
Programming Models
MapReduce

Majd Sakr,
Garth Gibson, Greg Ganger, Raja Sambasivan

15-719/18-847b Advanced Cloud Computing

Fall 2013

Sep 23, 2013

1

MapReduce In a Nutshell
• MapReduce incorporates two phases

• Map Phase
• Reduce phase

Map
Task

Map
Task

Map
Task

Map
Task

Reduce
Task

Reduce
Task

Reduce
Task

Partition
Partition

Partition

Partition

Partition
Partition Partition
Partition

Partition

To HDFS Dataset

HDFS

HDFS BLK

HDFS BLK

HDFS BLK

HDFS BLK

Map Phase
Shuffle Stage

Merge &
 Sort
Stage Reduce Stage

Reduce Phase

Partition

Split 0

Split 1

Split 2

Split 3

Partition
Partition

Partition

Partition
Partition

Partition

Partition

Data Distribution
• In a MapReduce cluster, data is distributed to all the nodes of the cluster

as it is being loaded

• An underlying distributed file systems (e.g., GFS, HDFS) splits large data
files into chunks which are managed by different nodes in the cluster

• Even though the file chunks are distributed across several machines, they
form a single namespace

7

Input data: A large file

Node 1

Chunk of input data

Node 2

Chunk of input data

Node 3

Chunk of input data

MapReduce
• In MapReduce, splits are processed in

isolation by tasks called Mappers

• The output from the mappers is denoted as
intermediate output and brought
into a second set of tasks called Reducers

• The process of reading intermediate output into
a set of Reducers is known as shuffling

• The Reducers produce the final output

• Overall, MapReduce breaks the data flow into two phases,
map phase and reduce phase

C0 C1 C2 C3

M0 M1 M2 M3

IO IO IO IO

R0 R1

FO FO

splits

mappers

Reducers

M
ap

 P
ha

se

R
ed

uc
e

Ph
as

e

Shuffling Data

Merge & Sort

Keys and Values
• The programmer in MapReduce has to specify two functions, the map

function and the reduce function that implement the Mapper and the
Reducer in a MapReduce program

• In MapReduce data elements are always structured as
key-value (i.e., (K, V)) pairs

• The map and reduce functions receive and emit (K, V) pairs

(K, V)
Pairs

Map
Function

(K’, V’)
Pairs

Reduce
Function

(K’’, V’’)
Pairs

Input Splits Intermediate Output Final Output

Splits

• A split can contain reference to one or more HDFS blocks
• Configurable parameter

• Each map task processes one split
• # of splits dictates the # of map tasks
• By default one split contains reference to one HDFS block
• Map tasks are scheduled in the vicinity of HDFS blocks to

reduce network traffic

Partitions
• Map tasks store intermediate output on local disk (not HDFS)
• A subset of intermediate key space is assigned to each Reducer

• hash(key) mod R

• These subsets are known as partitions

Different colors represent
different keys (potentially)
from different Mappers

Partitions are the input to Reducers

Network Topology In MapReduce

• MapReduce assumes a tree style network topology

• Nodes are spread over different racks embraced in one or many data centers

• The bandwidth between two nodes is dependent on their relative locations in the
network topology

• The assumption is that nodes that are on the same rack will have higher bandwidth
between them as opposed to nodes that are off-rack

Hadoop MapReduce: A Closer Look

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local
HDFS store

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local
HDFS store

Node 1 Node 2

Shuffling
Process

Intermediate
(K,V) pairs

exchanged by
all nodes

Input Files
• Input files are where the data for a MapReduce task is

initially stored

• The input files typically reside in a distributed file system
(e.g. HDFS)

• The format of input files is arbitrary

• Line-based log files
• Binary files
• Multi-line input records
• Or something else entirely

14

file

file

Input Splits
• An input split describes a unit of data that a single map task in a

MapReduce program will process

• By dividing the file into splits, we allow
several map tasks to operate on a single
file in parallel

• If the file is very large, this can improve
performance significantly through parallelism

• Each map task corresponds to a single input split

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RecordReader
• The input split defines a slice of data but does not describe how

to access it

• The RecordReader class actually loads data from its source and converts it
into (K, V) pairs suitable for reading by Mappers

• The RecordReader is invoked repeatedly
on the input until the entire split is consumed

• Each invocation of the RecordReader leads
to another call of the map function defined
by the programmer

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Mapper and Reducer
• The Mapper performs the user-defined work of the

first phase of the MapReduce program

• A new instance of Mapper is created for each split

• The Reducer performs the user-defined work of
the second phase of the MapReduce program

• A new instance of Reducer is created for each partition
• For each key in the partition assigned to a Reducer, the

