and doing them in parallel
- A GPU is a good way of doing that

Vectorizing logistic regression

- Computationwe'd like to parallelize:
-For each x in the minibatch $X_{b a t c h}$, compute

$$
p \equiv \frac{1}{1+e^{-\mathbf{x} \cdot \mathbf{w}}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)}
$$

$X_{\text {batch }} \boldsymbol{w}=\left[\begin{array}{ccc}x_{1}^{1} & \cdots & x_{1}^{J} \\ \vdots & \ddots & \vdots \\ x_{B}^{1} & \cdots & x_{B}^{J}\end{array}\right]\left[\begin{array}{c}w^{1} \\ \vdots \\ W^{J}\end{array}\right]=\left[\begin{array}{c}\boldsymbol{w} \cdot \boldsymbol{x}_{\mathbf{1}} \\ \vdots \\ \boldsymbol{w} \cdot \boldsymbol{x}_{B}\end{array}\right]$
We're most of the way now...

Vectorizing logistic regression

- Computation we'd like to parallelize:
-For each x in the minibatch $X_{\text {batch }}$, compute

$$
p \equiv \frac{1}{1+e^{-\mathbf{x} \cdot \mathbf{w}}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)}
$$

$\left[\begin{array}{c}w \cdot \boldsymbol{x}_{1} \\ \vdots \\ w \cdot \boldsymbol{x}_{\boldsymbol{B}}\end{array}\right]+1$
We can overload the operator for the vector/matrix class so that adding 1 will "work"

Vectorizing logistic regression

class Matrix(object):

def __add_(self,addend):
result $=$ Matrix ($)$
return result

$$
\begin{aligned}
& \mathrm{m}=\operatorname{Matrix}(\ldots) \\
& \mathrm{z}=\mathrm{m}+1
\end{aligned}
$$

We can overload the operator for the vector/matrix class so that adding c will create a copy with c added component-wise

Vectorizing logistic regression

class Matrix(object):
def _add_(self,addend): result $=$ Matrix ($)$
return result

$$
\begin{aligned}
& m=\operatorname{Matrix}(\ldots) \\
& z=(m+1) \cdot \exp ()
\end{aligned}
$$

....and also define operations like $\exp ()$ to work component-wise...

Vectorizing logistic regression

- Computation we'd like to parallelize:
-For each x in the minibatch $X_{b a t c h}$, compute

$$
p \equiv \frac{1}{1+e^{-\mathbf{x} \cdot \mathbf{w}}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)}
$$

$\mathrm{Xb}=\operatorname{Matrix}(\ldots)$
$\mathrm{w}=\operatorname{Matrix}(\ldots)$
def logistic(X): return (X+1).exp().reciprocal()
$\mathrm{p}=\operatorname{logistic}(\mathrm{Xb} . \operatorname{dot}(\mathrm{w})) \quad \# B$ rows, 1 column

Vectorizing logistic regression

- Computation we'd like to parallelize:
-For each \mathbf{x} in the minibatch, compute

$$
\begin{aligned}
& p \equiv \frac{1}{1+e^{-\mathbf{x} \cdot \mathbf{w}}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)} \\
& \frac{\partial}{\partial w^{j}} \log P(Y=y \mid X=\mathbf{x}, \mathbf{w})=(y-p) x^{j}
\end{aligned}
$$

$X_{\text {batch }} w=\left[\begin{array}{c}w \cdot x_{1} \\ \vdots \\ w \cdot x_{B}\end{array}\right] \rightarrow\left[\begin{array}{c}p_{1} \\ \vdots \\ p_{B}\end{array}\right] \quad\left[\begin{array}{c}\boldsymbol{y}_{1}-\boldsymbol{p}_{1} \\ \vdots \\ y_{B}-p_{B}\end{array}\right]$

Vectorizing logistic regression

- Computation we'd like to parallelize:
-For each \mathbf{x} in the minibatch, compute

$$
\begin{aligned}
p \equiv \frac{1}{1+e^{-\mathbf{x} \cdot \mathbf{w}}} & =\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)} \\
\frac{\partial}{\partial w^{j}} \log P(Y & =y \mid X=\mathbf{x}, \mathbf{w})=(y-p) x^{j}
\end{aligned}
$$

def logistic(X): return (X+1).exp().reciprocal()
$\mathrm{p}=\operatorname{logistic}(\mathrm{Xb} . \operatorname{dot}(\mathrm{w}))$ \# B rows, 1 column $\operatorname{grad}=\mathrm{Xb} \cdot \operatorname{dot}(\mathrm{y}-\mathrm{p}) \cdot$ rowsum() * 1/B
$\mathrm{w}=\mathrm{w}+$ grad * rate

