Lecture Nov 1

> halfway to midterm project reports
THE TRENDS ISSUE

Linear regression:
Talks sex, Justin Bieber, and doing the dishes

Exclusive
Black and Scholes
How this iconic duo became THE name in statistical finance

SVMs:
The HOTTEST black box method you haven't even heard of yet!

Spice up your null model- 32 ways how!

Are you a frequentist or a Bayesian?
Take our quiz and find out!
Deep Learning (continued)
Recap of ANNs: so far

• History/overview of ANNs
• ANN utility, scalability, and trainability
 – ANNs are expressive (especially if you can vary the architecture and set of computational units you can use)
 – ANNs are fast for large datasets (especially if you can use GPUs and parallel processing for matrix operations)
• Modern ANNs
 – ...
BackProp: summary

$$\delta^L = \nabla_a C \odot \sigma'(z^L)$$

$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

$$\frac{\partial C}{\partial b^l_j} = \delta^l_j$$

$$\frac{\partial C}{\partial w^l_{jk}} = a^{l-1}_k \delta^l_j$$

Level l for l=1,...,L

Matrix: w^l

Vectors:
- bias b^l
- activation a^l
- pre-sigmoid activ: z^l
- target output y
- “local error” δ^l
Computation propagates errors backward

for $l=1, 2, \ldots L$:

$$a^l = \sigma(w^l a^{l-1} + b^l).$$

for $l=L,L-1,\ldots,1$:

$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

$$\frac{\partial C}{\partial b^l_j} = \delta^l_j$$

$$\frac{\partial C}{\partial w^l_{j,k}} = a^{l-1}_k \delta^l_j$$
Modern ANNs

• Use of softmax and entropic loss instead of quadratic loss.
• Use of alternate non-linearities
 – reLU and hyperbolic tangent
• Better understanding of weight initialization
• Ability to explore architectures rapidly
How can we generalize BackProp to other ANNs?

Deep Neural Network Toolkits: What’s Under the Hood?
Recap: weight updates for multilayer ANN

How can we generalize BackProp to other ANNs?

For nodes k in output layer:

$$
\delta_k \equiv (t_k - a_k) \cdot a_k (1 - a_k)
$$

For nodes j in hidden layer:

$$
\delta_j \equiv \sum_k (\delta_k w_{kj}) \cdot a_j (1 - a_j)
$$

For all weights:

$$
\begin{align*}
w_{kj} &= w_{kj} - \epsilon \delta_k a_j \\
w_{ji} &= w_{ji} - \epsilon \delta_j a_i
\end{align*}
$$

“Propagate errors backward” BACKPROP

Can carry this recursion out further if you have multiple hidden layers
\[f(x_1, x_2) \equiv (2x_1 + x_2)^2 \]

\[
\begin{align*}
 z_1 &= \text{add}(x_1, x_1) \\
 z_2 &= \text{add}(z_1, x_2) \\
 f &= \text{square}(z_2)
\end{align*}
\]

\[f(x_1, x_2) = (2x_1 + x_2)^2 = 4x_1^2 + 4x_1x_2 + x_2^2 \]

\[
\begin{align*}
 \frac{df}{dx_1} &= 8x_1 + 4x_2 \\
 \frac{df}{dx_2} &= 4x_1 + 2x_2
\end{align*}
\]
\[f(x_1, x_2) \equiv (2x_1 + x_2)^2 \]

\[
\begin{align*}
 z_1 &= \text{add}(x_1, x_1) \\
 z_2 &= \text{add}(z_1, x_2) \\
 f &= \text{square}(z_2)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Derivation Step</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{df}{dx_1} = \frac{dz_2^2}{dz_2} \cdot \frac{dz_2}{dx_1}]</td>
<td>[f = z_2^2]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot \frac{dz_2}{dx_1}]</td>
<td>[\frac{d(a^2)}{da} = 2a]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot \frac{d(z_1+x_2)}{dx_1}]</td>
<td>[z_2 = z_1 + x_2]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot \left(1 \cdot \frac{dz_1}{dx_1} + 1 \cdot \frac{dx_2}{dx_1}\right)]</td>
<td>[\frac{d(a+b)}{da} = \frac{d(a+b)}{db} = 1]</td>
</tr>
</tbody>
</table>

...
\[f(x_1, x_2) \equiv (2x_1 + x_2)^2 \]

<table>
<thead>
<tr>
<th>Derivation Step</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{df}{dx_1} = \frac{dz_2^2}{dz_2} \cdot \frac{dz_2}{dx_1}]</td>
<td>[z_1 = \text{add}(x_1, x_1)]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot \frac{dz_2}{dx_1}]</td>
<td>[z_2 = \text{add}(z_1, x_2)]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot \frac{d(z_1 + x_2)}{dx_1}]</td>
<td>[f = \text{square}(z_2)]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot \left(1 \cdot \frac{dz_1}{dx_1} + 1 \cdot \frac{dx_2}{dx_1} \right)]</td>
<td>[f = z_2^2]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot \left(1 \cdot \frac{d(x_1 + x_1)}{dx_1} + 1 \cdot \frac{dx_2}{dx_1} \right)]</td>
<td>[\frac{d(a^2)}{da} = 2a]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot \left(1 \cdot \left(1 \cdot \frac{dx_1}{dx_1} + 1 \cdot \frac{dx_1}{dx_1} \right) + 1 \cdot \frac{dx_2}{dx_1} \right)]</td>
<td>[z_2 = z_1 + x_2]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot \left(1 \cdot (1 \cdot 1 + 1 \cdot 1) + 1 \cdot 0 \right)]</td>
<td>[\frac{d(a+b)}{da} = \frac{d(a+b)}{db} = 1]</td>
</tr>
<tr>
<td>[\frac{df}{dx_1} = 2z_2 \cdot 2 = 8x_1 + 4x_2]</td>
<td>[\frac{da}{da} = 1 \text{ and } \frac{da}{db} = 0 \text{ for inputs } a, b]</td>
</tr>
</tbody>
</table>

Simplify
Generalizing backprop

- Starting point: a function of n variables
- Step 1: code your function as a series of assignments
- Step 2: back propagate by going thru the list in reverse order, starting with...

