Other Map-Reduce (ish)
Frameworks

William Cohen

Outline

* More concise languages for map-reduce
pipelines
* Abstractions built on top of map-reduce
— General comments
— Specific systems
 Cascading, Pipes
* PIG, Hive
* Spark, Flink

Y:Y=Hadoop+X or Hadoop~=Y

 What else are people using?
—instead of Hadoop

* Not really covered this lecture

—on top of Hadoop

Issues with Hadoop

* Too much typing
— programs are not concise
* Too low level
— missing abstractions
— hard to specify a workflow
* Not well suited to iterative operations
—E.g., E/M, k-means clustering, ...
— Workflow and memory-loading issues

STREAMING AND MRJOB:
MORE CONCISE MAP-REDUCE
PIPELINES

Hadoop streaming

* start with stream & sort pipeline

cat data | mapper.py | sort —k1,1 | reducer.py

* run with hadoop streaming instead

bin/hadoop jar contrib/streaming/hadoop-*streaming*.jar
-file mapper.py -file reducer.py

-mapper mapper.py
-reducer reducer.py

-input /hdfs/path/to/inputDir
-output /hdfs/path/to/outputDir
-mapred.map.tasks=20
-mapred.reduce.tasks=20

mrjob word count

Python level
over map-
reduce - very
concise

Can run
locally in
Python

Allows a
single job or
a linear chain
of steps

from mrjob.job import MRJob
import re

WORD_RE = re.compile(r"[\w']+")

class MRWordFreqCount(MRJob):

def mapper(self, _, line):
for word in WORD_RE.findall(line):
yield word.lower(), 1

def combiner(self, word, counts):
yield word, sum(counts)

def reducer(self, word, counts):

yield word, sum(counts)

if __name__ == "__main__":
MRWordFreqCount. run()

mrjob most freq word

class MRMostUsedWord(MRJob):

def mapper_get_words(self, _, line):
yield each word in the line
for word in WORD_RE.findall(line):
yield (word.lower(), 1)

def combiner_count_words(self, word, counts):
optimization: sum the words we've seen so far
yield (word, sum(counts))

def reducer_count_words(self, word, counts):
send all (num_occurrences, word) pairs to the same reducer.
num_occurrences is so we can easily use Python's max() function.
yield None, (sum(counts), word)

discard the key; it is just None

def reducer_find_max_word(self, _, word_count_pairs):
each item of word_count_pairs is (count, word),
so yielding one results in key=counts, value=word
yield max(word_count_pairs)

def steps(self):
return [
self.mr(mapper=self.mapper_get_words,
combiner=self.combiner_count_words,
reducer=self.reducer_count_words),
self.mr(reducer=self.reducer_find_max_word)

if __name__ == "__main__":
MRMostUsedWord. run()

MAP-REDUCE ABSTRACTIONS

Abstractions On Top Of Hadoop

 MRJob and other tools to make Hadoop
pipelines more concise (Dumbo, ...) still keep
the same basic language of map-reduce jobs

 How else can we express these sorts of
computations? Are there some common
special cases of map-reduce steps we can
parameterize and reuse?

Abstractions On Top Of Hadoop

* Some obvious streaming
processes: Example: stem words in a stream

_ of word-count pairs:
— for each row in a table

e Transform it and (“aardvarks”,1) = (“aardvark”,1)

output the result Proposed syntax: f(row) Drow’

table2 = MAP tablel TO A row: f{(row))

* Decide if you want to

keep it with some Example: apply stop words
boolean test, and copy (“aardvark’,1) & (“aardvark’,1)
out only the ones that (“the”, 1) > deleted
pass the test

Proposed syntax: f(row) = {true,false}

tableZ = FILTER tablel BY A row: f(row))

Abstractions On Top Of Hadoop

* A non-obvious? streaming
processes:

— for each row in a table

 Transform it to a list of
1tems

: : P d syntax: ‘
« Splice all the lists ARSI (AT

together to get the table2 = FLATMAP table1 TO A row: f{row))

output table (flatten)

w:=y

Example: tokenizing a line 1

“found”
« ”n
“I found an aardvark” = [“i”, “found”,”an”,”aardvark”] “an i
“We love zymurgy” = [“we”,"love”,”zymurgy”] “aar”dvark
we
Mlove”

.but final table is one word per row

Abstractions On Top Of Hadoop

* Another example from the Naive Bayes test
program...

NB Test Step (Can we do better?)

Event counts

How: X=w;NY=sports 5245
* Stream and sort: X=w,NY=worldNews 1054
« for each C[X=w”Y=y]=n X=.. 2120
- print “w C[Y=y]=n" X=w,"NY=... 37
* sort and build a list of values X=... 3
associated with each key w
Like an inverted index

!

Counts associated with W

aardvark C[w”Y=sports]=2

agent C[w” Y=sports]=1027,C[w”Y=world
News]=564
zynga C[w”Y=sports]=21,C[w”Y=worldNe

ws|=4464

NB Test Step 1 (Can we do better?)

The general case: Event counts
We're taking rows from a table

: X=w;NY=sports 5245
 In a particular format (event,count) X=w.AY=worldNews 1054
Applying a function to get a new = L 2120
value AV
 The word for the event §;w2 Y= 3;
And grouping the rows of the table by
this new value

=» Grouping operation u

Special case of a map-reduce
Counts associated with W

Proposed syntax: f(row) >field aardvark C[w”Y=sports]=2

agent C[w” Y=sports]=1027,C[w”Y=world

GROUP table BY A row: f{row) News]=564

Output: key, listOfRowsWithkey
Could define f via: a function, a field zynga C[w”"Y=sports]=21,C[w"Y=worldNe
of a defined record structure, ... ws]=4464

NB Test Step 1 (Can we do better?)

Aside: you guys know how to

The general case: implement this, right?

We're taking rows from a table
* In a particular format (event,count)
Applying a function to get a new

value 1. Output pairs (f(row),row) with

» The word for the event a map/streaming process

And grouping the rows of the table by

this new value 2. Sort pairs by key - which is
f(row)

=» Grouping operation
Special case of a map-reduce 3. Reduce and aggregate by
appending together all the values

associated with the same key
Proposed syntax: f:010) Dfield

GROUP table BY A row: frow)

Could define f via: a function, a field
of a defined record structure, ...

Abstractions On Top Of Hadoop

* And another example from the Naive Bayes
test program...

