

Deep Architectures

Word2Vec and GloVe Embeddings

Representing words in a deep network

"1 hot" vector

the embeddings will be similar for words that behave similarly with respect to the downstream task

but really **h** is the i-th row of W so learning W is just learning a hiddenlayer encoding for each word in the vocabulary (**embedding**)

Representing words in a deep network

with input word

word2vec: skip-gram embeddings

Skip-gram

word2vec: skip-gram embeddings

Skip-gram

GLOVE embeddings

RECURRENT NEURAL NETWORKS

Motivation: what about sequence prediction?

What can I do when input size and output size vary?

Motivation: what about sequence prediction?

Architecture for an RNN

Architecture for an 1980's RNN

Problem with this: it's extremely deep and very hard to train

Architecture for an LSTM

Walkthrough

What part of memory to "forget" – zero means forget this bit

 $f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$

Walkthrough

What bits to insert into the next states

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

What content to store into the next state

Walkthrough

Next memory cell content – mixture of not-forgotten part of previous cell and insertion

This is the important part! the LSTM can pass data throuh unchanged

Architecture for an LSTM

Implementing an LSTM

For
$$t = 1,...,T$$
:
(1) $f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)$
 $i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$
 $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$
(2) $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$
(3) $o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$
 $h_t = o_t * \tanh(C_t)$
(b) $h_t = o_t * \tanh(C_t)$

SOME FUN LSTM EXAMPLES

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LSTMs can be used for other sequence tasks

http://karpathy.github.io/2015/05/21/rnn-effective²²ess/

Test time:

- pick a seed character sequence
- generate the next character
- then the next
- then the next ...

http://karpathy.github.io/2015/05/21/rnn-effective²³ess/

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator: They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO: Well, your wit is in the care of side and that.

Second Lord: They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

```
First Citizen:
Nay, then, that was hers,
It speaks against your other service:
But since the
youth of the circumstance be spoken:
Your uncle and one Baptista's daughter.
```

```
Yoav Goldberg:
order-10
unsmoothed
character n-grams
```

```
SEBASTIAN:
Do I stand till the break off.
```

```
BIRON:
Hide thy head.
```

```
VENTIDIUS:
He purposeth to Athens: whither, with the vow
I made to handle you.
```

```
FALSTAFF:
My good knave.
```

http://karpathy.github.io/2015/05/21/rnn-effective²⁵ess/

MMMMM----- Recipe via Meal-Master (tm) v8.05

Title: BARBECUE RIBS Categories: Chinese, Appetizers Yield: 4 Servings

- 1 pk Seasoned rice
- 1 Beer -- cut into -cubes
- 1 ts Sugar
- 3/4 c Water Chopped finels, -up to 4 tblsp of chopped 2 pk Yeast Bread/over

MMMMM-----FILLING-----FILLING------FILLING------

- 2 c Pineapple, chopped
- 1/3 c Milk
- 1/2 c Pecans

Cream of each

- 2 tb Balsamic cocoa
- 2 tb Flour
- 2 ts Lemon juice

Granulated sugar

2 tb Orange juice

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

For $\bigoplus_{n=1,...,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\operatorname{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\mathrm{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

$$Arrows = (Sch/S)_{fppf}^{opp}, (Sch/S)_{fppf}$$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

LaTeX "almost compiles"

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

```
/*
 * Increment the size file of the new incorrect UI FILTER group information
 * of the size generatively.
 */
static int indicate policy(void)
  int error;
 if (fd == MARN EPT) {
    /*
     * The kernel blank will coeld it to userspace.
     */
    if (ss->segment < mem total)</pre>
      unblock graph and set blocked();
    else
      ret = 1;
    goto bail;
  }
  segaddr = in SB(in.addr);
  selector = seg / 16;
  setup works = true;
 for (i = 0; i < blocks; i++) {</pre>
    seq = buf[i++];
   bpf = bd->bd.next + i * search;
   if (fd) {
      current = blocked;
    }
  }
```

http://karpathy.github.io/2015/05/21/rnn-effective²⁸ess/

More examples

https://medium.com/aifromscratch/when-janelle-shane-trains-rnns-dcd4c3fa9d3d

	bleedwood 187 191 172
	parp green 110 117 72
	peacake bring 229 206 186
	flipper 159 179 186
	lemon nose 236 203 161
	shy bather 187 198 197
	spiced rope 85 90 79
3	polar forest ma pepper 170 16
	windled waters 186 206 229
	barkying white 243 231 206
	clay cow 161 193 172
	dry custard 225 175 134

Volkswagen Colon Buick Shoat Buick Crapara Buick Apron Fiat Deter Fiat Coma Fiat S-0-S Fiat Doug

Facial Agoricosis Strecting Dissection of the Breath Bacterial Fradular Syndrome Loss Of Consufficiency Hemopheritis Joint Pseudomalabia Hammon Expressive Foot Clob Cancer of the Cancer

Horse Stools

CONVOLUTIONAL NEURAL NETWORKS

Model of vision in animals

[Hubel & Wiesel 1962]:

- simple cells detect local features
- complex cells "pool" the outputs of simple cells within a retinotopic neighborhood.

