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Outline of the course 
•  Week 1: review and a fruit fly (algorithm to to study) 

–  Time complexity, cost of operations, and Naïve Bayes v1 
•  Week 2-4: scaling and parallelizing Naïve Bayes 

–  Computational paradigms: “stream and sort”, “map-reduce”, 
high-level “data-flow” operations 

–  Tasks you will do:  
•  Training Naïve Bayes on a large vocabulary (HW1) 
•  Parallel Naïve Bayes with Hadoop (HW2; low-level) 
•  Parallel testing of a large-vocabulary linear classifier (HW3; 

high-level dataflow language) 
–  We’ll go back and forth between paradigms 

•  You can’t forget about the low-level stuff (yet!) 
–  Other tasks we will talk about: 

•  Computing IDF, Rocchio’s algorithm, phrase finding 
•  “Soft joins” 
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Why phrase-finding? 

•  There are lots of phrases 
•  There’s not supervised data 
•  It’s hard to articulate 
– What makes a phrase a phrase, vs just an 

n-gram? 
•  a phrase is independently meaningful (“test 

drive”, “red meat”) or not (“are interesting”, 
“are lots”) 

– What makes a phrase interesting? 



The breakdown: what makes a 
good phrase 
•  Two properties: 
– Phraseness: “the degree to which a given word 

sequence is considered to be a phrase” 
•  Statistics: how often words co-occur together vs 

separately 
–  Informativeness: “how well a phrase captures or 

illustrates the key ideas in a set of documents” – 
something novel and important relative to a domain 

•  Background corpus and foreground corpus; how 
often phrases occur in each 



“Phraseness”1 – based on BLRT 
•  Binomial Ratio Likelihood Test (BLRT): 
– Draw samples:  
•  n1 draws, k1 successes 
•  n2 draws, k2 successes  
•  Are they from one binominal (i.e., k1/n1 and k2/n2 

were different due to chance) or from two distinct 
binomials? 

– Define 
•  p1=k1 / n1, p2=k2 / n2,  p=(k1+k2)/(n1+n2), 
•  L(p,k,n) = pk(1-p)n-k 

BLRT (n1,k1,n2,k2 ) =
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )
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“Phraseness”1 – based on BLRT 

– Define 
•  pi=ki /ni, p=(k1+k2)/(n1+n2), 
• L(p,k,n) = pk(1-p)n-k 

ϕ p(n1,k1,n2,k2 ) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )

comment 

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C 

n1 C(W1=x) how often word x occurs in corpus C 

k2 C(W1≠x^W2=y) how often y occurs in C after a non-x 

n2 C(W1≠x) how often a non-x occurs in C 

Phrase x y: W1=x ^ W2=y 
 

Does y occur at the same frequency after x as in other positions? 



“Informativeness”1 – based on BLRT 

– Define 
•  pi=ki /ni, p=(k1+k2)/(n1+n2), 
• L(p,k,n) = pk(1-p)n-k 

Phrase x y: W1=x ^ W2=y 
and two corpora, C and B 

comment 

k1 C(W1=x ^ W2=y) how often bigram x y occurs in corpus C 

n1 C(W1=* ^ W2=*) how many bigrams in corpus C 

k2 B(W1=x^W2=y) how often x y occurs in background corpus 

n2 B(W1=* ^ W2=*) how many bigrams in background corpus 

Does x y occur at the same frequency in both corpora? 

ϕi (n1,k1,n2,k2 ) = 2 log
L(p1,k1 ,n1)L(p2,k2,n2 )
L(p,k1 ,n1)L(p,k2,n2 )



The breakdown: what makes a 
good phrase 
•  “Phraseness” and “informativeness” are then 

combined with a tiny classifier, tuned on labeled data. 