17

Request-and-answer

Test data Record of all event counts for each word
ld; Wy Wy, W3 ... Wypg Counts associated with W
Z.dZ Wo,1 Wi W3 - aardvark C[w”Y=sports]=2
1.33 Ws1Wsp - agent C[w”Y=sports]=1027,C[w”Y=worl
ty Wy1Wyp -
id; W5 Ws, ...
zynga C[w”Y=sports]|=21,C[w”Y=world}
A
Step 2: stream through and for each test case
1d; W;W;, W;3.... Wi
request the event counters needed to classify
Classification id; from the event-count DB, then classify
logic using the answers
>

Request-and-answer

* Break down into stages

— Generate the data being requested (indexed by key, here
a word)
« Eg with group ... by
— Generate the requests as (key, requestor) pairs
« Eg with flatmap ... to

— Join these two tables by key

* Join defined as (1) cross-product and (2) filter out pairs with
different values for keys

* This replaces the step of concatenating two different tables of
key-value pairs, and reducing them together

— Postprocess the joined result

found ~ctr to id1 aardvark C[w”Y=sports]=2
aardvark ~ctr to id1 agent C[w”Y=sports]|=1027,C[w”Y=worldNew:
zynga ~ctr to id1 zynga C[w”Y=sports]=21,C[w”Y=worldNews]-=
~ctr to id2

aardvark C[w”Y=sports]|=2 ~ctr to id1

agent C[w”/Y=sports]=... ~ctr to id345

agent C[w”Y=sports]=... ~ctr to id9854

agent C[w” Y=sports]=... ~ctr to 1d345

C[w”Y=sports]=... ~ctr to 1d34742
zynga C[...] ~ctr to id1

zynga Cl...]

found id1 aardvark C[w”Y=sports]=2

aardvark id1 agent C[w”Y=sports]|=1027,C[w”Y=worldNew:

zynga id1 zynga C[wY=sports]=21,C[w”Y=worldNews]=
id2

aardvark C[w”Y=sports|=2 id1

agent C[w”Y=sports]=... id345
agent C[w”Y=sports]=... 1id9854
agent C[w”Y=sports]=... id345
C[w”Y=sports]=... id34742
zynga Cl...] id1

Proposed syntax:
table3 =]OIN tablel BY A row: f(row), table2 BY A row: g(row)

Could define f and gvia: a function, a field of a defined record structure, ...

MAP-REDUCE ABSTRACTIONS:
CASCADING, PIPES, SCALDING

22

Y:Y=Hadoop+X

» Cascading
—Java library for map-reduce workflows

— Also some library operations for common
mappers/reducers

23

Cascading WordCount Example

Scheme sourceScheme =

Tap source = new Hfs(sourceScheme,

Scheme sinkScheme = new TextLine(

Tap sink =

Pipe assembly =

String regex = " (7>!\pL)(?2=\pL)[”~

Function function =

assembly = new Each(assembly,

assembly new GroupBy(assembly,

Aggregator count =

assembly =

Properties properties =

FlowConnector.setApplicationJdarClass|

FlowConnector flowConnector =

Flow flow = flowConnector.connect(

flow.complete();

new TextLine(new Fields(

new Fields(

new Hfs(sinkScheme, outputPath,

new Pipe("wordcount”

]*(Z<=\pL)(?!\pL)";

new RegexGenerator(new Fields(

new Fields(

new Fields(

new Count(new Fields(
new Every(assembly, count

line")); Input format

Bind to HFS path

inputPath);

"word", "count”));

Output format: pairs

o ~ Bind to HFS path
y; A pipeline of map-reduce jobs

SinkMode.REPLACE);

Replace line with bag of words
"word"), regex);

"line"), function);

Append a step: apply function to the “line” field
"word"));

Append step: group a (flattened) stream of “tuples”

"count"”));:

)i Append step: aggregate grouped values

new Properties();

properties, Main.class); ™)
new FlowConnector(properties); Run the
"word-count”, source, sink, assembly); aneHne
—_— 24

Cascading WordCount Example

SCh E I S LI L Y 3
rap| Many of the Hadoop abstraction levels have a similar flavor:
* Define a pipeline of tasks declaratively
S¢hM e Optimize it automatically
Ta .
| Run the final result
Pip
The key question: does the system successfully hide the details from you?
String regex = " (ZZI!\pL)(?=\pL)[~ 1*(?<=\pL)(?2!\pL)";
Function function = new RegexGenerator(new Fields("word"), regex);
assembly = new Each(assembly, new Fields("line"), function);
assembly = new GroupBy(assembly, new Fields("word")); s this inefficient? We
explicitly form a group for
Aggregator count = new Count(new Fields("count")); each WOI"d, and then count
assembly = new Every(assembly, count); the elements ?
Properties properties = new Properties();
Flo

Flqg

We could be saved by careful optimization: we know we don’t need the
GroupBy intermediate result when we run the assembly....

Flow flow = flowConnector.connect("word-count"”, source, sink, assembly);

flow.complete();

Cascading WordCount Example

Many of the Hadoop abstraction levels have a similar flavor:
* Define a pipeline of tasks declaratively

* Optimize it automatically

* Run the final result

The key question: does the system successfully hide the details from you?

Another pipeline:

words = FLATMAP docs BY A d: tokenize(d)
contentWords = FILTER words BY A w: !contains(stopwords,w)

stems = MAP contentWords BY A w: stem(w)

stemGroups = GROUP stems BY As:s
stemCounts = MAP stemGroups BY } Optimize to

A stem,listOfStems: (stem,listOfStems.length()) one reduce

How many passes do we need to make over the data?

Y:Y=Hadoop+X

« Cascading

— Java library for map-reduce workflows

 expressed as “Pipe”s, to which you add Each, Every,
GroupBy, ...

— Also some library operations for common mappers/
reducers

* e.g. RegexGenerator
— Turing-complete since it's an API for Java
* Pipes
— C++ library for map-reduce workflows on Hadoop
* Scalding
— More concise Scala library based on Cascading

27

MORE DECLARATIVE LANGUAGES

28

Hive and PIG: word count

* Declarative Fairly stable

FROM

(MAP docs.contents USING '"tokenizer script' AS word, cnt
FROM docs

CLUSTER BY word) map output

REDUCE map output.word, map output.cnt USING "count script' AS word, cnt;

= load '/tmp/bible+shakes.nopunc’;
= foreach A generate flatten(TOKENIZE((chararray)s$0)) as word;
= filter B by word matches '\w+';

= foreach D generate COUNT(C) as count, group as word;

A

B

C

D = group C by word;

E

F = order E by count desc;
s

PIG program is a bunch of assignments
where every LHS is a relation.
No loops, conditionals, etc allowed.

tore F into '/tmp/wc';

29

More on Pig

* Pig Latin
—atomic types + compound types like tuple,
bag, map
—execute locally/interactively or on hadoop
* can embed Pig in Java (and Python and ...)