$$\frac{dx_N}{dx_N} \leftarrow 1$$

...and using the chain rule

$$\frac{dx_N}{dx_i} = \sum_{j:i \in \pi(j)} \frac{dx_N}{dx_j} \frac{\partial x_j}{\partial x_i}$$

Example:

$$x_7 = x_2 + x_5$$
$$\pi(7) = (2, 5)$$
$$f_7 = \text{add}$$

Step 1: forward

inputs: x_1, x_2, \ldots, x_n

for $i = n + 1, n + 2, \ldots, N$

$x_i \leftarrow f_i(x_{\pi(i)})$

return x_N

Step 1: backprop

for $i = N - 1, N - 2, \ldots, 1$

$$\frac{dx_N}{dx_i} \leftarrow \sum_{j:i \in \pi(j)} \frac{dx_N}{dx_j} \frac{\partial f_j}{\partial x_i}$$

Computed in previous step

https://justindomke.wordpress.com/
Recap: logistic regression with SGD

Let X be a matrix with k examples
Let w_i be the input weights for the i-th hidden unit
Then $Z = XW$ is output (pre-sigmoid) for all m units for all k examples

There’s a lot of chances to do this in parallel.... with parallel matrix multiplication
Example: 2-layer neural network

Step 1: forward

inputs: x_1, x_2, \ldots, x_n

for $i = n + 1, n + 2, \ldots, N$

$x_i \leftarrow f_i(x_{\pi(i)})$

return x_N

Step 1: backprop

for $i = N - 1, N - 2, \ldots, 1$

$$\frac{dx_N}{dx_i} \leftarrow \sum_{j:i \in \pi(j)} \frac{dx_N}{dx_j} \frac{\partial f_j}{\partial x_i}$$

Inputs: $X, W1, B1, W2, B2$

$Z1a = \text{mul}(X, W1)$ // matrix mult
$Z1b = \text{add}^*(Z1a, B1)$ // add bias vec
$A1 = \text{tanh}(Z1b)$ // element-wise
$Z2a = \text{mul}(A1, W2)$
$Z2b = \text{add}^*(Z2a, B2)$
$A2 = \text{tanh}(Z2b)$ // element-wise
$P = \text{softMax}(A2)$ // vec to vec
$C = \text{crossEnt}_y(P)$ // cost function

Target Y; N examples; K outs; D feats, H hidden

X is $N*D$, $W1$ is $D*H$, $B1$ is $1*H$, $W2$ is $H*K$, …
Example: 2-layer neural network

Step 1: forward
inputs: \(x_1, x_2, \ldots, x_n \)
for \(i = n+1, n+2, \ldots, N \)
\(x_i' \leftarrow \hat{f}_i(x_{\pi(i)}) \)
return \(x_N \)

for \(i = N - 1, N - 2, \ldots, 1 \)

\[
\frac{dC}{dx_i} \leftarrow \sum_{j: i \in \pi(j)} \frac{dC}{dx_j} \frac{\partial f_j}{\partial x_i}
\]

\[
dC/dC = 1
\]
\[
dC/DP = dC/dC * dCrossEnt_Y/dP
\]
\[
dC/DA2 = dC/dP * dsoftmax/DA2
\]
\[
dC/Z2b = dC/DA2 * dtanh/DZ2b
\]
\[
dC/DZ2a = dC/DZ2b * dadd/DZ2a
\]
\[
dC/DB2 = dC/DZ2b * dadd/DB2
\]
\[
dC/DA1 = ...
\]

Inputs: X,W1,B1,W2,B2
Z1a = mul(X,W1) // matrix mult
Z1b = add*(Z1a,B1) // add bias vec
A1 = tanh(Z1b) //element-wise
Z2a = mul(A1,W2) //N*H
Z2b = add*(Z2a,B2)
A2 = tanh(Z2b) // element-wise
P = softmax(A2) // vec to vec
C = crossEnt_Y(P) // cost function

\[
a^l_j = \frac{e^l_j}{\sum_k e^l_k} - \frac{1}{N} \sum_i \left(\frac{p_i - y_i}{y_i(1-y_i)} \right)
\]
Target Y; N rows; K outs; D feats, H hidden
Example: 2-layer neural network

\[
\begin{align*}
\text{mul} & \quad X \quad \text{W1} \\
\downarrow & \quad \downarrow \\
\text{add} & \quad Z1a \quad B1 \\
\downarrow & \quad \downarrow \\
\text{tanh} & \quad Z1b \\
\downarrow & \quad \downarrow \\
\text{mul} & \quad A1 \quad W2 \\
\downarrow & \quad \downarrow \\
\text{add} & \quad Z2a \quad B2 \\
\downarrow & \quad \downarrow \\
\text{tanh} & \quad A2 \\
\downarrow & \quad \downarrow \\
\text{softmax} & \quad P \\
\downarrow & \quad \downarrow \\
\text{crossent}_\gamma & \quad C
\end{align*}
\]

\[
\begin{align*}
dC/dC &= 1 \\
dC/dP &= dC/dC \times d\text{CrossEnt}_\gamma/dP \\
dC/dA2 &= dC/dP \times d\text{softmax}/dA2 \\
dC/dZ2b &= dC/dA2 \times dtanh/dZ2b \\
dC/dZ2a &= dC/dZ2b \times d\text{add}/dZ2a \\
& \quad \text{•} \quad dC/dB2 = dC/dZ2b \times d\text{add}/dB2 \\
dC/dA1 &= dC/dZ2a \times dmul/dA1 \\
& \quad \text{•} \quad dC/dW2 = dC/dZ2a \times dmul/dW2 \\
dC/dZ1b &= dC/dA1 \times dtanh/dZ1b \\
dC/dZ1a &= dC/dZ1b \times d\text{add}/dZ1a \\
& \quad \text{•} \quad dC/dB1 = dC/dZ1b \times d\text{add}/dB1 \\
dC/dX &= dC/dZ1a \times dmul*/dZ1a \\
& \quad \text{•} \quad dC/dW1 = dC/dZ1a \times dmul*/dW1
\end{align*}
\]
Example: 2-layer neural network

