
Map-Reduce With
Hadoop!

Announcement 1/2!
•  Assignments, in general:!

•  Autolab is not secure and assignments aren’t
designed for adversarial interactions!

•  Our policy: deliberately “gaming” an
autograded assignment is considered
cheating.!

•  The default penalty for cheating is failing
the course.!

•  Getting perfect test scores should not be
possible: you’re either cheating, or it’s a bug.!

Announcement 2/2!
•  Really a correction….!

The Naïve Bayes classifier – v2
•  You have a train dataset and a test dataset
•  Initialize an “event counter” (hashtable) C
•  For each example id, y, x1,….,xd in train:

– C(“Y=ANY”) ++; C(“Y=y”) ++
–  For j in 1..d:

•  C(“Y=y ^ X=xj”) ++
•  For each example id, y, x1,….,xd in test:

–  For each y’ in dom(Y):
•  Compute log Pr(y’,x1,….,xd) =

– Return the best y’

= log
C(X = x j ∧Y = y ')+mqx
C(X = ANY ∧Y = y ')+mj

∑
#

$
%%

&

'
((+ log

C(Y = y ')+mqy
C(Y = ANY)+m

where:
qj = 1/|V|
qy = 1/|dom(Y)|
m=1

The Naïve Bayes classifier – v2
•  You have a train dataset and a test dataset
•  Initialize an “event counter” (hashtable) C
•  For each example id, y, x1,….,xd in train:

– C(“Y=ANY”) ++; C(“Y=y”) ++
–  For j in 1..d:

•  C(“Y=y ^ X=xj”) ++
•  For each example id, y, x1,….,xd in test:

–  For each y’ in dom(Y):
•  Compute log Pr(y’,x1,….,xd) =

– Return the best y’

= log
C(X = x j ∧Y = y ')+mqx
C(X = ANY ∧Y = y ')+mj

∑
#

$
%%

&

'
((+ log

C(Y = y ')+mqy
C(Y = ANY)+m

where:
qj = 1/|V|
qy = 1/|dom(Y)|
mqx=1

Today: from stream+sort to hadoop!

•  Looked at algorithms consisting of!
•  Sorting (to organize messages)!
•  Streaming (low-memory, line-by-line) file

transformations (“map” operations)!
•  Streaming “reduce” operations, like summing counts,

that input files sorted by keys and operate on contiguous
runs of lines with the same keys!

•  è All our algorithms could be expressed as sequences of
map-sort-reduce triples (allowing identity maps and
reduces) operating on sequences of key-value pairs!

•  è Likewise all the abstraction operations we discussed can
be implemented as map-sort-reduce triples!

•  è To parallelize: we can look at parallelizing these …!

Recap: abstractions!

// just a single streaming transform – ie, a map

// without a sort|reduce

table2 = MAP table1 TO λ row : f(row))

table2 = FILTER table1 BY λ row : f(row))

table2 = FLATMAP table1 TO λ row : f(row))

// map|sort|reduce

table2 = GROUP table1 BY λ row : f(row)

// map1+map2 | sort | reduce

table3 = JOIN table1 BY f1, table2 BY f2

!

Today: from stream+sort to hadoop!

•  Important point:!
•  Our code is not CPU-bound!
•  It’s I/O bound!
•  To speed it up, we need to add more disk drives, not

more CPUs.!
•  Example: finding a particular line in 1 TB of data!

•  è Our algorithms could be expressed as sequences of
map-sort-reduce triples (allowing identity maps and
reduces) operating on sequences of key-value pairs!

•  è To parallelize we can look at parallelizing these …!

Write code to run assignment 1
in parallel!!

•  What infrastructure would you need?!

•  How could you run a generic “stream-and-sort” algorithm in
parallel?!

•  cat input.txt | MAP | sort | REDUCE > output.txt!

Key-value pairs	

(one/line)	

e.g., labeled docs	

Key-value
pairs	

(one/line)	

e.g. event
counts	

Sorted
key-val
pairs	

Key-value pairs	

(one/line)	

e.g., aggregate
counts	

How would you run assignment
1 in parallel? !!