* can call out to Java from Pig

» Similar (ish) system from Microsoft:
DryadLing

load '/tmp/bible+shakes.nopunc’;

foreach A generate flatten(TOKENIZE((chararray)$0)) as word;

filter B by word matches\ ' \w+';

= foreach D generate COUNT(C) as count,\group as word;

A

B

C

D = group C by word;
E

F = order E by count desc;
s

tore F into '/tmp/wc';

Tokenize — built-in function

Flatten — special keyword, which
applies to the next step in the

process — ie foreach is transformed
from a MAP to a FLATMAP

31

PIG parses and optimizes a sequence of commands before it executes them
It’s smart enough to turn GROUP ... FOREACH... SUM ... into a map-reduce

* LOAD ‘hdfs-path’AS (schema)

— schemas can include int, double, bag, map, tuple, ...
 FOREACH alias GENERATE ... AS ..., ...

— transforms each row of a relation
 DESCRIBE alias/ILLUSTRATE alias -- debugging
 GROUP aliasBY ...
 FOREACH alias GENERATE group, SUM(....)

— GROUP/GENERATE ... aggregate op together act like a map-
reduce

* JOIN rBY field, s BY field, ...

— Inner join to produce rows: r::fl, r::f2, ... s::fl, s::f2, ...
* CROSS s, ...

— use with care unless all but one of the relations are singleton
* User defined functions as operators

— also for loading, aggregates, ...

ANOTHER EXAMPLE:
COMPUTINGTFIDF IN PIG LATIN

33

DEFINE tf idf(in_relation, id field, text field) RETURNS out relation {
token_records = foreach $in_relation generate $id field, FLATTEN(TOKENIZE(S$text field)) as tokens;

doc_word totals = foreach (group token records by ($id field, tokens)) generate
FLATTEN(group) as ($id field, token),

COUNT_STAR(token_records) as doc_total; | (docjd,token) =» (docid,token,tf(token in doc))

9 /* Calculate the document size */
10 pre term counts = foreach (group doc word totals by $id field) generate

1
2
3
4 /* Calculate the term count per document */
5
6
7
8

11 group AS $id field,

12 FLATTEN (doc_word_totals.(token, doc_total)) as (token, doc_total),

13 SUM(doc_word totals.doc total) as doc_size;

14 . 0
e (docid,token,tf) =» (docid,token,tf,length(doc))

16 term freqs = foreach pre_ term counts generate $id field as $id field,

17 token as token,
18 ((double)doc _total / (double)doc size) AS term freq; .
19 (docid,token,tf,n)=>(...,tf/n)

20 /* Get count of documents using each token, for idf */
21 token usages = foreach (group term freqgs by token) generate

22 FLATTEN(term_fregs) as ($id_field, token, term freq),
23 COUNT STAR(term freqgs) as num docs with token; (docid,token,tf,n,tf/n)-)(. . ’df)
24

25 /* Get document count */

26 just_ids = foreach $in _relation generate $id field;
27 ndocs = foreach (group just_ ids all) generate COUNT STAR(just_ids) as total docs;
28

29 /* Note the use of Pig Scalars to calculate idf */
30 $out relation = foreach token usages {

ndocs.total docs

31 idf = LOG((double)ndocs.total docs/(double)num docs with token);

32 tf _idf = (double)term freqg * idf;

33 generate $id_field as $id_field, relation-to-scalar casting

34 token as score,

35 h f idf lue:ch ; . g .

T (docid,token,tf,n,tf/n)=» (docid,token,tf/n * id)
! 34

37};

Other PIG features

* Macros, nested queries,
* FLATTEN “operation”

—transforms a bag or a tuple into its
individual elements

—this transform affects the next level of the
aggregate

 STREAM and DEFINE ... SHIP

DEFINE myfunc “python myfun.py’ SHIP(‘myfun.py’)

r = STREAM s THROUGH myfunc AS (...);

35

DEFINE tokenize_docs “ruby tokenize_documents.rb --id_field=0 --text_field=1 --map" SHIP('t¥ikenize_documents.rb');

raw_documents

LOAD '$DOCS' AS (doc_id:chararray, text:chararray);
tokenized

STREAM raw documents THROUGH tokenize docs AS (doc id:chararray, token:chararray);

TF-IDF in PIG - another version

DEFINE tokenize_docs ~ruby tokenize_documents.rb --id_field=@ --text_field=1 --map~ SHIP('%ikenize_documents.rb');

raw_documents

LOAD '$DOCS' AS (doc_id:chararray, text:chararray);
tokenized

STREAM raw_documents THROUGH tokenize_docs AS (doc_id:chararray, token:chararray);

doc_tokens

GROUP tokenized BY (doc_id, token);
doc_token_counts

FOREACH doc_tokens GENERATE FLATTEN(group) AS (doc_id, token), COUNT(tokenized) AS num_doc_tok_usages;

doc_usage_bag

GROUP doc_token_counts BY doc_id;
doc_usage_bag_fg

FOREACH doc_usage_bag GENERATE
group AS doc_id,
FLATTEN(doc_token_counts. (token, num_doc_tok_usages)) AS (token, num_doc_tok_usages),
SUM(doc_token_counts.num_doc_tok_usages) AS doc_size

.
3

term_freqs = FOREACH doc_usage_bag_fg GENERATE
doc_id AS doc_id,
token AS token,
((double)num_doc_tok_usages / (double)doc_size) AS term_freq;

3

term_usage_bag
token_usages

GROUP term_freqs BY token;

FOREACH term_usage_bag GENERATE
FLATTEN(term_freqs) AS (doc_id, token, term_freq),
COUNT(term_freqs) AS num_docs_with_token

3

tfidf_all = FOREACH token_usages {

idf = LOG((double)$NDOCS/(double)num_docs_with_token);
tf_idf = (double)term_freq*idf;
GENERATE

doc_id AS doc_id,
token AS token,
tf_idf AS tf_idf

};
STORE tfidf all INTO '$OUT'; 36

Issues with Hadoop

* Too much typing
— programs are not concise
* Too low level
— missing abstractions
— hard to specify a workflow
* Not well suited to iterative operations
—E.g., E/M, k-means clustering, ...
— Workflow and memory-loading issues

First: an iterative algorithm in Pig Latin

37

¥!/usr/bin/python
from org.apache.pig.scripting import *

P = Pig.compile("""
HOW.t.O use |OOPS, -- PRCA) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))
conditionals, etc?
previous_pagerank =

LOAD 'Sdocs_in'

Embed PIG in a USING PigStorage('\t')
. AS (url: chararray, pagerank: float, links:{ link: (url: chararray) });
real programming
|anguage' outbound_pagerank =
FOREACH previous_pagerank
GENERATE
Julien Le Dem - pagerank / COUNT (links) AS pagerank,
FLATTEN (links) AS to_url;
Yahoo
new_pagerank =
FOREACH
(COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER)
GENERATE

group AS url,
(1-3%d) + $d * SUM (outbound_pagerank.pagerank) AS pagerank,
FLATTEN (previous_pagerank.links) AS links;