Reducer is called once

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

Partitioner
• Each mapper may emit (K, V) pairs to any partition

• Therefore, the map nodes must all agree on

where to send different pieces of
intermediate data

• The partitioner class determines which
partition a given (K,V) pair will go to

• The default partitioner computes a hash value for a
given key and assigns it to a partition based on
this result

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

Sort
• Each Reducer is responsible for reducing

the values associated with (several)
intermediate keys

• The set of intermediate keys on a single
node is automatically sorted by
MapReduce before they are presented
to the Reducer

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

Combiner Functions
• MapReduce applications are limited by the bandwidth available

on the cluster
• It pays to minimize the data shuffled between map and reduce tasks
• Hadoop allows the user to specify a combiner function (just like the reduce

function) to be run on a map output

MT

MT

MT

MT

MT

MT

RT
LEGEND:

•R = Rack
•N = Node
•MT = Map Task
•RT = Reduce Task
•Y = Year
•T = Temperature

MT
(1950, 0)
(1950, 20)
(1950, 10)

(1950, 20)

Map
output

Combiner
output

N

N

R

N

N

R

(Y, T)

Job Scheduling in MapReduce

• In MapReduce, an application is represented as a job

• A job encompasses multiple map and reduce tasks

• Job schedulers in MapReduce are pluggable

• Hadoop MapReduce by default FIFO scheduler for jobs

• Schedules jobs in order of submission
• Starvation with long-running jobs
• No job preemption
• No evaluation of job priority or size

24

Multi-user Job Scheduling in
MapReduce

• Fair scheduler (Facebook)
– Pools of jobs, each pool is assigned a set of shares
– Jobs get (on ave) equal share of slots over time
– Across pools, use Fair scheduler, within pool, FIFO

or Fair scheduler
• Capacity scheduler (Yahoo!)

– Creates job queues
– Each queue is configured with # (capacity) of slots
– Within queue, scheduling is priority based

Task Scheduling in MapReduce
• MapReduce adopts a master-slave architecture

• The master node in MapReduce is referred

to as Job Tracker (JT)

• Each slave node in MapReduce is referred
to as Task Tracker (TT)

• MapReduce adopts a pull scheduling strategy rather than
a push one

• I.e., JT does not push map and reduce tasks to TTs but rather TTs pull them by

making pertaining requests

26

JT

T0 T1 T2

Tasks Queue

TT
 Task Slots

TT
 Task Slots

T0 T1

Map and Reduce Task Scheduling

• Every TT sends a heartbeat message periodically to JT encompassing a
request for a map or a reduce task to run

I. Map Task Scheduling:

• JT satisfies requests for map tasks via attempting to schedule mappers in the

vicinity of their input splits (i.e., it considers locality)

II. Reduce Task Scheduling:

• However, JT simply assigns the next yet-to-run reduce task to a requesting TT

regardless of TT’s network location and its implied effect on the reducer’s
shuffle time (i.e., it does not consider locality)

27

Task Scheduling

Fault Tolerance in Hadoop

• Data redundancy
• Achieved at the storage layer through replicas (default is 3)
• Stored a physically separate machines
• Can tolerate

– Corrupted files
– Faulty nodes

• HDFS:
– Computes checksums for all data written to it
– Verifies when reading

• Task Resiliency (task slowdown or failure)
• Monitor tasks to detect faulty or slow
• Replicate

31

Task Resiliency

• MapReduce can guide jobs toward a successful completion even when jobs are run
on a large cluster where probability of failures increases

• The primary way that MapReduce achieves fault tolerance is through restarting
tasks

• If a TT fails to communicate with JT for a period of time (by default, 1 minute in
Hadoop), JT will assume that TT in question has crashed

• If the job is still in the map phase, JT asks another TT to re-execute all

Mappers that previously ran at the failed TT

• If the job is in the reduce phase, JT asks another TT to re-execute all Reducers
that were in progress on the failed TT

32

Speculative Execution

• A MapReduce job is dominated by the slowest task

• MapReduce attempts to locate slow tasks (stragglers) and run redundant
(speculative) tasks that will optimistically commit before the
corresponding stragglers

• This process is known as speculative execution

• Only one copy of a straggler is allowed to be speculated

• Whichever copy of a task commits first, it becomes the definitive copy,
and the other copy is killed by JT

What Makes MapReduce Unique?

• MapReduce is characterized by:

1. Its simplified programming model which allows the user to quickly

write and test distributed systems

2. Its efficient and automatic distribution of data and workload across
machines

3. Its flat scalability curve. Specifically, after a Mapreduce program is
written and functioning on 10 nodes, very little-if any- work is
required for making that same program run on 1000 nodes

4. Its fault tolerance approach

36