•  What infrastructure would you need?!

•  How could you run a generic “stream-and-sort” algorithm in
parallel?!

•  cat input.txt | MAP | sort | REDUCE > output.txt!

Key-value pairs	

(one/line)	

e.g., labeled docs	

Box1!

Box2!

Box3!

Box4!

N-P	

A-E	

F-M	

Q-Z	

Step 1: split input
data, by key, into
“shards” and ship
each shard to a
different box 	

How would you run assignment
1 in parallel? !!

•  What infrastructure would you need?!

•  How could you run a generic “stream-and-sort” algorithm in
parallel?!

•  cat input.txt | MAP | sort | REDUCE > output.txt!

• Open sockets to receive data to ~wcohen/
kludge/mapinput.txt on each of the K boxes!
• For each key,val pair:!

•  Send key,val pair to boxFor (key)!

Box1!

Box2!

Box3!

Box4!

N-P	

A-E	

F-M	

Q-Z	

Step 1: split input
data, by key, into
“shards” and ship
each shard to a
different box 	

How would you run assignment
1 in parallel? !!

•  What infrastructure would you need?!

•  How could you run a generic “stream-and-sort” algorithm in
parallel?!

•  cat input.txt | MAP | sort | REDUCE > output.txt!

• Open sockets to receive data to boxk:/kludge/mapin.txt on each
of the K boxes!
• For each key,val pair in input.txt:!

•  Send key,val pair to boxFor (key)!
•  Run K processes: rsh boxk ‘MAP < mapin.txt > mapout.txt’!

Box1!

Box2!

Box3!

Box4!

N-P	

A-E	

F-M	

Q-Z	

Step 2: run
the maps in
parallel	

…	

…	

…	

…	

How would you run assignment
1B in parallel? !!

•  What infrastructure would you need?!

•  How could you run a generic “stream-and-sort” algorithm in
parallel?!

•  cat input.txt | MAP | sort | REDUCE > output.txt!

• Open sockets to receive data to boxk:/kludge/mapin.txt on each of the K
boxes!
• For each key,val pair in input.txt:!

•  Send key,val pair to socket[boxFor (key)]!
•  Run K processes: rsh … ‘MAP < ….> …’ to completion!
•  On each box:!

• Open sockets to receive and sort data to boxk:/kludge/redin.txt on
each of the K boxes!
• For each key,val pair in mapout.txt:!
•  !Send key,val pair to socket[boxFor (key)]!

Box1!

Box2!

Box3!

Box4!

N-P	

A-E	

F-M	

Q-Z	

Step 3:
redistribute
the map
output	

…	

…	

…	

…	

How would you run assignment
1B in parallel? !!

•  What infrastructure would you need?!

•  How could you run a generic “stream-and-sort” algorithm in
parallel?!

•  cat input.txt | MAP | sort | REDUCE > output.txt!

• Open sockets to receive data to boxk:/kludge/mapin.txt on each of the K
boxes!
• For each key,val pair in input.txt:!

•  Send key,val pair to socket[boxFor (key)]!
•  Run K processes: rsh MAP …!
•  On each box:!

• Open sockets to receive and sort data to boxk:/kludge/redin.txt on each of
the K boxes!
• For each key,val pair in mapout.txt:!
•  !Send key,val pair to socket[boxFor (key)]!

Box1!

Box2!

Box3!

Box4!

N-P	

A-E	

F-M	

Q-Z	

Step 3:
redistribute
the map
output	

N-P	

A-E	

F-M	

Q-Z	

Box1!

Box2!

Box3!

Box4!

How would you run assignment
1B in parallel? !!

•  What infrastructure would you need?!

•  How could you run a generic “stream-and-sort” algorithm in
parallel?!

•  cat input.txt | MAP | sort | REDUCE > output.txt!

• Open sockets to receive data to boxk:/kludge/mapin.txt on each of the K
boxes!
• For each key,val pair in input.txt:!