STORE new_pagerank
INTO 'Sdocs_out’
USING PigStorage('\t');
Ll 'l)

params = { 'd': '@0.5', 'docs_in': 'data/pagerank_data_simple' }

for i in range(10):
out = "out/pagerank_data_" + str(i + 1)
params[“docs_out"] = out
Pig.fs("rmr " + out)
stats = P.bind(params).runSingle()
if not stats.isSuccessful():
raise 'failed’
params[“docs_in"] = out

38

#!/usr/bin/python
from org.apache.pig.scripting import *

P = Pig.compile(""" L
pig script: PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

"

params = { 'd': '0.5', 'docs_in': 'data/pagerank_data_simple' }

[terate 10 times

for 1 in range(10):

out = "out/pagerank_data_" + str(i + 1) Pass parameters as a
params["docs_out"] = out dictionary
Pig.fs("rmr " + out) _
§tats = P.b1n§(params).run51ngle() i —
if not stats.isSuccessful():

) S an = . IR, declared above

raise 'failed

" 5 The output becomes

params["docs_in"] = out

the new input

39

An example from Ron Bekkerman

40

Example: k-means clustering

* An EM-like algorithm:
e Initialize & cluster centroids

* E-step: associate each data instance with the
closest centroid

— Find expected values of cluster assighments
given the data and centroids

* M-step: recalculate centroids as an average of
the associated data instances

— Find new centroids that maximize that
expectation

41

k-means Clustering

centroids

42

k-means

izing

Parallel

43

k-means

izing

Parallel

44

Parallelizing k-means

AR

k-means on MapReduce

Panda et al, Chapter 2

* Mappers read data portions and centroids
* Mappers assign data instances to clusters

* Mappers compute new local centroids and
local cluster sizes

* Reducers aggregate local centroids
(weighted by local cluster sizes) into new
global centroids

* Reducers write the new centroids

46

k-means in Apache Pig: input data

e Assume we need to cluster documents
—Stored in a 3-column table D:

docl Carnegie 2
docl Mellon 2

* Initial centroids are £ randomly chosen docs

—Stored in table C in the same format as
above

47

k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);

DOT. ME. S dXc;
SQR z l'
= drg maX

SQR

LEN_ \/ z; -w n,;
DOT wee

SIM = FOREACH DOT_LEN GENERATE d, ¢, dXc / /enC,

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

48

k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);

DOT dXc;
SQR

SQRQ Cd — aI'g ImMax

LEN | ¢ E (ng;
DOT wee

SIM = FOREACH DOT_LEN GENERATE d, c, dXc / len

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

49

k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);

DOT S dXc;
SQR

SQR, Cd — aI'g max

LEN | ¢ o
DOT!

SIM = FOREACH DOT _LEN GENERATE"Sma cr

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

50

k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);
DOT.

SQR
SQR,
LEN_

DOT
SIM = FOREACH DOT_LEN GENERA

d, ¢, dXc / leg

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

51

k-means in Apache Pig: E-step

D_C=JOIN CBY w, D BY w;
PROD = FOREACH D_C GENERATE d, ¢, i, *i_ AS i i_;

PROD_ = GROUP PROD BY (d, c);
DOT.

S dXc;

SQR
SQR,
LEN_

C

DOT

SIM, = GROUP SIM BY d,
CLUSTERS = FOREACH S/M , GENERATE TOP(1, 2, SIM);

52

k-means in Apache Pig: E-step

D C BY w, D BY w;

PROD @REACH D_C GENERATE d, ¢, i, *i ASi,_;

PRODg OD BY (d, c);

DOT _PRO® @XEACH PRODg GENERATE d, ¢, SUM(i i) AS dXc;

SQR = FOREAGH C GENERATE c, i, * i, AS i,2
SQR, = @ 2R BY ;
LEN_C “WQBSHCH SQR, GENERATE ¢, SQRT(SUM(i 2)) AS len,;

DOT LEN

N_C BY ¢, DOT_PROD BY c;
SIM = FOREF POT_LEN GENERATE d, ¢, dXc / len;
CLUSTER JREACH S/M, GENERATE TOP(1, 2, SIM);

53

k-means in Apache Pig: M-step

D_C_W,GENERATE c, w, SUM(i,) AS sum;

D_C_W,, _C_W BY c;
SIZES = FOR®W@¥D_C_W, GENERATE c, COUNT(D_C_W) AS size;

SUMS SIZES IZES BY ¢, SUMS BY c;
C = FOREACH 5S®WI5_SIZES GENERATE ¢, w, sum / size AS i_;

Finally - embed in Java (or Python or) to do the looping

54

The problem with k-means in Hadoop

[/0 costs

55

Data is read, and model is written, with

every iteration
Panda et al, Chapter 2

* Mappers read data portions and centroids
* Mappers assign data instances to clusters

* Mappers compute new local centroids and
local cluster sizes

* Reducers aggregate local centroids
(weighted by local cluster sizes) into new
global centroids

* Reducers write the new centroids

56

SCHEMES DESIGNED FOR ITERATIVE
HADOOP PROGRAMS:
SPARK AND FLINK

57

Spark word count example

* Research project, based on Scala and Hadoop
 Now APIs in Java and Python as well

val file = spark.textFile("hdfs://...")

val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

* Familiar-looking API for abstract operations (map, flatMap,
reduceByKey, ...)

* Most API calls are “lazy” — ie, counts is a data structure defining a
pipeline, not a materialized table.

* Includes ability to store a sharded dataset in cluster memory as an
RDD (resiliant distributed database)

58

Spark logistic regression example

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.random(D) // current separating plane
for (1 <- 1 to ITERATIONS) {

val gradient = points.map(p =>

(1/ (1 + exp(-p.y*¥(w dot p.x))) - 1) *p.y * p.x

).reduce(_ + _)

w -= gradient
¥

println("Final separating plane: " + w)

Note that w gets shipped automatically to the cluster with every map call.

59

Spark logistic regression example

* Allows caching data in memory

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.random(D) // current separating plane
for (1 <- 1 to ITERATIONS) {

val gradient = points.map(p =>

(1 /7 (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

).reduce(_ + _)

W -= gradient
}

println("Final separating plane: " + w)

Note that w gets shipped automatically to the cluster with every map call.