Vision with ANNs

(LeCun et al., 1989)

https://en.wikipedia.org/wiki/Convolution

1-D
$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

= $\int_{-\infty}^{\infty} f(t - \tau) g(\tau) d\tau$.

https://en.wikipedia.org/wiki/Convolution

1-D
$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

= $\int_{-\infty}^{\infty} f(t - \tau) g(\tau) d\tau$.

- Basic idea:
 - Pick a 3-3 matrix F of weights
 - Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation
- Key point:
 - Different convolutions extract different types of low-level "features" from an image
 - All that we need to vary to generate these different features is the weights of F

How do we convolve an image with an ANN?

Note that the parameters in the matrix defining the convolution are **tied** across all places that it is used

input neurons

How do we do many convolutions of an image with an ANN?

 28×28 input neurons

first hidden layer: $3 \times 24 \times 24$ neurons

Example: 6 convolutions of a digit

http://scs.ryerson.ca/~aharley/vis/conv/

CNNs typically alternate convolutions, non-linearity, and then downsampling

Downsampling is usually averaging or (more common in recent CNNs) max-pooling

Why do max-pooling?

- Saves space
- Reduces overfitting?
- Because I'm going to add *more* convolutions after it!
 - Allows the short-range convolutions to extend over larger subfields of the images

 $\overline{7}$

- So we can spot larger objects
- Eg, a long horizontal line, or a corner, or ...

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Another CNN visualization

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Why do max-pooling?

- Saves space
- Reduces overfitting?
- Because I'm going to add *more* convolutions after it!
 - Allows the short-range convolutions to extend over larger subfields of the images
 - So we can spot larger objects
 - Eg, a long horizontal line, or a corner, or ...
- At some point the feature maps start to get very sparse and blobby – they are indicators of some semantic property, not a recognizable transformation of the image
- Then just use them as features in a "normal" ANN

Why do max-pooling?

- Saves space
- Reduces overfitting?
- Because I'm going to add *more* convolutions after it!
 - Allows the short-range convolutions to extend over larger subfields of the images

 $\overline{7}$

- So we can spot larger objects
- Eg, a long horizontal line, or a corner, or ...

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Alternating convolution and downsampling

5 layers up

The subfield in a large dataset that gives the strongest output for a neuron

Using RNNs and CNNs

LSTMs can be used for other tasks

• Common tricks

NLP

ANN Tricks for

- represent words with embeddings
- represent words in context with RNN hidden state
- represent a sentence with the last hidden state
 - or pool all hidden states with MAX or SUM
- biLSTM: run an LSTM in both directions
 - represent with first + last hidden state
- feed representations into a deeper network....

Example: reasoning about entailment

A large annotated corpus for learning natural language inference

Samuel R. Bowman*[†] sbowman@stanford.edu Gabor Angeli^{†‡} angeli@stanford.edu

Christopher Potts* cgpotts@stanford.edu Christopher D. Manning*^{†‡} manning@stanford.edu

A man inspects the uniform of a figure in some East Asian country.	contradiction CCCCCC	The man is sleeping
An older and younger man smiling.	neutral N N E N N	Two men are smiling and laughing at the cats play- ing on the floor.
A black race car starts up in front of a crowd of people.	contradiction	A man is driving down a lonely road.
A soccer game with multiple males playing.	entailment E E E E E	Some men are playing a sport.
A smiling costumed woman is holding an um- brella.	neutral N N E C N	A happy woman in a fairy costume holds an um- brella.

RNNs for entailment

Sentence model	Train	Test		
100d Sum of words	79.3	75.3		
100d RNN 73.1 7				
100d LSTM RNN	84.8	77.6		
System	s	NLI		
System Edit Distance Ba	sed a	NLI 71.9		
System Edit Distance Ba Classifier Based	sed	NLI 71.9 72.2		

Example: question answering

LSTM-BASED DEEP LEARNING MODELS FOR NON-FACTOID ANSWER SELECTION

Ming Tan, Cicero dos Santos, Bing Xiang & Bowen Zhou IBM Watson Core Technologies Yorktown Heights, NY, USA {mingtan, cicerons, bingxia, zhou}@us.ibm.com

Common trick: train network to make representations similar/dissimilar, not to classify

Example: question answering

Adding **attention**:

- classify the hidden states *h*₁, ... *h*_m of the answer according to relevance to the question
- when you pool, weight by the classifier's score
- classifier is based on question representation o_q and hidden state h_i

Example: question answering

		Validation	Test1	Test2	
	A. Bag-of-word	31.9	32.1	32.2	
	B. Metzler-Bendersky IR model	52.7	55.1	50.8	
	C. Architecture-II in (Feng et al., 2015)	61.8	62.8	59.2	
	D. Architecture-II with GESD	65.4	65.3	61.0	
	_				
	Model	V	alidation	Test1	Test2
Α	QA-LSTM basic-model(head/tail)	54	4.0	53.1	51.2
B	QA-LSTM basic-model(avg pooling)	58	8.5	58.2	54.0
С	QA-LSTM basic-model(max pooling)	64	4.3	63.1	58.0
					`
G	QA-LSTM with attention (max pooling)) 60	6.5	63.7	60.3
H	QA-LSTM with attention (avg pooling)	68	8.4	68.1	62.2

Example: question answering (biDAF)

Seo et al, ICLR 2017

Example: question answering (GA)

Dhingra, Yang, Cohen, Salakutinof ACL 2017

Model	CNN		Daily Mail		CBT-NE		CBT-CN	
Muut	Val	Test	Val	Test	Val	Test	Val	Test
Humans (query) †	_	_	_	_	_	52.0	_	64.4
Humans (context + query) †	-	_	-	_	-	81.6	_	81.6
LSTMs (context + query) †	-	_	-	_	51.2	41.8	62.6	56.0
Deep LSTM Reader †	55.0	57.0	63.3	62.2	-	_	-	_
Attentive Reader †	61.6	63.0	70.5	69.0	-	_	-	_
Impatient Reader †	61.8	63.8	69.0	68.0	-	_	-	_
MemNets †	63.4	66.8	-	_	70.4	66.6	64.2	63.0
AS Reader †	68.6	69.5	75.0	73.9	73.8	68.6	68.8	63.4
DER Network †	71.3	72.9	-	_	-	_	_	_
Stanford AR (relabeling) †	73.8	73.6	77.6	76.6	-	_	_	_
Iterative Attentive Reader †	72.6	73.3	-	_	75.2	68.6	72.1	69.2
EpiReader †	73.4	74.0	-	_	75.3	69.7	71.5	67.4
AoA Reader †	73.1	74.4	-	_	77.8	72.0	72.2	69.4
ReasoNet †	72.9	74.7	77.6	76.6	-	_	_	_
NSE †	_	_	-	_	78.2	73.2	74.3	71.9
BiDAF †	76.3	76.9	80.3	79.6	-	_	_	_
MemNets (ensemble) †	66.2	69.4	-	_	-	_	_	_
AS Reader (ensemble) †	73.9	75.4	78.7	77.7	76.2	71.0	71.1	68.9
Stanford AR (relabeling, ensemble) †	77.2	77.6	80.2	79.2	-	_	-	_
Iterative Attentive Reader (ensemble) †	75.2	76.1	-	_	76.9	72.0	74.1	71.0
EpiReader (ensemble) †	-	_	-	-	76.6	71.8	73.6	70.6
AS Reader (+BookTest) † ‡	_	_	_	_	80.5	76.2	83.2	80.8
AS Reader (+BookTest,ensemble) † ‡	-	_	-	_	82.3	78.4	85.7	83.7
GA	73.0	73.8	76.7	75.7	74.9	69.0	69.0	63.9
GA (update $L(w)$)	77.9	77.9	81.5	80.9	76.7	70.1	69.8	67.3
GA(fix L(w))	77.9	77.8	80.4	79.6	77.2	71.4	71.6	68.0
GA (+feature, update $L(w)$)	77.3	76.9	80.7	80.0	77.2	73.3	73.0	69.8
GA (+feature, fix $L(w)$)	76.7	77.4	80.0	79.3	78.5	74.9	74.4	70.7

Example: recommendation

Rose Catherine & Cohen, RecSys 2017

Example: recommendation

Rose Catherine & Cohen, RecSys 2017

Example: recommendation

Rose Catherine & Cohen, RecSys 2017

Dataset	DeepCoNN + Test Reviews	MF	DeepCoNN	DeepCoNN-rev _{AB}	TransNet	TransNet-Ext
Yelp17	1.2106	1.8661	1.8984	1.7045	1.6387	1.5913
AZ-Elec	0.9791	1.8898	1.9704	2.0774	1.8380	1.7781
AZ-CSJ	0.7747	1.5212	1.5487	1.7044	1.4487	1.4780
AZ-Mov	0.9392	1.4324	1.3611	1.5276	1.3599	1.2691