•  Send key,val pair to socket[boxFor (key)]!
•  Run K processes: rsh MAP < mapin.txt > mapout.txt!
•  Shuffle the data back to the right box!
•  Do the same steps for the reduce processes!

Box1!

Box2!

Box3!

Box4!

N-P	

A-E	

F-M	

Q-Z	

Step 4: run
the reduce
processes	

in parallel	

N-P	

A-E	

F-M	

Q-Z	

Box1!

Box2!

Box3!

Box4!

How would you run assignment
1B in parallel? !!

•  What infrastructure would you need?!

•  How could you run a generic “stream-and-sort” algorithm in
parallel?!

•  cat input.txt | MAP | sort | REDUCE > output.txt!

• Open sockets to receive data to boxk:/kludge/mapin.txt on each of the K
boxes!
• For each key,val pair in input.txt:!

•  Send key,val pair to socket[boxFor (key)]!
•  Run K processes: rsh MAP < mapin.txt > mapout.txt!
•  Shuffle the data back to the right box!
•  Do the same steps for the reduce process!

•  (If the keys for reduce process don’t change, you don’t need to reshuffle
them)!

Box1!

Box2!

Box3!

Box4!

N-P	

A-E	

F-M	

Q-Z	

N-P	

A-E	

F-M	

Q-Z	

Box1!

Box2!

Box3!

Box4!

N-P	

A-E	

F-M	

Q-Z	

MAP	

 REDUCE	

1.  This would be pretty
systems-y (remote copy
files, waiting for remote
processes, …)	

2.  It would take work to
make it useful….	

…in this class…!

INTERNET	

Motivating Example!
• Wikipedia is a very small part of the internet*!

•  *may not be to scale!

Wikipedia!
abstracts!
650Mb!

ClueWeb09!
5Tb!

1.  This would be pretty
systems-y (remote copy
files, waiting for remote
processes, …)	

2.  It would take work to
make run for 500 jobs	

•  Reliability: Replication,
restarts, monitoring jobs,…	

•  Efficiency: load-balancing,
reducing file/network i/o,
optimizing file/network i/o,
…	

•  Useability: stream defined
datatypes, simple reduce
functions, ….	

Event Counting
on Subsets of
Documents!

Summing
Counts!

1.  This would be pretty
systems-y (remote copy
files, waiting for remote
processes, …)	

2.  It would take work to
make run for 500 jobs	

•  Reliability: Replication,
restarts, monitoring jobs,…	

•  Efficiency: load-balancing,
reducing file/network i/o,
optimizing file/network i/o,
…	

•  Useability: stream defined
datatypes, simple reduce
functions, ….	

Parallel and Distributed
Computing: "
MapReduce!

• pilfered from: Alona Fyshe!

Inspiration not Plagiarism!

•  This is not the first lecture ever on Mapreduce!

•  I borrowed from Alona Fyshe and she borrowed from:!

•  Jimmy Lin!
• 

http://www.umiacs.umd.edu/~jimmylin/cloud-computing/SIGIR-2009/Lin-MapReduce-
SIGIR2009.pdf!

•  Google!
•  http://code.google.com/edu/submissions/mapreduce-minilecture/listing.html!

•  http://code.google.com/edu/submissions/mapreduce/listing.html!

•  Cloudera!
•  http://vimeo.com/3584536!

Surprise, you mapreduced!!

• Mapreduce has three main phases!

• Map (send each input record to a key)!

•  Sort (put all of one key in the same place)!

•  handled behind the scenes!

•  Reduce (operate on each key and its set of values)!

•  Terms come from functional programming:!

•  map(lambda x:x.upper(),["william","w","cohen"])è['WILLIAM',
'W', 'COHEN']!

•  reduce(lambda x,y:x+"-"+y,["william","w","cohen"])è”william-
w-cohen”!

Mapreduce overview!

Map! Shuffle/Sort! Reduce!

Distributing NB!
•  Questions:!

•  How will you know when each machine is done?!

•  Communication overhead!

•  How will you know if a machine is dead?!

Failure!

•  How big of a deal is it really?!