Spark logistic regression example

The graph below compares the performance of this Spark program
against a Hadoop implementation on 30 GB of data on an 80-core
cluster, showing the benefit of in-memory caching:

“Hadoop = Spark

~ 4000
wn

S

o 3000
= 2000
o

c 1000
0 -

im

Runni

5 10 20 30
Number of Iterations

6l

FLINK

* Recent Apache Project - just moved to top-
level at 0.8 - formerly Stratosphere

object WordCountJob {
def main(args: Array[String]) {

// set up the execution environment
val env = ExecutionEnvironment.getExecutionEnvironment

// get input data

val text = env.fromElements('"To be, or not to be,--that is the question:--",
"Whether 'tis nobler in the mind to suffer", "The slings and arrows of outrageous fortune"
"Or to take arms against a sea of troubles,")

val counts = text.flatMap { _.toLowerCase.split("\\W+") }
.map { (_, 1) }
.groupBy(0)
.sum(1)

// emit result
counts.print()

// execute program
env.execute("WordCount Example')

62

public class WordCount {
Java API

public static void main(String[] args) throws Exception {

// set up the execution environment
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// get input data
DataSet<String> text = env.fromElements(

DataSet<Tuple2<String, Integer>> counts =
// split up the lines in pairs (2-tuples) containing: (word,1)
text.flatMap(new LineSplitter())
// group by the tuple field "0" and sum up tuple field "1"
.groupBy(0)
.aggregate(Aggregations.SUM, 1);

// emit result
counts.print();

// execute program
env.execute("WordCount Example");

FLINK

-

Operator DAG

% ﬁ (type agnostic)_l

Ji
) W
il

Java Program Scala Program

[Java API || Scala API

ooooooooooooooooooooooooo

LE R A

JobGraphs
'eneric data stream

Flink Common API / Optimizer

program) /
[Flink Runtime

rCI te]
uster .

kManager [Direct J[YARN EC2 J

g R
Local

LStorage [Files J [HDFS][S3 JDBC] [J

64

FLINK

* Like Spark, in-memory or on disk

* Everything is a Java object

» Unlike Spark, contains operations for iteration
— Allowing query optimization

* Very easy to use and install in local model
—Very modular
—Only needs Java

MORE EXAMPLES IN PIG

66

Phrase Finding in PIG

Phrase Finding | - loading the input

68

v

pig

2014-04-01 16:38:07,694 [main] INFO
2014-04-01 16:38:07,695 [main] INFO
2014-04-01 16:38:07,826 [main] INFO
2014-04-01 16:38:08,133 [main] INFO
2014-04-01 16:38:08,379 [main] INFO
grunt> SET default_parallel 10;

SET default_parallel 10;

grunt> fs -1s phrases/data/dkos-phraseFreq-5/
fs —-1ls phrases/data/dkos—-phraseFreq-5/

Found 5 items
—rWXr—=xr-x
—rWXr—=xr-x
—rWXr—=xr-x
—rWXr—=xr-x
—rWXr—=xr-x

3 wcohen
3 wcohen
3 wcohen
3 wcohen
3 wcohen

supergroup
supergroup
supergroup
supergroup
supergroup

org.apache.pig.Main - Apache Pig version 0.11.1.1.3.0.0-107 (rexported) compilec
org.apache.pig.Main - Logging error messages to: /h/wcohen/pigtrial/pig_1396384¢
org.apache.pig.impl.util.Utils - Default bootup file /h/wcohen/.pigbootup not fc
org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to F
org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to n

28857 2014-03-14 14:00 /user/wcohen/phrases/data/dkos-phraseFreq-5/part-00000
28210 2014-03-14 14:00 /user/wcohen/phrases/data/dkos-phraseFreq-5/part-00001
29731 2014-03-14 14:00 /user/wcohen/phrases/data/dkos-phraseFreq-5/part-00002
27422 2014-03-14 14:00 /user/wcohen/phrases/data/dkos-phraseFreq-5/part-00003
29198 2014-03-14 14:00 /user/wcohen/phrases/data/dkos-phraseFreq-5/part-00004

grunt> fs -tail phrases/data/dkos-phraseFreq-5/part-00003
fs —tail phrases/data/dkos-phraseFreq-5/part-00003

oluntary code 1.0
volvodrivingliberal sun 1.0
voreddy thu 1.0

voter registrations 2.0
voter suppression 3.0
wackyguy thu 1.0
waitingtoderail tue 1.0
walt starr 1.0

walter reed 1.0

wanna run 1.0

war plans 1.0

war question 1.0

war veterans 1.0

years taken 1.0

yes men 1.0

yesterday got 1.0

yesterday senator 1.0
yesterdays diary 1.0

york political
young people
zogby poll
zombiexx thu

years taken 1.0
yes men 1.0
yesterday got 1.0
yesterday senator
yesterdays diary
york political 1
young people 1
1
1

[
S

SIS B R

zogby poll
zombiexx thu

69

PIG Features

* comments -- like this /* or like this */
* ‘shell-like’ commands:
—fs-Is ... -- any hadoop fs ... command
—some shorter cuts: Is, ¢p, ...
—shls -al -- escape to shell

70

grunt> fgPhrasesl = LOAD 'phrases/data/dkos-phraseFreq-5/' AS (xy,c:int);

fgPhrasesl = LOAD 'phrases/data/dkos—phraseFreq-5/' AS (xy,c:int);
nriints faDhracae = FNRFACH faDhracac1 AFNFRATE CTRCDI TT (vv ' ') AQ wvu:slv wuv) r A o~

grunt> fgPhrasesl = LOAD 'phrases/data/dkos-phraseFreq-5/' AS (xy,c:int);
fgPhrasesl = LOAD 'phrases/data/dkos-phraseFregq-5/' AS (xy,c:int);

grunt> fgPhrases = FOREACH fgPhrasesl GENERATE STRSPLIT(xy,' ') AS xy:(X,y]
fgPhrases = FOREACH fgPhrasesl GENERATE STRSPLIT(xy,' ') AS xy:(x,y), c AS
2014-04-01 16:42:44,881 [main] WARN org.apache.pig.PigServer - Encounterec
2014-04-01 16:42:44,881 [main] WARN org.apache.pig.PigServer - Encounterec
grunt> DESCRIBE fgPhrases;

DESCRIBE fgPhrases;

2014-04-01 16:43:06,631 [main] WARN org.apache.pig.PigServer - Encounterec
2014-04-01 16:43:06,631 [main] WARN org.apache.pig.PigServer - Encounterec

grunt> ILLUSTRATE fgPhrases;

fgPhrasesl	xy:bytearray	c:int
	patachon mon	1
fgPhrases	xy:tuple(x:bytearray,y:bytearray)	c:int

| | (patachon, mon) | 1 |

71

PIG Features

comments -- like this /* or like this */
‘shell-like’ commands:
— fs-Is ... -- any hadoop fs ... command
— some shorter cuts: Is, cp, ...
— shls-al -- escape to shell
LOAD ‘hdfs-path’AS (schema)
— schemas can include int, double, ...

— schemas can include complex types: bag, map, tuple, ...

FOREACH alias GENERATE ... AS ..., ...

— transforms each row of a relation

— operators include +, -, and, or, ...