•  Background corpus: 20 newsgroups dataset (20k 
messages, 7.4M words) 

•  Foreground corpus: rec.arts.movies.current-films 
June-Sep 2002 (4M words)  

•  Results? 
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The breakdown: what makes a 
good phrase 
•  Two properties: 

–  Phraseness: “the degree to which a given word sequence is 
considered to be a phrase” 
•  Statistics: how often words co-occur together vs separately 

–  Informativeness: “how well a phrase captures or illustrates 
the key ideas in a set of documents” – something novel and 
important relative to a domain 
•  Background corpus and foreground corpus; how often 

phrases occur in each 
– Another intuition: our goal is to compare 

distributions and see how different they are: 
•  Phraseness: estimate x y with bigram model or 

unigram model 
•  Informativeness: estimate with foreground vs 

background corpus 



The breakdown: what makes a 
good phrase 
– Another intuition: our goal is to compare distributions 

and see how different they are: 
•  Phraseness: estimate x y with bigram model or unigram 

model 
•  Informativeness: estimate with foreground vs background 

corpus 
–  To compare distributions, use KL-divergence 

“Pointwise KL divergence” 



The breakdown: what makes a 
good phrase 
– To compare distributions, use KL-divergence 

“Pointwise KL divergence” 

Phraseness: difference 
between bigram and 
unigram language 
model in foreground 

Bigram model:    P(x y)=P(x)P(y|x) 
 
Unigram model: P(x y)=P(x)P(y) 



The breakdown: what makes a 
good phrase 
– To compare distributions, use KL-divergence 

“Pointwise KL divergence” 

Informativeness: difference 
between foreground and 
background models 

Bigram model:    P(x y)=P(x)P(y|x) 
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The breakdown: what makes a 
good phrase 
– To compare distributions, use KL-divergence 

“Pointwise KL divergence” 

Combined: difference 
between foreground bigram 
model and background 
unigram model 

Bigram model:    P(x y)=P(x)P(y|x) 
 
Unigram model:  P(x y)=P(x)P(y) 



The breakdown: what makes a 
good phrase 
– To compare distributions, use KL-divergence 

Combined: difference 
between foreground bigram 
model and background 
unigram model 

Subtle advantages: 
•  BLRT scores “more frequent in 

foreground” and “more frequent in 
background” symmetrically, 
pointwise KL does not. 

•  Phrasiness and informativeness 
scores are more comparable – 
straightforward combination w/o a 
classifier is reasonable. 

•  Language modeling is well-studied: 
•  extensions to n-grams, 

smoothing methods, … 
•  we can build on this work in a 

modular way 



Pointwise KL, combined 



Why phrase-finding? 
•  Phrases are where the standard supervised “bag 

of words” representation starts to break. 
•  There’s not supervised data, so it’s hard to see 

what’s “right” and why 
•  It’s a nice example of using unsupervised 

signals to solve a task that could be formulated 
as supervised learning 

•  It’s a nice level of complexity, if you want to do 
it in a scalable way. 



Implementation 
•  Request-and-answer pattern 

–  Main data structure: tables of key-value pairs 
•  key is a phrase x y  
•  value is a mapping from a attribute names (like phraseness, freq-

in-B, …) to numeric values. 
–  Keys and values are just strings 
–  We’ll operate mostly by sending messages to this data 

structure and getting results back, or else streaming thru the 
whole table 

–  For really big data: we’d also need tables where key is a word 
and val is set of attributes of the word (freq-in-B, freq-in-C, …) 



Generating and scoring phrases: 1 

•  Stream through foreground corpus and count events “W1=x ^ 
W2=y” the same way we do in training naive Bayes: stream-and 
sort and accumulate deltas (a “sum-reduce”) 
–  Don’t bother generating boring phrases (e.g., crossing a 

sentence, contain a stopword, …) 
•  Then stream through the output and convert to phrase, attributes-

of-phrase records with one attribute: freq-in-C=n 
•  Stream through foreground corpus and count events “W1=x” in a 

(memory-based) hashtable…. 
•  This is enough* to compute phrasiness: 

–  ψp(x y) = f( freq-in-C(x), freq-in-C(y), freq-in-C(x y)) 

•  …so you can do that with a scan through the phrase table that 
adds an extra attribute (holding word frequencies in memory). 

* actually you also need total # words and total #phrases…. 