Step 1: forward

inputs: x_1, x_2, \ldots, x_n

for $i = n + 1, n + 2, \ldots, N$

$$x_i \leftarrow f_i(x_{\pi(i)})$$

return x_N

Inputs: $X, W1, B1, W2, B2$

$Z1a = \text{mul}(X, W1)$ // matrix mult
$Z1b = \text{add}(Z11, B1)$ // add bias vec
$A1 = \text{tanh}(Z1b)$ // element-wise
$Z2a = \text{mul}(A1, W2)$ // element-wise
$Z2b = \text{add}(Z2a, B2)$
$A2 = \text{tanh}(Z2b)$ // element-wise
$P = \text{softmax}(A2)$ // vec to vec
$C = \text{crossEnt}_Y(P)$ // cost function

Step 1: backprop

for $i = N - 1, N - 2, \ldots, 1$

$$\frac{dx_N}{dx_i} \leftarrow \sum_{j:i\in\pi(j)} \frac{dx_N}{dx_j} \frac{\partial f_j}{\partial x_i}$$

$$dC/dC = 1$$
$$dC/dP = dC/dC \ast d\text{CrossEnt}_Y/dP$$
$$dC/dA2 = dC/dP \ast d\text{softmax}/dA2$$
$$dC/Z2b = dC/dA2 \ast dtanh/dZ2b$$
$$dC/dZ2a = dC/dZ2b \ast d\text{add}/dZ2a$$
$$dC/db2 = dC/dZ2b \ast d\text{add}/db2$$
$$dC/dA1 = \ldots$$

Need a backward form for each matrix operation used in forward

Target Y; N rows; K outs; D feats, H hidden

$$-\frac{1}{N} \sum_i \left(\frac{p_i - y_i}{y_i(1 - y_i)} \right)$$
Example: 2-layer neural network

Step 1: forward

inputs: x_1, x_2, \ldots, x_n

for $i = n + 1, n + 2, \ldots, N$
 \[x_i \leftarrow f_i(x_{\pi(i)}) \]

return x_N

Step 1: backprop

\[
\frac{dx_N}{dx_i} \leftarrow \sum_{j:i \in \pi(j)} \frac{dx_N}{dx_j} \frac{\partial f_j}{\partial x_i}
\]

$\frac{dC}{dC} = 1$

$\frac{dC}{dP} = \frac{dC}{dC} \ast \frac{d\text{CrossEnt}_Y}{dP}$

$\frac{dC}{dA2} = \frac{dC}{dP} \ast \frac{d\text{softmax}}{dA2}$

$\frac{dC}{Z2b} = \frac{dC}{dA2} \ast \frac{dtanh}{dZ2b}$

$\frac{dC}{dZ2a} = \frac{dC}{dZ2b} \ast \frac{d\text{add}}{dZ2a}$

$\frac{dC}{dB2} = \frac{dC}{dZ2b} \ast \frac{d\text{add}}{dB2}$

$\frac{dC}{dA1} = \ldots$

Target $Y; N$ rows; K outs; D feats, H hidden

Need a backward form for each matrix operation used in forward, with respect to each argument
Example: 2-layer neural network

Step 1: forward

inputs: x_1, x_2, \ldots, x_n

for $i = n + 1, n + 2, \ldots, N$

$$x_i \leftarrow f_i(x_{\pi(i)})$$

return x_N

An autodiff package usually includes

- A collection of matrix-oriented operations (mul, add*, …)
- For each operation
 - A forward implementation
 - A backward implementation for each argument

- It’s still a little awkward to program with a list of assignments so….

Need a backward form for each matrix operation used in forward, with respect to each argument

Inputs: X,W1,B1,W2,B2

$Z1a = \text{mul}(X,W1)$ // matrix mult
$Z1b = \text{add}(Z11,B1)$ // add bias vec
$A1 = \text{tanh}(Z1b)$ // element-wise
$Z2a = \text{mul}(A1,W2)$
$Z2b = \text{add}(Z2a,B2)$
$A2 = \text{tanh}(Z2b)$ // element-wise
$P = \text{softMax}(A2)$ // vec to vec
$C = \text{crossEnt}.(P)$ // cost function

Target Y; N rows; K outs; D feats, H hidden
Generalizing backprop

- Starting point: a function of n variables
- Step 1: code your function as a series of assignments

Better plan: overload your matrix operators so that when you use them in-line they build an expression graph

Convert the expression graph to a Wengert list when necessary

Step 1: forward

inputs: x_1, x_2, \ldots, x_n

\[
\text{for } i = n + 1, n + 2, \ldots, N
\]

\[
x_i \leftarrow f_i(x_{\pi(i)})
\]

return x_N
Some autodiff systems
Example: Theano

```python
import numpy
import theano
import theano.tensor as T
rng = numpy.random
# Training data
N = 400
features = 784
D = 10000
# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(features).astype(theano.config.floatX), name="w")
b = theano.shared(numpy.asarray(0., dtype=theano.config.floatX), name="b")
x.tag.test_value = D[0]
y.tag.test_value = D[1]
# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability of having a one
predict = p_1 > 0.5
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1)
cost = xent.mean() + 0.01*(w**2).sum() # Ridge
gw,gb = T.grad(cost, [w,b])
```
Example: Theano

\[
p_1 = \frac{1}{1 + \text{T.exp}(-\text{T.dot}(x, w) - b)}
\]

\[
\text{prediction} = p_1 > 0.5
\]}
\[p_1 = \frac{1}{1 + \text{T.exp}(-\text{T.dot}(x, w) - b))} \]

\text{prediction} = p_1 > 0.5
Example: 2-layer neural network

Step 1: forward

inputs: x_1, x_2, \ldots, x_n
for $i = n + 1, n + 2, \ldots, N$

$$x_i \leftarrow f_i(x_{\pi(i)})$$

return x_N

An autodiff package usually includes

- A collection of matrix-oriented operations (mul, add*, …)
- For each operation
 - A forward implementation
 - A backward implementation for each argument

- A way of composing operations into expressions (often using operator overloading) which evaluate to expression trees
- Expression simplification/compilation

Inputs: $X,W1,B1,W2,B2$

$Z1a = \text{mul}(X,W1)$ // matrix mult
$Z1b = \text{add}(Z11,B1)$ // add bias vec
$A1 = \text{tanh}(Z1b)$ //element-wise