— can extend this set easily (more later)
DESCRIBE alias -- shows the schema
ILLUSTRATE alias -- derives a sample tuple

72

Phrase Finding | - word counts

grunt> bgPhrasesl = LOAD 'phrases/data/brown-phraseFreq-5/' AS (xy,c:int);

bgPhrasesl = LOAD 'phrases/data/brown-phraseFreq-5/' AS (xy,c:int);

2014-04-01 16:46:52,014 [main] WARN org.apache.pig.PigServer - Encountered Warning IMPLICIT_CAST_TO_CHARARRAY 1 time(s).
2014-04-01 16:46:52,014 [main] WARN org.apache.pig.PigServer - Encountered Warning USING_OVERLOADED_FUNCTION 1 time(s).

grunt> bgPhrases = FOREACH bgPhrasesl GENERATE STRSPLIT(xy,' ') AS xy:(x,y), ¢ AS c;

bgPhrases = FOREACH bgPhrasesl GENERATE STRSPLIT(xy,' ') AS xy:(x,y), ¢ AS c;

2014-04-01 16:46:54,750 [main] WARN org.apache.pig.PigServer - Encountered Warning IMPLICIT_CAST_TO_CHARARRAY 2 time(s).
2014-04-01 16:46:54,750 [main] WARN org.apache.pig.PigServer - Encountered Warning USING_OVERLOADED_FUNCTION 2 time(s).

grunt> fgWordFreql = GROUP fgPhrases BY xy.X;

fgWwordFreql = GROUP fgPhrases BY xy.Xx;

—— compute word frequencies

fgWordFreql = GROUP fgPhrases BY xy.x;[
faWordFreq = FOREACH fgWordFreql GENERATE qroup as w,SUM(fqgPhrases.c) as c;

fgPhrasesl	xy:bytearray	ciint
	expressly gave	1
	expressly reasserted	1

fgPhrases	xy:tuple(x:bytearray,y:bytearray)	c:int
	(expressly, gave)	1
	(expressly, reasserted)	1

| fgWordFreql | group:bytearray | fgPhrases:bag{:tuple(xy:tuple(x:bytearray,y:bytearray),c:int)}
| | expressly | {((expressly, gave), 1), ((expressly, reasserted), 1)}

| fgWordFreq | wibytearray | c:long |

| | expressly | 2 |

74

PIG Features

* LOAD ‘hdfs-path’AS (schema)

— schemas can include int, double, bag, map,
tuple, ...

« FOREACH alias GENERATE ... AS ..., ...
— transforms each row of a relation
 DESCRIBE alias/ILLUSTRATE alias -- debugging

* GROUP rBY x

— like a shuftle-sort: produces relation with fields
group and r, where r is a bag

| fgWordFreql | group:bytearray | fgPhrases:bag{:tuple(xy:tuple(x:bytearray,y:bytearray),c:int)}

| | expressly | {((expressly, gave), 1), ((expressly, reasserted), 1)}
S — e i 1 S

PIG parses and optimizes a sequence of commands before it executes them
It’s smart enough to turn GROUP ... FOREACH... SUM ... into a map-reduce

—— compute word frequencies

fgWordFreql = GROUP fgPhrases BY xy.x;[
fgWordFreq = FOREACH fgWordFreql GENERATE group as w,SUM(fgPhrases.c) as c;

fgPhrasesl	xy:bytearray	c:int
	expressly gave	1
	expressly reasserted	1

fgPhrases	xy:tuple(x:bytearray,y:bytearray)	c:int
	(expressly, gave)	1
	(expressly, reasserted)	1

| fgWordFreql | group:bytearray | fgPhrases:bag{:tuple(xy:tuple(x:bytearray,y:bytearray),c:int)}
| | expressly | {((expressly, gave), 1), ((expressly, reasserted), 1)}

| fgWordFreq | wibytearray | c:long |

| | expressly | 2 |

76

PIG Features

* LOAD ‘hdfs-path’AS (schema)

— schemas can include int, double, bag, map, tuple, ...
FOREACH alias GENERATE ... AS .., ...

— transforms each row of a relation

DESCRIBE alias/ILLUSTRATE alias -- debugging
GROUP alias BY ...

FOREACH alias GENERATE group, SUM(....)

— GROUP/GENERATE ... aggregate op together act like a
map-reduce

— aggregates: COUNT, SUM, AVERAGE, MAX, MIN, ...
— you can write your own

77

PIG parses and optimizes a sequence of commands before it executes them
It’s smart enough to turn GROUP ... FOREACH... SUM ... into a map-reduce

—— compute word frequencies

fgWordFreql = GROUP fgPhrases BY xy.x;[
fgWordFreq = FOREACH fgWordFreql GENERATE group as w,SUM(fgPhrases.c) as c;

bgWwordFreql = GROUP bgPhrases BY Xxy.X;
bgWordFreq = FOREACH bgWordFreql GENERATE group as w,SUM(bgPhrases.c) as c;
—— STORE bgWordFreq INTO 'phrases/data/bgwWordFreq’;

78

Phrase Finding 3 - assembling phrase-
and word-level statistics

79

—— join in phrase stats, and then clean up
phraseStatsl = JOIN fgPhrases BY xy, bgPhrases BY xy;
phraseStats2 = FOREACH phraseStatsl
GENERATE fgPhrases::xy AS xy, fgPhrases::c AS fC, bgPhrases::c AS b(;

—— join in word freqs for x and clean up
phraseStats3 = JOIN fgWordFreq BY w, bgWordFreq BY w, phraseStats2 by xy.Xx;
phraseStats4 = FOREACH phraseStats3

GENERATE xy, fC,bC, fgWordFreq::c as fxC,bgWordFreq::c as bx(;

—— join in word freqs for y and clean up
phraseStats5 = JOIN fgWordFreq BY w, bgWordFreq BY w, phraseStats4 by xy.y;
phraseStatsé = FOREACH phraseStats5

GENERATE xy, fC,bC, fxC,bxC, fgWordFreq::c as fy(C,bgwWordFreq::c as by(C;

bgPhrasesﬁﬁxyi (xi bytearray,yﬁ bytearray),bgPhrasesﬁﬁcﬁ int}

80

bgWordFreql

| group:bytearray

| bgPhrases:bag{:tuple(xy:tuple(x:bytearray,y:bytearray),c:int)}

| friday

| afternoon

| {((friday, afternoon), 1)}
| {((afternoon, service), 1), ((afternoon, mando), 1)}