•  A huge deal. In a distributed environment disks fail ALL THE TIME. !

•  Large scale systems must assume that any process can fail at any time.!

•  It may be much cheaper to make the software run reliably on unreliable
hardware than to make the hardware reliable.!

•  Ken Arnold (Sun, CORBA designer): !

•  Failure is the defining difference between distributed and local
programming, so you have to design distributed systems with the
expectation of failure. Imagine asking people, "If the probability of
something happening is one in 1013, how often would it happen?" Common
sense would be to answer, "Never." That is an infinitely large number in
human terms. But if you ask a physicist, she would say, "All the time. In a
cubic foot of air, those things happen all the time.”

Well, that’s a pain!
•  What will you do when a task fails?!

Well, that’s a pain!
•  What’s the difference between slow and dead?!

•  Who cares? Start a backup process.!

•  If the process is slow because of machine issues, the backup
may finish first!

•  If it’s slow because you poorly partitioned your data...
waiting is your punishment!

What else is a pain?!
• Losing your work!!

• If a disk fails you can lose some intermediate output!

• Ignoring the missing data could give you wrong
answers!

• Who cares? if I’m going to run backup processes I
might as well have backup copies of the intermediate
data also!

HDFS: The Hadoop File System!

• Distributes data across the cluster!

• distributed file looks like a directory with shards
as files inside it!

• makes an effort to run processes locally with the
data!

• Replicates data!

• default 3 copies of each file!

• Optimized for streaming!

• really really big “blocks”!

$ hadoop fs -ls rcv1/small/sharded!
Found 10 items!
-rw-r--r-- 3 … 606405 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00000!
-rw-r--r-- 3 … 1347611 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00001!
-rw-r--r-- 3 … 939307 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00002!
-rw-r--r-- 3 … 1284062 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00003!
-rw-r--r-- 3 … 1009890 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00004!
-rw-r--r-- 3 … 1206196 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00005!
-rw-r--r-- 3 … 1384658 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00006!
-rw-r--r-- 3 … 1299698 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00007!
-rw-r--r-- 3 … 928752 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00008!
-rw-r--r-- 3 … 806030 2013-01-22 16:28 /user/wcohen/rcv1/small/sharded/part-00009!
!
$ hadoop fs -tail rcv1/small/sharded/part-00005!
weak as the arrival of arbitraged cargoes from the West has put the local market under pressure… !
M14,M143,MCAT The Brent crude market on the Singapore International …!

!

MR Overview!

1.  This would be pretty
systems-y (remote copy
files, waiting for remote
processes, …)	

2.  It would take work to
make work for 500 jobs	

•  Reliability: Replication,
restarts, monitoring jobs,…	

•  Efficiency: load-balancing,
reducing file/network i/o,
optimizing file/network i/o,
…	

•  Useability: stream defined
datatypes, simple reduce
functions, ….	

Map reduce with Hadoop
streaming!

Breaking this down…!
•  What actually is a key-value pair? How do you interface with

Hadoop?!

•  One very simple way: Hadoop’s streaming interface.!

•  Mapper outputs key-value pairs as: !

•  One pair per line, key and value tab-separated!

•  Reduced reads in data in the same format!

•  Lines are sorted so lines with the same key are adjacent.!

An example:!

•  SmallStreamNB.java and StreamSumReducer.java: !

•  the code you just wrote. !

To run locally:!

To train with streaming Hadoop
you do this:!

But first you need to get your code and data
to the “Hadoop file system”	

To train with streaming
Hadoop:!

•  First, you need to prepare the corpus by splitting it into shards!

•  … and distributing the shards to different machines:!

To train with streaming
Hadoop:!

•  One way to shard text:!

•  hadoop fs -put LocalFileName HDFSName!

•  then run a streaming job with ‘cat’ as mapper and reducer !

•  and specify the number of shards you want with option!

! !-numReduceTasks!

To train with streaming
Hadoop:!

•  Next, prepare your code for upload and distribution to the
machines cluster!

To train with streaming
Hadoop:!

•  Next, prepare your code for upload and distribution to the
machines cluster!