$Z2a = \text{mul}(A1,W2)$ // $N*H$
$Z2b = \text{add}(Z2a,B2)$
$A2 = \text{tanh}(Z2b)$ // element-wise
$P = \text{softmax}(A2)$ // vec to vec
$C = \text{crossEnt}_{\gamma}(P)$ // cost function
Some tools that use autodiff

• Theano:
 – Univ Montreal system, Python-based, first version 2007 now v0.8, integrated with GPUs
 – Many libraries build over Theano (Lasagne, Keras, Blocks..)
• Torch:
 – Collobert et al, used heavily at Facebook, based on Lua. Similar performance-wise to Theano
• TensorFlow:
 – Google system
 – Also supported by Keras
• Autograd
 – New system which is very Pythonic, doesn’t support GPUs (yet)
• ...
Breaking down autodiff
Walkthru of an Autodiff Program

Matrix and vector operations are very useful

\[f(x, y, W) \equiv \text{crossEntropy}(\text{softmax}(x \cdot W), y) + \text{frobeniusNorm}(W) \]

\[z_1 = \text{dot}(x, W) \]
\[z_2 = \text{softmax}(z_1) \]
\[z_3 = \text{crossEntropy}(z_2, y) \]
\[z_4 = \text{frobeniusNorm}(W) \]
\[f = \text{add}(z_3, z_4) \]
Walkthru of an Autodiff Program

Matrix and vector operations are very useful

\[f(x, y, W) = \text{crossEntropy}(\text{softmax}(x \cdot W), y) + \text{frobeniusNorm}(W) \]

\[
\text{softmax}(\langle a_1, \ldots, a_d \rangle) \equiv \langle \frac{e^{a_1}}{\sum_{i=1}^{d} e^{a_i}}, \ldots, \frac{e^{a_d}}{\sum_{i=1}^{d} e^{a_i}} \rangle
\]

\[
\text{crossEntropy}(\langle a_1, \ldots, a_d \rangle, \langle b_1, \ldots, b_d \rangle) \equiv -\sum_{i=1}^{d} a_i \log b_i
\]

\[
\text{frobeniusNorm}(A) \equiv \sqrt{\sum_{i=1}^{d} \sum_{j=1}^{k} a_{i,j}^2}
\]
Walkthru of an Autodiff Program

Matrix and vector operations are very useful...but let's start with some simple scalar operations.

\[f(x_1, x_2) \equiv (2x_1 + x_2)^2 \]

\[G = \{ \text{add, multiply, square} \} \]

\[
\begin{align*}
z_1 & = \text{add}(x_1, x_1) \\
z_2 & = \text{add}(z_1, x_2) \\
f & = \text{square}(z_2)
\end{align*}
\]

Python encoding

\[
[\text{("z1", "add", ("x1","x1"))}, \text{("z2", "add", ("z1","x2"))}, \text{("f", "square", ("z2"))}]
\]
The Interesting Part: Evaluation and Differentiation of a Wengert list

\[f(x_1, x_2) \equiv (2x_1 + x_2)^2 \]

\[
\begin{align*}
 z_1 &= \text{add}(x_1, x_1) \\
 z_2 &= \text{add}(z_1, x_2) \\
 f &= \text{square}(z_2)
\end{align*}
\]

To compute \(f(3,7) \):

```python
G = { "add" : lambda a,b: a+b,
     "square": lambda a:a*a }
[ ("z1", "add", ("x1","x1")),
  ("z2", "add", ("z1","x2")),
  ("f", "square", ("z2")) ]

def eval(f):
    initialize val = { "x1" : 3, "x2" : 7 }
    for (z, g, (y1, ..., yk)) in the list:
        op = G[g]
        val[z] = op(val[y1], ..., val[yk])
    return the last entry stored in val.
```
The Interesting Part: Evaluation and Differentiation of a Wengert list

To compute \(f(3,7) \):

\[
\begin{align*}
DG &= \{ \text{"add"} : [(\text{lambda } a,b: 1), (\text{lambda } a,b: 1)], \\
&\quad \quad \text{"square"} : [\text{lambda } a:2*a] \} \\
\theta_1 &= \text{add}(\theta_1, \theta_2) \\
\theta_2 &= 3 \\
f &= \text{square}(\theta_2)
\end{align*}
\]

Populated with call to “eval”

```python
def backprop(f, val):
    initialize delta: delta[f] = 1
    for (z, g, (y_1, ..., y_k)) in the list, in reverse order:
        for i = 1, ..., k:
            \( op_i = DG[g][i] \)
        if delta[y_i] is not defined set delta[y_i] = 0
        delta[y_i] = delta[y_i] + delta[z] * op_i(val[y_1], ..., val[y_k])
```
Differentiating a Wengert list: a simple case

\[z_1 = f_1(z_0) \]
\[z_2 = f_2(z_1) \]
\[\vdots \]
\[z_m = f_m(z_{m-1}) \]

\[\frac{dz_m}{dz_0} = \frac{dz_m}{dz_{m-1}} \frac{dz_{m-1}}{dz_0} \]
\[= \frac{dz_m}{dz_{m-1}} \frac{dz_{m-1}}{dz_{m-2}} \frac{dz_{m-2}}{dz_0} \]
\[\vdots \]
\[= \frac{dz_m}{dz_{m-1}} \frac{dz_{m-1}}{dz_{m-2}} \cdots \frac{dz_1}{dz_0} \]

Notation: \(h_{i,j} \to \frac{dz_i}{dz_j} \)
Differentiating a Wengert list: a simple case

\[z_1 = f_1(z_0) \quad a_1 = f_1(a) \]
\[z_2 = f_2(z_1) \quad a_2 = f_2(f_1(a)) \]
\[\ldots \quad \ldots \]
\[z_m = f_m(z_{m-1}) \quad a_m = f_m(f_{m-1}(f_{m-2}(\ldots f_1(a)\ldots))) \]

Notation: \(h_{i,j} \rightarrow \frac{dz_i}{dz_j} \) \(a_i \) is the \(i \)-th output on input \(a \)
Differentiating a Wengert list: a simple case

\[z_1 = f_1(z_0) \]
\[z_2 = f_2(z_1) \]
\[\ldots \]
\[z_m = f_m(z_{m-1}) \]

\[\frac{dz_m}{dz_0} = \frac{dz_m}{dz_{m-1}} \frac{dz_{m-1}}{dz_0} \]

for all \(a \)

\[h_{m,0}(a) = f'_m(a_m) \cdot h_{m-1,1}(a) \]