bgWordFreq	wibytearray	c:long					
	friday	1					
	afternoon	2					
phraseStatsl	fgPhrases::xy:tuple(x:bytearray,y:bytearray)	fgPhrases::c:int	bgPhrases::xy:tuple(x:bytearray,y:bytearray)	bgPhrases::c:int			
	(friday, afternoon)	1	(friday, afternoon)	1			
phraseStats2	xy:tuple(x:bytearray,y:bytearray)	fCiint	bC:int				
	(friday, afternoon)	1	1				
phraseStats3	fgWordFregq::w:bytearray	fgWordFreq::c:long	bgWordFregq: :w:bytearray	bgWordFreq::c:long	phraseStats2::xy:tuple(x:bytearray,y:bytearray)	phraseStats2::fC:int	phraseStats2::bC:int
	friday	2	friday	1	(friday, afternoon)	1	1
phraseStats4	phraseStats2::xy:tuple(x:bytearray,y:bytearray)	phraseStats2::fC:int	phraseStats2::bC:int	fxC:long	bxC:long		
	(friday, afternoon)	1	1	2	1		
phraseStats6	phraseStats4::phraseStats2::xy:tuple(x:bytearray,y:bytearray)	phraseStats4::phraseStats2::fC:int	phraseStats4::phraseStats2::bC:int	phraseStats4::fxC:long	phraseStats4::bxC:long	fyC:long	byC:long
	(friday, afternoon)	1	1	2	1	1	2
bgWordFreql	group:bytearray	bgPhrases:bag{:tuple(xy:tuple(x:bytearray,y:bytearray),c:int)}					
	friday	{((friday, afternoon), 1)}					
	afternoon	{((afternoon, service), 1), ((afternoon, mando), 1)}					
bgWordFreq	w:bytearray	c:long					
	friday	1					
	afternoon	2					
phraseStatsl	fgPhrases::xy:tuple(x:bytearray,y:bytearray)	fgPhrases::c:int	bgPhrases::xy:tuple(x:bytearray,y:bytearray)	bgPhras:			
	(friday, afternoon)	1	(friday, afternoon)	1			
phraseStats2	xy:tuple(x:bytearray,y:bytearray)	fC:int	bC:int				
	(friday, afternoon)	1	1				
phraseStats3	fgWordFreq: :w:bytearray	fgWordFreq::c:long	bgWordFreq::w:bytearray	bgWordFreq::c:long	phraseStats2::xy:tuple(x:bytearray,y:byte:		
	friday	2	friday	1	(friday, afternoon)		
phraseStats4	phraseStats2::xy:tuple(x:bytearray,y:bytearray)	phraseStats2::fC:int	phraseStats2::bC:int	fxC:long	bxC:long		
	(friday, afternoon)	1	1	2	1 8l		

PIG Features

* LOAD ‘hdfs-path’AS (schema)
— schemas can include int, double, bag, map, tuple, ...
« FOREACH alias GENERATE ... AS ..., ...
— transforms each row of a relation
 DESCRIBE alias/ILLUSTRATE alias -- debugging
« GROUP aliasBY ...
 FOREACH alias GENERATE group, SUM(....)

— GROUP/GENERATE ... aggregate op together act like a
map-reduce

* JOIN rBY field, sBY field, ...
— inner join to produce rows: r:fl, r::f2, ... s::fl, s::f2, ...

— . . — -

bgPhrases::xy: (x: bytearray,y: bytearray),bgPhrases::c: int}

82

Phrase Finding 4 - adding total
frequencies

83

grunt> fgPhraseCountl = group fgPhrasesl ALL;

fgPhraseCountl = group fgPhrasesl ALL;

2014-04-01 16:57:31,934 [main] WARN org.apache.pig.PigServer - Encountered
2014-04-01 16:57:31,934 [main] WARN org.apache.pig.PigServer - Encountered
grunt> fgPhraseCount = FOREACH fgPhraseCountl GENERATE SUM(fgPhrasesl.c);
fgPhraseCount = FOREACH fgPhraseCountl GENERATE SUM(fgPhrasesl.c);
2014-04-01 16:57:34,607 [main] WARN org.apache.pig.PigServer - Encountered
2014-04-01 16:57:34,607 [main] WARN org.apache.pig.PigServer - Encountered
grunt> bgPhraseCountl = group bgPhrasesl ALL;

bgPhraseCountl = group bgPhrasesl ALL;

2014-04-01 16:57:38,271 [main] WARN org.apache.pig.PigServer - Encountered
2014-04-01 16:57:38,271 [main] WARN org.apache.pig.PigServer - Encountered
grunt> bgPhraseCount = FOREACH bgPhraseCountl GENERATE SUM(bgPhrasesl.c);
bgPhraseCount = FOREACH bgPhraseCountl GENERATE SUM(bgPhrasesl.c);
2014-04-01 16:57:40,577 [main] WARN org.apache.pig.PigServer - Encountered
2014-04-01 16:57:40,577 [main] WARN org.apache.pig.PigServer - Encountered

| bgPhrasesl | xy:bytearray | c:int |

| continuing series | 1 |
| neighboring lower | 1 |

bgPhraseCountl	group:chararray	bgPhrasesl:bag{:tuple(xy:bytearray,c:int)}
	all	{(continuing series, 1), (neighboring lower, 1)}
bgPhraseCount	:long	

| | 2 | 84

How do we add the totals to the phraseStats relation?

grunt> countsl = CROSS fgPhraseCount,bgPhraseCount;

countsl = CROSS fgPhraseCount,bgPhraseCount;

2014-04-01 16:59:38,370 [main] WARN org.apache.pig.PigServer - |
2014-04-01 16:59:38,370 [main] WARN org.apache.pig.PigServer - |
grunt> counts = FOREACH countsl GENERATE $0 AS fTot,$1 as bTot;
counts = FOREACH countsl GENERATE $0 AS fTot,$1 as bTot;
2014-04-01 16:59:42,024 [main] WARN org.apache.pig.PigServer - |
2014-04-01 16:59:42,024 [main] WARN org.apache.pig.PigServer - |
grunt> phraseStats = CROSS phraseStats6, counts;

phraseStats = CROSS phraseStats6, counts;

2014-04-01 16:59:45,083 [main] WARN org.apache.pig.PigServer - |
2014-04-01 16:59:45,083 [main] WARN org.apache.pig.PigServer - |
grunt> STORE phraseStats INTO 'phrases/data/phraseStats';’

STORE triggers execution of the query plan....

it also limits optimization

85

fs -tail phrases?data/phrasesiats/part—r—booel

(preliminary, data)
(best,way) 1
(tour, reached) 1
(right,way) 1
(cold,war) 1
(long,way) 1
(best, book) 1
(receive,new) 1
(just,got) 6
(really,got) 1
(phone,calls) 1
(congressional,offices)
(second,major) 1
(special,events)
(civil, rights) 2
(managing,editor)

(national, press)

(associated,press)

(senate, foreign)
(law, clerk)
(making, clear)
(mutual, fund)
(court, justices)
(sharp,contrast)
(foreign,policy)

1
1
1

P REPEPRPRRPPUWUCWRRPRURPRWRRPRRERNRPRRERREEREWOE

S W

15
1
25
1
9
15
4
68
19
7
1

[
=

=N
(Y

B NP RNUON R e

2
164
3
85
60
291
164
20
258
148
9

7
193
6
59
1
41
3
18
47
75
23
21
1

7

163

255

26

74
41
98

53
25
53
53
53
31
1083
68
68
11

182

23
23

30
14

39
9194
9194
9194
9194
9194
9194
9194
9194
9194
9194
4
9194
12
9194

41
41
98
9194
9194
9194

4
31

9194
99888
99888
99888
99888
99888
99888
99888
99888
99888
99888
9194
99888
9194
99888
9194
9194
9194
9194
99888
99888
99888
9194
9194
9194

99888

99888

99888

99888
99888
99888
99888

99888
99888
99888

Comment: schema is lost when you store....

