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Deep	Architectures
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Word2Vec	and	GloVe	Embeddings
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Representing	words	in	a	deep	network

1 aaliyeh 0
2 aardvark 0
3 aaai 0

… … …
18462 halloween 1
18463 hallows 0

… … …
… … …

29999 zymurgy 0
30000 zynga 0

+0.11
9.01

-2.71
…
0.777
0.317

weights

...

“1 hot” vector

hidden layer

h = x W

but really h is the i-th row of W
so learning W is just learning a hidden-
layer encoding for each word in the 
vocabulary (embedding)

the embeddings will 
be similar for words 
that behave similarly 
with respect to the 
downstream task
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Representing	words	in	a	deep	network

1 aaliyeh 0
2 aardvark 0
3 aaai 0

… … …
18462 halloween 1
18463 hallows 0

… … …
… … …

29999 zymurgy 0
30000 zynga 0

+0.11
9.01

-2.71
…
0.777
0.317

weights

“1 hot” vector

hidden layer

…

0.01 aaliyeh
0.11 aardvark
0.00 aaai
… …
0.42 costume

… …

0.31 sexy
… …
0.01 zymurgy
0.01 zynga

words that 
cooccur

potential downstream 
task: predict the 
words that co-occur 
with input word
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word2vec:	skip-gram	embeddings

from an input 
word w(t) in 
a document

vector that 
“encodes” the t-th

word

So that the hidden 
layer will predict 

likely nearby 
words w(t-K), …, 

w(t+K)

final step of 
this 
prediction is 
a softmax
over the 
vocabulary
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embedding

A word in context context “I had class 
on Halloween which seemed unfair” 
becomes an example



word2vec:	skip-gram	embeddings

Training data:
positive
examples are 
pairs of words 
w(t), w(t+j) 
that co-occur

Training data:
negative examples are 
samples of pairs of 
words w(t), w(t+j) that 
don’t co-occur

You want to train over a 
very large corpus (100M 
words+) and hundreds+ 
dimensions
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GLOVE	embeddings

embeddings for words i and j

how often words i and j co-
occur in a corpus

how much to weight this 
word pair, based on frequency

biases for words i and j
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RECURRENT	NEURAL	NETWORKS
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Motivation:	what	about	sequence	
prediction?

What can I do when input size and output size vary?
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Motivation:	what	about	sequence	
prediction?

x

A

h
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Architecture	for	an	RNN

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sequence of outputs

Sequence of inputs
Start of 

sequence 
marker

End of 
sequence 
marker

Some 
information 

is passed 
from one 
subunit to 
the next
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Architecture	for	an	1980’s	RNN

…

Problem with this: it’s extremely deep 
and very hard to train
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Architecture	for	an	LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Longterm-short term model

σ:  output in [0,1]
tanh: output in [-1,+1]

Decide 
what 

to 
forget 

Decide 
what 

to 
insert

Combine with 
transformed xt

“Bits of 
memory”

14



Walkthrough
What part of memory 

to “forget” – zero 
means forget this bit
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Walkthrough

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

What bits to insert 
into the next states

What content to store 
into the next state

16



Walkthrough

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Next memory cell 
content – mixture of 
not-forgotten part of 

previous cell and 
insertion

This is the important 
part! the LSTM can 

pass data throuh
unchanged
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Walkthrough

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

What part of cell to 
output

tanh maps bits to [-1,+1] 
range
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Architecture	for	an	LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

it

Ct-1

ot

(1)

(2)

(3)

ft
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Implementing	an	LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(1)

(2)

(3)

For	t	=	1,…,T:
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SOME	FUN	LSTM	EXAMPLES

http://karpathy.github.io/2015/05/21/rnn-effectiveness/21



LSTMs	can	be	used	for	other	sequence	
tasks

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

sequence 
classification translation named entity 

recognition
image 
captioning
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Character-level	language	model

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Test time:
• pick a seed 

character 
sequence

• generate the 
next character

• then the next
• then the next …
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Character-level	language	model

http://karpathy.github.io/2015/05/21/rnn-effectiveness/24



Character-level	language	model

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Yoav Goldberg: 
order-10 
unsmoothed 
character n-grams
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Character-level	language	model

http://karpathy.github.io/2015/05/21/rnn-effectiveness/26



Character-level	language	model

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LaTeX “almost compiles”
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Character-level	language	model

http://karpathy.github.io/2015/05/21/rnn-effectiveness/28



More	examples
https://medium.com/aifromscratch/when-janelle-shane-trains-rnns-dcd4c3fa9d3d
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CONVOLUTIONAL	NEURAL	NETWORKS
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Model	of	vision	in	animals
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Vision	with	ANNs
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What’s	a	convolution?