Notation: \(h_{i,j} \rightarrow \frac{dz_i}{dz_j} \)
Differentiating a Wengert list: a simple case

\[
\begin{align*}
z_1 &= f_1(z_0) \\
z_2 &= f_2(z_1) \\
\vdots \\
z_m &= f_m(z_{m-1})
\end{align*}
\]

\[
\frac{dz_m}{dz_0} = \frac{dz_m}{dz_{m-1}} \cdot \frac{dz_{m-1}}{dz_{m-2}} \cdot \ldots \cdot \frac{dz_1}{dz_0}
\]

for all \(a\)

\[
h_{m,0}(a) = f'_m(a_m) \cdot f'_{m-1}(a_{m-1}) \cdot \ldots \cdot f'_2(a_1) \cdot f'_1(a)
\]

Notation: \(h_{i,j} \rightarrow \frac{dz_i}{dz_j}\)
Differentiating a Wengert list: a simple case

\[
\frac{dz_m}{dz_0} = \frac{dz_m}{dz_{m-1}} \frac{dz_{m-1}}{dz_{m-2}} \cdots \frac{dz_1}{dz_0}
\]

for all \(a\)

\[h_{m,0}(a) = f'_m(a_m) \cdot f'_{m-1}(a_{m-1}) \cdots f'_2(a_1) \cdot f'_1(a)\]

backprop routine compute order

\[h_{m,0}(a) = ((((f'_m(a_m) \cdot f'_{m-1}(a_{m-1})) \cdot f'_{m-2}(a_{m-2})) \cdots f'_2(a_1))) \cdot f'_1(a)\]

\[\text{delta}[z_i] = f'_m(a_m) \cdots f'_i(a_i)\]
Differentiating a Wengert list

\[
DG = \{ \text{"add" : [(lambda a,b: 1), (lambda a,b: 1)]}, \\
\text{"square" : [lambda a:2*a] } \}
\]

\[
[(\text{"z1"}, \text{"add"}, (\text{"x1"},\text{"x1"})), \\
(\text{"z2"}, \text{"add"}, (\text{"z1"},\text{"x2"})), \\
(\text{"f"}, \text{"square"}, (\text{"z2"}))]
\]

def backprop(f, val):
 initialize delta: delta[f] = 1
 for (z, g, (y_1, ..., y_k)) in the list, in reverse order:
 for i = 1, ..., k:
 op_i = DG[g][i]
 if delta[y_i] is not defined set delta[y_i] = 0
 delta[y_i] = delta[y_i] + delta[z] * op_i(val[y_1], ..., val[y_k])
The Tricky Part: Constructing a List

Goal: write code like this:

```python
from xman import *
...
class f(XManFunctions):
    @staticmethod
    def half(a):
        ...

class Triangle(XMan):
    h = f.input()
    w = f.input()
    area = f.half(h*w)
...

xm = Triangle().setup()
print xm.operationSequence(xm.area)
```

Add your problem-specific functions: but just the syntax, not the G and DG definitions

Define the function to optimize with gradient descent

Use your function
Python code to create a Wengert list

```python
from xman import *
...
class f(XManFunctions):
    @staticmethod
    def half(a):
        ...

class Triangle(XMan):
    h = f.input()
    w = f.input()
    area = f.half(h*w)
    ...

xm = Triangle().setup()
print xm.operationSequence(xm.area)
```

- `h`, `w`, and `area` are registers.
- Also an automatically-named register `z1` to hold `h*w`.

Output:

```
[('z1', 'mul', ['h', 'w']), ('area', 'half', ['z1'])]
```
from xman import *
...
class f(XManFunctions):
 @staticmethod
 def half(a):
 ...

class Triangle(XMan):
 h = f.input()
 w = f.input()
 area = f.half(h*w)
...
xm = Triangle().setup()
print xm.operationSequence(xm.area)

some Python hacking can use the class variable name ‘area’ and insert it into the ‘name’ field of a register

and invert names for the others at setup()
Python code to create a Wengert list

```python
from xman import *

... class f(XManFunctions):
    @staticmethod
    def half(a):
        ...

class Triangle(XMan):
    h = f.input()
    w = f.input()
    area = f.half(h*w)

...
xm = Triangle().setup()
print xm.operationSequence(xm.area)
```

“half” is an operator
so is “mul”
--- h*w ➔ mul(h,w)
each instance of an operator points to registers that are arguments and outputs
Python code to create a Wengert list

h, w are registers;
$\text{mul}()$ generates an operator

class f(XManFunctions):
 @staticmethod
 def half(a):
 ...

class Triangle(XMan):
 h = f.input()
 w = f.input()
 area = f.half(h*w)
Python code to create a Wengert list

class XManFunctions(object):
 @staticmethod
 def input(default=None):
 return Register(role='input', default=default)

 @staticmethod
 def mul(a, b):
 return XManFunctions.registerDefinedByOperator('mul', a, b)

 @staticmethod
 def registerDefinedByOperator(fun,*args):
 reg = Register(role='operationOutput')
 op = Operation(fun,*args)
 reg.definedAs = op
 op.outputReg = reg
 return reg

<table>
<thead>
<tr>
<th>name</th>
<th>“area”</th>
</tr>
</thead>
<tbody>
<tr>
<td>role</td>
<td>“opOut”</td>
</tr>
<tr>
<td>defAs</td>
<td>02</td>
</tr>
<tr>
<td>args</td>
<td>[A1]</td>
</tr>
<tr>
<td>fun</td>
<td>“half”</td>
</tr>
<tr>
<td>output</td>
<td>R4</td>
</tr>
</tbody>
</table>
Even more detail....
```python
class Operation(object):
    """"""" An operation encodes a single step of a differentiable
    computation, eg y=f(x1,...,xk). It contains a function, arguments,
    and a pointer to the register that is defined as the output of
    this operation.
    """""""

def __init__(self, fun,*args):
    self.fun = fun
    self.args = args
    self.outputReg = None

def asStringTuple(self):
    """"""" Return a nested tuple of encoding the operation y=f(x1,...xk) of
    the form (y,f,(x1,...,xk)) where y,f, and x1...xk are strings.
    """""""
    dstName = self.outputReg.name if (self.outputReg and self.outputReg.name) else "???"
    argNames = map(lambda reg:reg.name or "???", self.args)
    return (dstName,self.fun,argNames)

def __str__(self):
    """"""" Human readable representation """""""
    (dstName,fun,argNames) = self.asStringTuple()
    return dstName + " = f." + fun + "(" + ",".join(argNames) + ")"
```
class Register(object):
 """
 Registers are like variables – they are used as the inputs to and outputs of Operations. The 'name' of each register should be unique, as it will be used as a key in storing outputs, and
 """
 _validRoles = set("input param operationOutput".split())