@
o«

PIG Features

LOAD ‘hdfs-path’AS (schema)
— schemas can include int, double, bag, map, tuple, ...
 FOREACH alias GENERATE ... AS ..., ...
— transforms each row of a relation
 DESCRIBE alias/ILLUSTRATE alias -- debugging
 GROUP aliasBY ...
 FOREACH alias GENERATE group, SUM(....)

— GROUP/GENERATE ... aggregate op together act like a map-
reduce

* JOIN rBY field, s BY field, ...
— Inner join to produce rows: r::fl, r::f2, ... s::fl, s::f2, ...

« CROSSr s, ..
— use with care unless all but one of the relations are singleton
— newer pigs allow singleton relation to be cast to a scalar

87

Phrase Finding 5 - phrasiness and
informativeness

88

flackage com.wcohen;

import java.io.x;

import java.util.x;

import org.apache.pig

import org.apache.pig

import org.apache.pig 1til.WrappedIOException;

public class SmoothedPKL extends EvalFunc<Double>

{

public static double smoothPKL(double k1,double nl,double k2,double n2,double p@,double m) {

return PKL(k1 + p@xm, nl+m, k2+p@xm, n2+m);
}

public static double PKL(double kl1,double nl,double k2,double n2) {

double pl = k1/n1;

double p2 = k2/n2;

return pl *x Math.log(pl/p2);
}

@Override
public Double exec(Tuple input) throws IOException {
if (input==null || input.size()!=6) { return n
double k1,nl1,k2,n2,p@,m;
try {
k1l
nl
k2
n2

DataType.toDouble(input.get(0));
DataType.toDouble(input.get(1));
DataType.toDouble(input.get(2));
DataType.toDouble(input.get(3));
pd = DataType.toDouble(input.get(4));
m DataType.toDouble(input.get(5));
} catch (Exception e) {

}
return smoothPKL(k1,n1,k2,n2,p0,m);

throw WrappedIOException.wrap('Error in Phrases pre

i)

How do we compute some

complicated function?

With a “UDF”

he);

89

phraseStats = LOAD 'phrases/data/phraseStats' AS (xy:(x,y),fC,bC, fxC,bxC, fyC,byC, fTot,bTot);
—— final compute phraseness, etc

REGISTER ./pkl.jar;

phraseResult = FOREACH phraseStats GENERATE x,

com.wcohen.SmoothedPKL(fC, fTot, bC, bTot, 1.0/bTot, 1.0) as infoness,
com.wcohen.SmoothedPKL(fC, fTot, fxCxfyC, fTotxfTot, 1.0/fxC, 1.0) as phraseness;

STORE phraseResult INTO 'phrases/data/phraseResult’;

90

PIG Features

LOAD ‘hdfs-path’AS (schema)

— schemas can include int, double, bag, map, tuple, ...
FOREACH alias GENERATE ... AS ..., ...

— transforms each row of a relation
DESCRIBE alias/ILLUSTRATE alias -- debugging
GROUP alias BY ...
FOREACH alias GENERATE group, SUM(....)

— GROUP/GENERATE ... aggregate op together act like a map-
reduce

JOIN rBY field, sBY field, ...

— Inner join to produce rows: r::fl, r::f2, ... s::fl, s::f2, ...
CROSS r; s, ...

— use with care unless all but one of the relations are singleton
User defined functions as operators

— also for loading, aggregates, ...

91

The full phrase-finding pipeline

T W 42— - vV va 0) e A

—— load data

fgPhrasesl = LOAD 'phrases/data/dkos—phraseFreq-5/' AS (xy,c:int);

fgPhrases = FOREACH fgPhrasesl GENERATE STRSPLIT(xy,' ') AS xy:(x,y), c AS c;
bgPhrasesl = LOAD 'phrases/data/brown-phraseFreq-5/' AS (xy,c:int);

bgPhrases = FOREACH bgPhrasesl GENERATE STRSPLIT(xy,' ') AS xy:(x,y), c AS c;

—— compute word frequencies

fgWordFreql = GROUP fgPhrases BY xy.Xx;

fgWordFreq = FOREACH fgWordFreql GENERATE group as w,SUM(fgPhrases.c) as c;
bgWordFreql = GROUP bgPhrases BY xy.X;

bgWordFreq = FOREACH bgWordFreql GENERATE group as w,SUM(bgPhrases.c) as c;

—— join in phrase stats, and then clean up schema

phraseStatsl = JOIN fgPhrases BY xy, bgPhrases BY xy;

STORE phraseStatsl INTO 'phrases/data/phraseStatsl’;

phraseStats2 = FOREACH phraseStatsl GENERATE fgPhrases::xy AS xy, fgPhrases::c AS fC, bgPhrases::c AS b(;
—— join in word fregqs for x and clean up

phraseStats3 = JOIN fgWordFreq BY w, bgWordFreq BY w, phraseStats2 by xy.x;

phraseStats4 = FOREACH phraseStats3 GENERATE xy, fC,bC, fgWordFreq::c as fxC,bgWordFreq::c as bx(;

—— join in word fregqs for y and clean up

phraseStats5 = JOIN fgWordFreq BY w, bgWordFreq BY w, phraseStats4 by xy.y;

phraseStats6é = FOREACH phraseStats5 GENERATE xy, fC,bC, fxC,bxC, fgWordFreq::c as fyC,bgWordFreq::c as byC;

—— compute totals

fgPhraseCountl = group fgPhrasesl ALL;

fgPhraseCount = FOREACH fgPhraseCountl GENERATE SUM(fgPhrasesl.c);
bgPhraseCountl = group bgPhrasesl ALL;

bgPhraseCount = FOREACH bgPhraseCountl GENERATE SUM(bgPhrasesl.c);

—— join in totals - ok to use cross-product here since all but one table are just singletons
countsl = CROSS fgPhraseCount,bgPhraseCount;

counts = FOREACH countsl GENERATE $0 AS fTot,$1 as bTot;

phraseStats = CROSS phraseStats6, counts;

—— finally compute phraseness, etc

REGISTER ./pkl.jar;

phraseResult = FOREACH phraseStats GENERATE x,
com.wcohen.SmoothedPKL(fC, fTot, bC, bTot, 1.0/bTot, 1.0) as infoness,
com.wcohen.SmoothedPKL(fC, fTot, fxCxfyC, fTotxfTot, 1.0/fxC, 1.0) as phraseness; 93

ETORE phraseResult INTO 'phrases/data/phraseResult’;