EXAMPLE: NUMPY PACKAGE

```
import numpy as np
http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html
import numpy.random as random
from examples.utils.data_utils import gaussian_cluster_generator as make_data
# Predict the class using multinomial logistic regression (softmax regression).
def predict(w, x):
    a = np.exp(np.dot(x, w))
    a_sum = np.sum(a, axis=1, keepdims=True)
    prob = a / a_sum
    return prob
# Using gradient descent to fit the correct classes.
def train(w, x, loops):
    for i in range(loops):
        prob = predict(w, x)
        loss = -np.sum(label * np.log(prob)) / num_samples
        if i % 10 == 0:
            print('Iter {}, training loss {}'.format(i, loss))
        # gradient descent
        dy = prob - label
        dw = np.dot(data.T, dy) / num_samples
        # update parameters; fixed learning rate of 0.1
        w -= 0.1 * dw
# Initialize training data.
num_samples = 10000
num_features = 500
num_classes = 5
data, label = make_data(num_samples, num_features, num_classes)
# Initialize training weight and train
weight = random.randn(num_features, num_classes)
train(weight, data, 100)
```


Binary to softmax logistic regression

$$
\begin{gathered}
p \equiv \frac{1}{1+e^{-\mathbf{x} \cdot \mathbf{w}}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)} \\
X_{\text {batch }} \boldsymbol{w}=\left[\begin{array}{ccc}
x_{1}^{1} & \cdots & x_{1}^{J} \\
\vdots & \ddots & \vdots \\
x_{B}^{1} & \cdots & x_{B}^{J}
\end{array}\right]\left[\begin{array}{c}
w^{1} \\
\vdots \\
W^{J}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{w} \cdot \boldsymbol{x}_{\mathbf{1}} \\
\vdots \\
\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{B}}
\end{array}\right]
\end{gathered}
$$

Binary to softmax logistic regression

$$
\begin{aligned}
& p \equiv \frac{1}{1+e^{* w}}=\frac{1}{1+\exp \left(-\sum_{j} x^{j} w^{j}\right)} \\
& p^{y} \equiv \frac{\exp \left(\boldsymbol{x} \cdot \boldsymbol{w}^{y}\right)}{\sum_{y^{\prime}} \exp \left(\boldsymbol{x} \cdot \boldsymbol{w}^{y^{\prime}}\right)} \\
& X W=\left[\begin{array}{ccc}
x_{1}^{1} & \cdots & x_{1}^{J} \\
\vdots & \ddots & \vdots \\
x_{B}^{1} & \cdots & x_{B}^{J}
\end{array}\right]\left[\begin{array}{c}
w^{1} \\
\vdots \\
w^{J}
\end{array}\right]-\left[\begin{array}{c}
\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{1}} \\
\vdots \\
\boldsymbol{w} \cdot \boldsymbol{x}_{B}
\end{array}\right] \\
& X W=\left[\begin{array}{ccc}
x_{1}^{1} & \cdots & x_{1}^{J} \\
\vdots & \ddots & \vdots \\
x_{B}^{1} & \cdots & x_{B}^{J}
\end{array}\right]\left[\begin{array}{ccc}
w_{1}^{y 1} & \ldots & w_{1}^{y K} \\
\vdots & \ddots & \vdots \\
w_{J}^{y 1} & \cdots & w_{J}^{\nu K}
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{w}^{y 1} \cdot \boldsymbol{x}_{1} & \ldots & \boldsymbol{w}^{y K} \cdot \boldsymbol{x}_{1} \\
\vdots & \ddots & \vdots \\
\boldsymbol{w}^{y 1} \cdot \boldsymbol{x}_{B} & \ldots & \boldsymbol{w}^{y K} \cdot \boldsymbol{x}_{B}
\end{array}\right]
\end{aligned}
$$

from examples.utils.data_utils import gaussian_clusted

Matrix multiply,; then

\# Predict the class using multinomial logistic rear

def predict(w, x):

$$
a=n p \cdot \exp (n p \cdot \operatorname{dot}(x, w))
$$

exponentiate

$$
\text { a_sum }=n p . \operatorname{sum}(a, \text { axis=1, keepdims=True) }
$$

prob = a / a_sum
return prob

prob will have B rows

 and K columns, and each row will sum to 1
Sum the columns to get the denominator; keepdim=True means...