 def __init__(self,role=None,default=None):
 assert role in Register._validRoles
 self.role = role
 self.name = None
 self.definedAs = None
 self.default = default

 def inputsTo(self):
 """
 Trace back through the definition of this register, if it exists, to find a list of all other registers that this register depends on. This method is needed to find the operationSequence that is needed to construct the value of a register, and also to assign names to otherwise unnamed registers.
 """
 if self.definedAs:
 assert isinstance(self.definedAs,Operation)
 return self.definedAs.args
 else:
 return []

 # operator overloading
 def __add__(self,other):
 return XManFunctions.add(self,other)
 def __sub__(self,other):
 return XManFunctions.subtract(self,other)
 def __mul__(self,other):
 return XManFunctions.mul(self,other)
class XManFunctions(object):
 """
 Encapsulates the static methods that are used in a subclass of
 XMan. Each of these generates an OperationOutput register that is
definedBy an Operation, with the operations outputReg field
pointing back to the register.
 """

 You will usually subclass this so you can
 add your own functions, and give the subclass
 a short name
 """

 @staticmethod
 def input(default=None):
 return Register(role='input',default=default)
 @staticmethod
 def param(default=None):
 return Register(role='param',default=default)

 @staticmethod
 def add(a,b):
 return XManFunctions.registerDefinedByOperator('add',a,b)
 @staticmethod
 def subtract(a,b):
 ...

 @staticmethod
 def registerDefinedByOperator(fun,*args):
 ...

<table>
<thead>
<tr>
<th>name</th>
<th>"area"</th>
</tr>
</thead>
<tbody>
<tr>
<td>role</td>
<td>"opOut"</td>
</tr>
<tr>
<td>defAs</td>
<td>02</td>
</tr>
<tr>
<td>args</td>
<td>[A1]</td>
</tr>
<tr>
<td>fun</td>
<td>"half"</td>
</tr>
<tr>
<td>output</td>
<td>R4</td>
</tr>
</tbody>
</table>
class XMan(object):

 def __init__(self):
 self._nextTmp = 1
 self._setupComplete = False
 self._registers = {}

 def setup(self):
 """ Must call this before you do any other operations with an
 expression manager """
 # use available python variable names for register names
 for regName, reg in self.namedRegisterItems():
 if not reg.name:
 reg.name = regName
 self._registers[regName] = reg
 # give names to any other registers used in subexpressions
 def _recursivelyLabelUnnamedRegisters(reg):
 if not reg.name:
 reg.name = '{%d} % self._nextTmp
 self._nextTmp += 1
 self._registers[reg.name] = reg
 for child in reg.inputsTo():
 _recursivelyLabelUnnamedRegisters(child)
 for regName, reg in self.namedRegisterItems():
 _recursivelyLabelUnnamedRegisters(reg)
 self._setupComplete = True
 # convenient return value so we can say net = FooNet().setup()
 return self

 def namedRegisterItems(self):
 """ Returns a list of all pairs (name, registerObject) where some
 python class/instance variable with the given name is bound to
 a Register object. These are sorted by name to make tests
 easier. """
 keys = sorted(self.__dict__.keys() + self.__class__.__dict__.keys())
 vals = [self.__dict__.get(k) or self.__class__.__dict__.get(k) for k in keys]
 return filter(lambda (reg, regObj): isinstance(regObj, Register), zip(keys, vals))
class XMan(object):

...

def operationSequence(self, reg):
 """""" Traverse the expression tree to find the sequence of operations
 needed to compute the values associated with this register.
 """"
 assert self._setupComplete, 'operationSequence() called before setup()'
 # pre-order traversal of the expression tree
 previouslyDefined = set()
 buf = []
 for child in reg.inputsTo():
 if child.name not in previouslyDefined:
 buf += self.operationSequence(child)
 previouslyDefined.add(child.name)
 if reg.definedAs and (not reg.name in previouslyDefined):
 buf.append(reg.definedAs.asStringTuple())
 return buf
from xman import *

functions I'll use for this problem

class f(XManFunctions):
 @staticmethod
 def half(a):
 return XManFunctions.registerDefinedByOperator('half', a)
 @staticmethod
 def square(a):
 return XManFunctions.registerDefinedByOperator('square', a)
 @staticmethod
 def alias(a):
 """ This will just make a copy of a register that has a different name.""
 return XManFunctions.registerDefinedByOperator('alias', a)
Using xman.py

EVAL_FUNS = {
 'add': lambda x1, x2: x1 + x2,
 'subtract': lambda x1, x2: x1 - x2,
 'mul': lambda x1, x2: x1 * x2,
 'half': lambda x: 0.5 * x,
 'square': lambda x: x ** 2,
 'alias': lambda x: x,
}

BP_FUNS = {
 'add': [lambda delta, out, x1, x2: delta, lambda delta, out, x1, x2: delta],
 'subtract': [lambda delta, out, x1, x2: delta, lambda delta, out, x1, x2: -delta],
 'mul': [lambda delta, out, x1, x2: delta * x2, lambda delta, out, x1, x2: delta * x1],
 'half': [lambda delta, out, x: delta * 0.5],
 'square': [lambda delta, out, x: delta * 2 * x],
 'alias': [lambda delta, out, x: delta],
}
Using xman.py

class Autograd(object):
 """ Automatically compute partial derivatives. """

 def __init__(self,xman):
 self.xman = xman

 def eval(self,opseq,valueDict):
 """ Evaluate the function specified by the wengart list (aka operation sequence). Here valueDict is a dict holding the values of any inputs/parameters that are needed (indexed by register name, which is a string). Returns the augmented valueDict. """