1-D

https://en.wikipedia.org/wiki/Convolution
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What’s	a	convolution?

1-D

https://en.wikipedia.org/wiki/Convolution
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What’s	a	convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo
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What’s	a	convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo
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What’s	a	convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo
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What’s	a	convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo
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What’s	a	convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo
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What’s	a	convolution?
• Basic	idea:
– Pick	a	3-3	matrix	F	of	weights
– Slide	this	over	an	image	and	compute	the	“inner	
product”	(similarity)	of	F	and	the	corresponding	
field	of	the	image,	and	replace	the	pixel	in	the	
center	of	the	field	with	the	output	of	the	inner	
product	operation

• Key	point:
– Different	convolutions	extract	different	types	of	
low-level	“features”	from	an	image
– All	that	we	need	to	vary	to	generate	these	
different	features	is	the	weights	of	F
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How	do	we	convolve	an	image	with	an	
ANN?

Note that the parameters in the matrix defining the 
convolution are tied across all places that it is used 
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How	do	we	do	many	convolutions	of	an	
image	with	an	ANN?
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Example:	6	convolutions	of	a	digit
http://scs.ryerson.ca/~aharley/vis/conv/
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CNNs	typically	alternate	convolutions,	
non-linearity,	and	then	downsampling

Downsampling is usually averaging or (more 
common in recent CNNs) max-pooling
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Why	do	max-pooling?
• Saves	space
• Reduces	overfitting?
• Because	I’m	going	to	add	more	convolutions	after	it!

– Allows	the	short-range	convolutions	to	extend	over	larger	subfields	
of	the	images
• So	we	can	spot	larger	objects
• Eg,	a	long	horizontal	line,	or	a	corner,	or	…
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Another	CNN	visualization
https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
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Why	do	max-pooling?
• Saves	space
• Reduces	overfitting?
• Because	I’m	going	to	add	more	convolutions	after	it!
– Allows	the	short-range	convolutions	to	extend	
over	larger	subfields	of	the	images
• So	we	can	spot	larger	objects
• Eg,	a	long	horizontal	line,	or	a	corner,	or	…

• At	some	point	the	feature	maps	start	to	get	very	
sparse	and	blobby	– they	are	indicators	of	some	
semantic	property,	not	a	recognizable	
transformation	of	the	image

• Then	just	use	them	as	features	in	a	“normal”	ANN
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Why	do	max-pooling?
• Saves	space
• Reduces	overfitting?
• Because	I’m	going	to	add	more	convolutions	after	it!

– Allows	the	short-range	convolutions	to	extend	over	larger	subfields	
of	the	images
• So	we	can	spot	larger	objects
• Eg,	a	long	horizontal	line,	or	a	corner,	or	…

50



Alternating	convolution	and	downsampling

5 layers up

The subfield 
in a large 
dataset that 
gives the 
strongest 
output for a 
neuron
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Using	RNNs	and	CNNs
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LSTMs	can	be	used	for	other	tasks

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

sequence 
classification translation named entity 

recognition
image 
captioning

seq2seqencoder/decoder

CNN
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ANN	Tricks	for	
NLP

• Common	tricks
– represent	words	with	embeddings
– represent	words	in	context	with	RNN	hidden	state	
– represent	a	sentence	with	the	last	hidden	state
• or	pool	all	hidden	states	with	MAX	or	SUM

– biLSTM:	run	an	LSTM	in	both	directions
• represent	with	first	+	last	hidden	state

– feed	representations	into	a	deeper	network…. 54



Example:	reasoning	about	entailment
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RNNs	for	
entailment
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Example:	question	answering

Common trick: train 
network to make 
representations 

similar/dissimilar, not to 
classify
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Example:	question	answering
Adding attention:
• classify the hidden states h1, … hm of the answer

according to relevance to the question
• when you pool, weight by the classifier’s score
• classifier is based on question representation oq

and hidden state hi
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Example:	question	answering
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Example:	question	answering	(biDAF)
Seo et al, ICLR 2017
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Example:	question	answering	(GA)
Dhingra, Yang, Cohen, Salakutinof ACL 2017 
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Example:	recommendation
Rose Catherine & Cohen, RecSys 2017 
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Example:	recommendation
Rose Catherine & Cohen, RecSys 2017 
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Example:	recommendation
Rose Catherine & Cohen, RecSys 2017 
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