Now you can run streaming
Hadoop:!

“Real” Hadoop!
•  Streaming is simple but!

•  There’s no typechecking of inputs/outputs!

•  You need to parse strings a lot!

•  You can’t use compact binary encodings!

•  …!
•  basically you have limited control over the messages you’re

sending!

•  i/o costs = O(message size) often dominates !

others:	

•  KeyValueInputFormat	

•  SequenceFileInputFormat	

Is any part of this wasteful?!
•  Remember - moving data around and writing to/reading from

disk are very expensive operations!

•  No reducer can start until:!

•  all mappers are done !

•  data in its partition has been sorted!

How much does buffering help?!

BUFFER_SIZE! Time! Message Size!
none! 1.7M words!
100! 47s! 1.2M!
1,000! 42s! 1.0M!
10,000! 30s! 0.7M!
100,000! 16s! 0.24M!
1,000,000! 13s! 0.16M!
limit! 0.05M!

Combiners!
•  Sits between the map and the shuffle!

•  Do some of the reducing while you’re waiting for other stuff
to happen!

•  Avoid moving all of that data over the network!

•  Only applicable when !

•  order of reduce values doesn’t matter !

•  effect is cumulative !

Deja vu: Combiner = Reducer!
•  Often the combiner is the reducer.!

•  like for word count!

•  but not always!

1.  This would be pretty
systems-y (remote copy
files, waiting for remote
processes, …)	

2.  It would take work to
make work for 500 jobs	

•  Reliability: Replication,
restarts, monitoring jobs,…	

•  Efficiency: load-balancing,
reducing file/network i/o,
optimizing file/network i/o,
…	

•  Useability: stream defined
datatypes, simple reduce
functions, ….	

Some common pitfalls!
•  You have no control over the order in which reduces are

performed!

•  You have “no” control over the order in which you encounter
reduce values!

•  More on this later!

•  The only ordering you should assume is that Reducers always
start after Mappers!

Some common pitfalls!
•  You should assume your Maps and Reduces will be taking place

on different machines with different memory spaces!

•  Don’t make a static variable and assume that other processes can
read it!

•  They can’t.!

•  It appear that they can when run locally, but they can’t!

•  No really, don’t do this. !

Some common pitfalls!
•  Do not communicate between mappers or between reducers!

•  overhead is high!

•  you don’t know which mappers/reducers are actually
running at any given point!

•  there’s no easy way to find out what machine they’re
running on!

•  because you shouldn’t be looking for them anyway!

When mapreduce doesn’t fit!
• The beauty of mapreduce is its separability and independence!

• If you find yourself trying to communicate between processes!

•  you’re doing it wrong!

• or!

•  what you’re doing is not a mapreduce!

When mapreduce doesn’t fit!
•  Not everything is a mapreduce!

•  Sometimes you need more communication!

•  We’ll talk about other programming paradigms later!

What’s so tricky about
MapReduce?!

•  Really, nothing. It’s easy.!

•  What’s often tricky is figuring out how to write an algorithm as a
series of map-reduce substeps.!

•  How and when do you parallelize?!

•  When should you even try to do this? when should you use a
different model?!

•  Last few lectures we’ve stepped through a few algorithms as
examples!

•  good exercise: think through some alternative
implementations in map-reduce!

Thinking in Mapreduce!
•  A new task: Word co-occurrence statistics (simplified)!

•  Input:!

• Sentences!

•  Output:!

• P(Word B is in sentence| Word A started the sentence)!

Thinking in mapreduce!
•  We need to calculate!

•  P(B in sentence | A started sentence) =!

•  P(B in sentence & A started sentence)/P(A started sentence)=!

• count<A,B>/count<A,*>!

Word Co-occurrence: Solution 1!
• The Pairs paradigm:!

•  For each sentence, output a pair!

•  E.g Map(“Machine learning for big data”) creates:!

• <Machine, learning>:1!

• <Machine, for>:1!

• <Machine, big>:1!

• <Machine, data>:1!

• <Machine,*>:1!