 for (dstName,funName,inputNames) in opseq:
 inputValues = map(lambda a:valueDict[a], inputNames)
 fun = EVAL_FUNS[funName]
 result = fun(*inputValues)
 valueDict[dstName] = result
 return valueDict
Using xman.py

class Autograd(object):
 """
 Automatically compute partial derivatives.
 """

 def bprop(self, opseq, valueDict, **deltaDict):
 """
 For each intermediate register g used in computing the function f
 computed by the operation sequence, find df/dg. Here
 valueDict is a dict holding the values of any
 inputs/parameters that are needed for the gradient (indexed by
 register name), as populated by eval.
 """
 for (dstName, funName, inputNames) in reversed(opseq):
 delta = deltaDict[dstName]
 # values is extended to include the next-level delta and
 # the function output, and these will be passed as
 # arguments
 values = [delta] + map(lambda a: valueDict[a], [dstName] + list(inputNames))
 for i in range(len(inputNames)):
 result = (BP_FUNS[funName][i])(*values)
 # increment a running sum of all the delta's that are
 # pushed back to the i-th parameter, initializing to
 # zero if needed.
 self._incrementBy(deltaDict, inputNames[i], result)
 return deltaDict
Using xman.py – like Guinea Pig

class House(XMan):
 """: A toy task that has parameters and a loss function.
 First you compute the area of a simple shape, a 'house',
 which is a triangle on top of a rectangle.
 """

 # define some macros
 def rectArea(h,w): return h*w
 def roofHeight(wallHeight): return f.half(wallHeight)
 def triangleArea(h,w): return f.half(h*w)

 # height and width of rectangle are inputs
 h = f.param()
 w = f.param()
 # so is the target height and the target area, these inputs have
 # defaults
 targetArea = f.input()
 targetHeight = f.input(8.0)
 heightFactor = f.input(100.0)

 # compute area of the house
 area = rectArea(h,w) + triangleArea(roofHeight(h), w)

 # loss to optimize is weighted sum of square loss of area relative
 # to the targetArea, plus same for height
 loss = f.square(area - targetArea) + f.square(h - targetHeight) * heightFactor
build your dream house with gradient descent

```python
h = House().setup()
autograd = Autograd(h)
rate = 0.001
epochs = 20

# this fills in default values for inputs with defaults, like
# targetHeight and heightFactor
initDict = h.inputDict(h=5,w=10,targetArea=200)

# form wengart list to compute the loss
opseq = h.operationSequence(h.loss)

for i in range(epochs):

    # find gradient of loss wrt parameters
    gradientDict = autograd.bprop(opseq,valueDict,loss=1.0)

    # update the parameters appropriately
    for rname in gradientDict:
        if h.isParam(rname):
            initDict[rname] = initDict[rname] - rate*gradientDict[rname]
```

57
def Skyscraper(numFloors):
 ""
 Another toy task – optimize area of a stack of several rectangles
 """

 x = XMan()
 # height and width of rectangle are inputs
 x.h = f.param(default=30.0)
 x.w = f.param(default=20.0)
 x.targetArea = f.input(default=0.0)
 x.targetHeight = f.input(default=8.0)
 x.heightFactor = f.input(default=100.0)

 # compute area of the skyscraper
 x.zero = f.input(default=0.0)

 # here areaRegister points to a different
 # register in each iteration of the loop
 areaRegister = x.zero
 for i in range(numFloors):
 floorRegister = (x.h * x.w)
 floorRegister.name = 'floor_%d' % (i+1)
 areaRegister = areaRegister + floorRegister

 # when the loop finishes, we give it the register a name, in this
 # case by having an instance variable point to the register.
 # we could also execute: areaRegister.name = 'area'
 x.area = areaRegister

 x.loss = f.square(x.area - x.targetArea) + f.square(x.h - x.targetHeight) * x.heightFactor
 return x
Modern ANNs

• Use of softmax and entropic loss instead of quadratic loss.
• Use of alternate non-linearities
 – reLU and hyperbolic tangent
• Better understanding of weight initialization
• Ability to explore architectures rapidly
RECURRENT NEURAL NETWORKS
Motivation: what about sequence prediction?

What can I do when input size and output size vary?
Motivation: what about sequence prediction?
Architecture for an RNN

Some information is passed from one subunit to the next

Sequence of outputs

Start of sequence marker

Sequence of inputs

End of sequence marker

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Architecture for an 1980’s RNN

Problem with this: it’s extremely deep and very hard to train
Architecture for an LSTM

“Bits of memory”

Decide what to forget
Decide what to insert

Combine with transformed x_t

σ: output in $[0,1]$
$tanh$: output in $[-1,+1]$

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Walkthrough

What part of memory to “forget” – zero means forget this bit

\[f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right) \]
Walkthrough

What bits to insert into the next states

What content to store into the next state

\[i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \]
\[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Walkthrough

Next memory cell content – mixture of not-forgotten part of previous cell and insertion

\[C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t \]
Walkthrough

What part of cell to output

\[o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right) \]

\[h_t = o_t \times \tanh(C_t) \]

tanh maps bits to [-1,+1] range

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Architecture for an LSTM

\[f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f) \]
\[i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i) \]
\[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]

(1)

\[C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t \]

(2)

\[o_t = \sigma (W_o \cdot [h_{t-1}, x_t] + b_o) \]
\[h_t = o_t \cdot \tanh (C_t) \]

(3)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Implementing an LSTM

For $t = 1,\ldots, T$:

1. $f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)$
2. $i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$
3. $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$
4. $C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t$
5. $o_t = \sigma (W_o \cdot [h_{t-1}, x_t] + b_o)$
6. $h_t = o_t \cdot \tanh (C_t)$

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
SOME FUN LSTM EXAMPLES
LSTMs can be used for other sequence tasks

- Image captioning
- Sequence classification
- Translation
- Named entity recognition

For more information, see [this source](http://karpathy.github.io/2015/05/21/rnn-effectiveness/).
Character-level language model

Test time:
• pick a seed character sequence
• generate the next character
• then the next
• then the next …

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Character-level language model

PANDARUS:
Alas, I think he shall be come approached and the day
When little sran would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.
Character-level language model

First Citizen:
Nay, then, that was hers,
It speaks against your other service:
But since the
youth of the circumstance be spoken:
Your uncle and one Baptista's daughter.

SEBASTIAN:
Do I stand till the break off.