Generating and scoring phrases: 2 

•  Stream through background corpus and count events 
“W1=x ^ W2=y” and convert to phrase, attributes-of-
phrase records with one attribute: freq-in-B=n 

•  Sort the two phrase-tables: freq-in-B and freq-in-C and 
run the output through another “reducer” that 
– appends together all the attributes associated with 

the same key, so we now have elements like 



Generating and scoring phrases: 3 

•  Scan the through the phrase table one more 
time and add the informativeness attribute 
and the overall quality attribute 

Summary, assuming word vocabulary nW is small: 
•  Scan foreground corpus C for phrases: O(nC) producing mC phrase 

records – of course mC << nC 
•  Compute phrasiness: O(mC)  
•  Scan background corpus B for phrases: O(nB) producing mB  
•  Sort together and combine records: O(m log m), m=mB + mC 
•  Compute informativeness and combined quality: O(m) 

Assumes word counts fit in memory 



Ramping it up – keeping word 
counts out of memory 
•  Goal: records for xy with attributes freq-in-B, freq-in-C, 

freq-of-x-in-C, freq-of-y-in-C, … 
•  Assume I have built built phrase tables and word 

tables….how do I incorporate the word attributes into the 
phrase records? 

•  For each phrase xy, request necessary word frequencies: 
–  Print “x ~request=freq-in-C,from=xy” 
–  Print “y ~request=freq-in-C,from=xy” 

•  Sort all the word requests in with the word tables 
•  Scan through the result and generate the answers: for 

each word w, a1=n1,a2=n2,…. 
–  Print “xy ~request=freq-in-C,from=w” 

•  Sort the answers in with the xy records 
•  Scan through and augment the xy records appropriately 



Generating and scoring phrases: 3 

Summary 
1.  Scan foreground corpus C for phrases, words: O(nC)  

producing mC phrase records, vC word records 
2.  Scan phrase records producing word-freq requests: O(mC ) 

producing 2mC requests 
3.  Sort requests with word records: O((2mC + vC )log(2mC + vC)) 

 = O(mClog mC) since vC < mC 
4.  Scan through and answer requests: O(mC) 
5.  Sort answers with phrase records: O(mClog mC)  
6.  Repeat 1-5 for background corpus: O(nB + mBlogmB) 
7.  Combine the two phrase tables: O(m log m), m = mB + mC 
8.  Compute all the statistics: O(m) 



More cool work with phrases 
•  Turney: Thumbs up or thumbs down?: semantic orientation 

applied to unsupervised classification of reviews.ACL ‘02. 
•  Task: review classification (65-85% accurate, depending on 

domain) 
–  Identify candidate phrases (e.g., adj-noun bigrams, using POS 

tags) 
–  Figure out the semantic orientation of each phrase using 

“pointwise mutual information” and aggregate 

SO(phrase) = PMI(phrase,'excellent') − PMI(phrase,'poor') 





 
“Answering Subcognitive Turing Test 

Questions: A Reply to French” - Turney 
 



More from Turney 
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More cool work with phrases 
•  Locating Complex Named Entities in Web Text. Doug 

Downey, Matthew Broadhead, and Oren Etzioni, IJCAI 
2007.  

•  Task: identify complex named entities like “Proctor and 
Gamble”, “War of 1812”, “Dumb and Dumber”, 
“Secretary of State William Cohen”, … 

•  Formulation: decide whether to or not to merge nearby 
sequences of capitalized words axb, using variant of 

•   For k=1, ck is PM (w/o the log).  For k=2, ck is 
“Symmetric Conditional Probability” 



Downey et al results 



Outline 
•  Even more on stream-and-sort and naïve Bayes 
– Request-answer pattern 

•  Another problem: “meaningful” phrase finding 
– Statistics for identifying phrases (or more 

generally correlations and differences) 
– Also using foreground and background corpora 

•  Implementing “phrase finding” efficiently 
– Using request-answer 

•  Some other phrase-related problems 
– Semantic orientation 
– Complex named entity recognition 