Word Co-occurrence: Solution 1!
•  Reduce would create, for example:!

• <Machine, learning>:10!

• <Machine, for>:1000!

• <Machine, big>:50!

• <Machine, data>:200!

• ...!
• <Machine,*>:12000!

Word Co-occurrence: Solution 1!
• P(B in sentence | A started sentence) =!

•  P(B in sentence & A started sentence)/P(A started sentence)=!

• <A,B>/<A,*>!

• Do we have what we need?!

• Yes!!

Word Co-occurrence: Solution 1!
•  But wait!!

•  There’s a problem can you see it?!

Word Co-occurrence: Solution 1!
•  Each reducer will process all counts for a <word1,word2> pair!

•  We need to know <word1,*> at the same time as
<word1,word2>!

•  The information is in different reducers!!

Word Co-occurrence: Solution 1!
•  Solution 1 a)!

•  Make the first word the reduce key!

•  Each reducer has:!

•  key: word_i !

•  values:
<word_i,word_j>....<word_i,word_b>.....<word_i,*>....!

Word Co-occurrence: Solution 1!
•  Now we have all the information in the same reducer!

•  But, now we have a new problem, can you see it?!

•  Hint: remember - we have no control over the order of values!

Word Co-occurrence: Solution 1!
•  There could be too many values to hold in memory!

•  We need <word_i,*> to be the first value we encounter!

•  Solution 1 b): !

•  Keep <word_i,word_j> as the reduce key!

•  Change the way Hadoop does its partitioning.!

Word Co-occurrence: Solution 1!

Word Co-occurrence: Solution 1!
•  Ok cool, but we still have the same problem.!

•  The information is all in the same reducer, but we don’t know
the order!

•  But now, we have all the information we need in the reduce key!!

Word Co-occurrence: Solution 1!
• We can use a custom comparator to sort the keys we encounter in

the reducer!

•  One way: custom key class which implements
WriteableComparable!

• Aside: if you use tab-separated values and Hadoop streaming you
can create a streaming job where (for instance) field 1 is the partition
key, and the lines are sorted by fields 1 & 2.!

Word Co-occurrence: Solution 1!

• Now the order of key, value pairs will be as we need:!

• <Machine,*>:12000!

• <Machine, big>:50!

• <Machine, data>:200!

• <Machine, for>:1000!

• <Machine, learning>:10!

• ...!
• P(“big” in sentence | “Machine” started sentence) = 50/12000!

Word Co-occurrence: Solution 2!
•  The Stripes paradigm!

•  For each sentence, output a key, record pair!

•  E.g Map(“Machine learning for big data”) creates:!

• <Machine>:<*:1,learning:1, for:1, big:1, data:1>!

•  E.g Map(“Machine parts are for machines”) creates:!

• <Machine>:<*:1,parts:1,are:1, for:1,machines:1>!

Word Co-occurrence: Solution 2!
•  Reduce combines the records:!

•  E.g Reduce for key <Machine> receives values:!

• <*:1,learning:1, for:1, big:1, data:1>!

• <*:1,parts:1,are:1, for:1,machines:1>!

•  And merges them to create!

•  <*:2,learning:1, for:2, big:1, data:1,parts:1,are:1,machines:1>!

Word Co-occurrence: Solution 2!
•  This is nice because we have the * count already created !

•  we just have to ensure it always occurs first in the record!

Word Co-occurrence: Solution 2!
•  There is a really big (ha ha) problem with this solution!

•  Can you see it?!

•  The value may become too large to fit in memory!

Performance!
•  IMPORTANT!

•  You may not have room for all reduce values in memory!

•  In fact you should PLAN not to have memory for all values!

•  Remember, small machines are much cheaper!

•  you have a limited budget!

Performance!
•  Which is faster, stripes vs pairs?!

•  Stripes has a bigger value per key!

•  Pairs has more partition/sort overhead!

Performance!

Conclusions!
•  Mapreduce!

•  Can handle big data!

•  Requires minimal code-writing!

•  Real algorithms are typically a sequence of map-reduce steps!