BIRON:
Hide thy head.

VENTIDIUS:
He purposeth to Athens: whither, with the vow
I made to handle you.

FALSTAFF:
My good knave.

Yoav Goldberg: order-10 unsmoothed character n-grams
Character-level language model

--- Recipe via Meal-Master (tm) v8.05

Title: BARBECUE RIBS
Categories: Chinese, Appetizers
Yield: 4 Servings

1 pk Seasoned rice
1 Beer -- cut into cubes
1 ts Sugar
3/4 c Water
 Chopped finels, up to 4 tblsp of chopped
2 pk Yeast Bread/over

--- FILLING
2 c Pineapple, chopped
1/3 c Milk
1/2 c Pecans
 Cream of each
2 tb Balsamic cocoa
2 tb Flour
2 ts Lemon juice
 Granulated sugar
2 tb Orange juice

1 c Sherry wheated curdup
1 Onion; sliced
1 ts Salt
2 c Sugar
1/4 ts Salt
1/2 ts White pepper, freshly ground
 Sesame seeds
1 c Sugar
1/4 c Shredded coconut
1/4 ts Cumin seeds

Preheat oven to 350. In a medium bowl, combine milk, flour and water and then cornstarch. Add tomatoes, or nutmeg; serve.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Character-level language model

For $\bigoplus_{n=1,\ldots,m}$ where $\mathcal{L}_{m,} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \text{Spec}(R) = U \times_X U \times_X U$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\bigcup Z \times_U U \to V$. Consider the maps M along the set of points Sch_{ppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??, Hence we obtain a scheme S and any open subset $W \subset U$ in $\text{Sh}(G)$ such that $\text{Spec}(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_S U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\text{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}', and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for $i > 0$ and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X-modules on \mathcal{C} as a \mathcal{F}-module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\tilde{M}^* = \mathcal{T}^* \otimes_{\text{Spec}(k)} \mathcal{O}_{S,s} - i_{-1}^{-1} \mathcal{F}$$

is a unique morphism of algebraic stacks. Note that

$$\text{Arrows} = (\text{Sch}/S)_{\text{ppf}}, (\text{Sch}/S)_{\text{ppf}}$$

and

$$V = \Gamma(S, \mathcal{O}) \leftrightarrow (U, \text{Spec}(A))$$

LaTeX "almost compiles"
Character-level language model

```c
/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */

static int indicate_policy(void)
{
    int error;
    if (fd == MARN_EPT) {
        /*
         * The kernel blank will coeld it to userspace.
         */
        if (ss->segment < mem_total)
            unblock_graph_and_set_blocked();
        else
            ret = 1;
        goto bail;
    }
    segaddr = in_SB(in.addr);
    selector = seg / 16;
    setup_works = true;
    for (i = 0; i < blocks; i++) {
        seq = buf[i++];
        bpf = bd->bd.next + i * search;
        if (fd) {
            current = blocked;
        }
    }
}
```
CONVOLUTIONAL NEURAL NETWORKS
Model of vision in animals

[Hubel & Wiesel 1962]:

- **simple cells** detect local features
- **complex cells** “pool” the outputs of simple cells within a retinotopic neighborhood.
Vision with ANNs

(LeCun et al., 1989)
What’s a convolution?

https://en.wikipedia.org/wiki/Convolution

1-D

\[
(f * g)(t) \overset{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) \, d\tau
\]

\[
= \int_{-\infty}^{\infty} f(t - \tau) g(\tau) \, d\tau.
\]
What’s a convolution?

https://en.wikipedia.org/wiki/Convolution

\[(f \ast g)(t) \overset{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) \, d\tau \]

\[= \int_{-\infty}^{\infty} f(t - \tau) g(\tau) \, d\tau.\]
What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo
What’s a convolution?

• Basic idea:
 – Pick a 3-3 matrix F of weights
 – Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

• Key point:
 – Different convolutions extract different types of low-level “features” from an image
 – All that we need to vary to generate these different features is the weights of F
How do we convolve an image with an ANN?

Note that the parameters in the matrix defining the convolution are tied across all places that it is used.
How do we do many convolutions of an image with an ANN?
Example: 6 convolutions of a digit

http://scs.ryerson.ca/~aharley/vis/conv/
CNNs typically alternate convolutions, non-linearity, and then downsampling.

Downsampling is usually averaging or (more common in recent CNNs) max-pooling.
Why do max-pooling?

• Saves space
• Reduces overfitting?
• Because I’m going to add more convolutions after it!
 – Allows the short-range convolutions to extend over larger subfields of the images
 • So we can spot larger objects
 • Eg, a long horizontal line, or a corner, or ...

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.
Another CNN visualization

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
input (24x24x1)
max activation: 0.99607, min: 0

Weights:
(filter size 5x5x1, stride 1
max activation: 2.96187, min: -5.49735
max gradient: 0.00068, min: -0.00102
parameters: 8x5x5x1+8 = 208

pool (12x12x8)
pooling size 2x2, stride 2
max activation: 2.96187, min: 0
max gradient: 0.00106, min: -0.00102

Activations:

Activation Gradients:
conv (12x12x16)
filter size 5x5x8, stride 1
max activation: 5.58937, min: -11.45423
max gradient: 0.00053, min: -0.00106
parameters: 16x5x5x8+16 = 3216

relu (12x12x16)
max activation: 5.58937, min: 0
max gradient: 0.0007, min: -0.0011

softmax (1x1x10)
max activation: 0.99864, min: 0
max gradient: 0, min: 0
Why do max-pooling?

• Saves space
• Reduces overfitting?
• Because I’m going to add more convolutions after it!
 – Allows the short-range convolutions to extend over larger subfields of the images
 • So we can spot larger objects
 • Eg, a long horizontal line, or a corner, or ...
• At some point the feature maps start to get very sparse and blobby – they are indicators of some semantic property, not a recognizable transformation of the image
• Then just use them as features in a “normal” ANN
Why do max-pooling?

- Saves space
- Reduces overfitting?
- Because I’m going to add more convolutions after it!
 - Allows the short-range convolutions to extend over larger subfields of the images
 - So we can spot larger objects
 - Eg, a long horizontal line, or a corner, or ...

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.
Alternating convolution and downsampling

The subfield in a large dataset that gives the strongest output for a neuron