$$
X W=\left[\begin{array}{ccc}
x_{1}^{1} & \cdots & x_{1}^{J} \\
\vdots & \ddots & \vdots \\
x_{B}^{1} & \cdots & x_{B}^{J}
\end{array}\right]\left[\begin{array}{ccc}
w_{1}^{y 1} & \ldots & w_{1}^{y K} \\
\vdots & \ddots & \vdots \\
w_{J}^{y 1} & \ldots & w_{J}^{y K}
\end{array}\right]=\left[\begin{array}{ccc}
w^{y 1} \cdot \boldsymbol{x}_{1} & \ldots & w^{y K} \cdot \boldsymbol{x}_{1} \\
\vdots & \ddots & \vdots \\
w^{y 1} \cdot \boldsymbol{x}_{B} & \ldots & w^{y K} \cdot \boldsymbol{x}_{B}
\end{array}\right]
$$

```
import numpy as np
http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html
import numpy.random as random
from examples.utils.data_utils import gaussian_cluster_generator as make_data
# Predict the class using multinomial logistic regression (softmax regression).
def predict(w, x):
    a = np.exp(np.dot(x, w))
    a_sum = np.sum(a, axis=1, keepdims=True)
    prob = a / a_sum
    return prob
# Using gradient descent to fit the correct classes.
def train(w, x, loops):
    for i in range(loops):
            prob = predict(w, x)
            loss = -np.sum(label * np.log(prob)) / num_samples
            if i % 10 == 0:
                print('Iter {}, training loss {}'.format(i, loss))
            # gradient descent
            dy = prob - label
            dw = np.dot(data.T, dy) / num_samples
            # update parameters; fixed learning rate of 0.1
            w -= 0.1 * dw
# Initialize training data.
num_samples = 10000
num_features = 500
num classes = 5
data, label = make_data(num_samples, num_features, num_classes)
# Initialize training weight and train
weight = random.randn(num_features, num_classes)
train(weight, data, 100)
```

import numpy as np
import numpy.random as random
from examples.utils.data_utils import gaussian_clusted
\# Predict the class using multinomial logistic regr

def train (w, x, loops):
for i in range(loops):
prob $=\operatorname{predict}(w, x)$
loss $=-n p . \operatorname{sum}(l a b e l * n / \log ($ prob $)) /$ hum sam

Error on each example x in batch and each class y

python bug: should be x.T (transpose)

\# gradient descent
dy = prob - label
$\mathrm{dw}=\mathrm{np} . \operatorname{dot}($ data.T, dy) / num_samples
\# update parameters; fixed Learning rate
w -= 0.1 * dm
The gradient step!

$$
\frac{\partial}{\partial w^{j}} \log P(Y=y \mid X=\mathbf{x}, \mathbf{w})=\left(\underline{y-p) x^{j}}\right.
$$

weight = random.randn(num_teatures, num_classes)
train(weight, data, 100)

So this will run in parallel on a GPU?

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

So this will run in parallel on a GPU? Not yet....

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

```
import numpy as np
import numpy.random as random
from examples.utils.data_utils import gaussian_cluster_generator as make_data
# Predict the class using multinomial logistic regression (softmax regression).
def predict(w, x):
    a = np.exp(np.dot(x, w))
    a_sum = np.sum(a, axis=1, keepdims=True)
    prob = a / a_sum
    return prob
# Using gradient descent to fit the correct classes.
def train(w, x, loops):
    for i in range(loops):
        prob = predict(w, x)
        loss = -np.sum(label * np.log(prob)) / num_samples
        if i % 10 == 0:
            print('Iter {}, training loss {}'.format(i, loss))
```

Option 1: switch from numpy (old package) to cupy (new GPU-oriented package)

```
        # gradient descent
        dw = np.dot(data.T, dy) / num_samples
        # update parameters; fixed learning rate
        w -= 0.1 * dw
# Initialize training data.
num_samples = 10000
num_features = 500
num_classes = 5
data, label = make_data(num_samples, num_features, num_classes)
# Initialize training weight and train
weight = random.randn(num_features, num_classes)
train(weight, data, 100)
```

$d y=$ prob - label

