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1 Principle of maximum likelihood

Consider a family of probability distributions defined by a set of parametersθ.
The distributions may be either probability mass functions (pmfs) or probability
density functions (pdfs). Suppose that we have a random sample drawn from
a fixed but unknown member of this family. The random sample is a training
set ofn examplesx1 to xn. An example may also be called an observation, an
outcome, an instance, or a data point. In general eachxj is a vector of values, and
θ is a vector of real-valued parameters. For example, for a Gaussian distribution
θ = 〈µ, σ2〉.

We assume that the examples are independent, so the probability of the set is
the product of the probabilities of the individual examples:

f(x1, . . . , xn; θ) =
∏

j

fθ(xj; θ).

The notation above makes us think of the distributionθ as fixed and the examples
xj as unknown, or varying. However, we can think of the training data as fixed
and consider alternative parameter values. This is the point of view behind the
definition of the likelihood function:

L(θ; x1, . . . , xn) = f(x1, . . . , xn; θ).

Note that iff(x; θ) is a probability mass function, then the likelihood is always
less than one, but iff(x; θ) is a probability density function, then the likelihood
can be greater than one, since densities can be greater than one.
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The principle of maximum likelihood says that given the training data, we
should use as our model the distributionf(·; θ̂) that gives the greatest possible
probability to the training data. Formally,

θ̂ = argmaxθ L(θ; x1, . . . , xn).

The valueθ̂ is called the maximum likelihood estimator (MLE) ofθ. In general
the hat notation indicates an estimated quantity; if necessary we will use notation
like θ̂MLE to indicate the nature of an estimate.

2 Examples of maximizing likelihood

As a first example of finding a maximum likelihood estimator, consider estimating
the parameter of a Bernoulli distribution. A random variable with this distribution
is a formalization of a coin toss. The value of the random variable is 1 with
probabilityθ and 0 with probability1− θ. Let X be a Bernoulli random variable,
and letx be an outcome ofX. We have

P (X = x) =

[
θ if x = 1

1− θ if x = 0

]
Usually, we use the notationP (·) for a probability mass, and the notationp(·) for
a probability density. For mathematical convenience writeP (X) as

P (X = x) = θx(1− θ)1−x.

Suppose that the training data arex1 throughxn where eachxj ∈ {0, 1}. The
likelihood function is

L(θ; x1, . . . , xn) = f(x1, . . . , xn; θ) =
n∏

i=1

P (X = xi) = θh(1− θ)n−h

whereh =
∑

i xi. The maximization is over the possible scalar values0 ≤ θ ≤ 1.
We can do the maximization by setting the derivative with respect toθ equal

to zero. The derivative is

d

dθ
θh(1− θ)n−h = hθh−1(1− θ)n−h + θh(n− h)(1− θ)n−h−1(−1)

= θh−1(1− θ)n−h−1[h(1− θ)− (n− h)θ]
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which has solutionsθ = 0, θ = 1, andθ = h/n. The solution which is a maximum
is clearlyθ = h/n while θ = 0 andθ = 1 are minima. So we have the maximum
likelihood estimatêθ = h/n.

The log likelihood function, writtenl(·), is simply the logarithm of the likeli-
hood functionL(·). Because logarithm is a monotonic strictly increasing function,
maximizing the log likelihood is precisely equivalent to maximizing the likeli-
hood, or to minimizing the negative log likelihood.

For an example of minimizing the negative log likelihood (NLL), consider the
problem of estimating the parameters of a univariate Gaussian distribution. This
distribution is

f(x; µ, σ2) =
1

σ
√

2π
exp[−(x− µ)2

2σ2
].

The NLL for one examplex is

l(µ, σ2; x) = log L(µ, σ2; x) = − log σ − log
√

2π − (x− µ)2

2σ2
.

Suppose that we have training data{x1, . . . , xn}. The maximum likelihood esti-
mates are

〈µ̂, σ̂2〉 = argmin〈µ,σ2〉[−n log σ − n log
√

2π − 1

2σ2

∑
i

(xi − µ)2].

This expression is to be minimized simultaneously over two variables, but we can
simplify it into two sequential univariate minimizations. The first is

µ̂ = argminµ
∑

i

(xi − µ)2

while the second is

σ̂2 = argminσ2 [−n log σ
√

2π − 1

2σ2
T ]

whereT =
∑

i(xi − µ̂)2. In order to do the first minimization, write(xi − µ)2 as
(xi − x̄ + x̄− µ)2. Then∑

i

(xi − µ)2 =
∑

i

(xi − x̄)2 − 2(x̄− µ)
∑

i

(xi − x̄) + n(x̄− µ)2.

The first term
∑

i(xi − x̄)2 does not depend onµ so it is irrelevant to the mini-
mization. The second term equals zero, because

∑
i(xi − x̄) = 0. The third term

is always positive, so it is clear that it is minimized whenµ = x̄.
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To perform the second minimization, work out the derivative symbolically and
then work out when it equals zero:

∂

∂σ
[−n log σ − n log

√
2π − 1

2
σ−2T ] = −nσ−1 − 1

2
(−2σ−3)T

= σ−1(−n + Tσ−2)

= 0 if σ2 = T/n.

Maximum likelihood estimators are typically reasonable, but they may have is-
sues. Consider the Gaussian variance estimatorσ̂2

MLE =
∑

i(xi − x̄)2/n and the
case wheren = 1. In this casêσ2

MLE = 0. This estimate is guaranteed to be
too small. Intuitively, the estimate is optimistically assuming that all future data
pointsx2 and so on will equalx1 exactly.

It can be proved that in general the maximum likelihood estimate of the vari-
ance of a Gaussian is too small, on average:

E[
1

n

∑
i

(xi − x̄)2; µ, σ2] =
n− 1

n
σ2 < σ2.

This phenomenon can be considered an instance of overfitting: the observed
spread around the observed meanx̄ is less than the unknown true spreadσ2 around
the unknown true meanµ.

3 Conditional likelihood

An important extension of the idea of likelihood isconditional likelihood. The
conditional likelihood ofθ given datax andy is L(θ; y|x) = f(y|x; θ). Intuitively,
y follows a probability distribution that is different for differentx, but x itself is
never unknown, so there is no need to have a probabilistic model of it. Technically,
for eachx there is a different distributionf(y|x; θ) of y, but all these distributions
share the same parametersθ.

Given training data consisting of〈xi, yi〉 pairs, the principle of maximum con-
ditional likelihood says to choose a parameter estimateθ̂ that maximizes the prod-
uct

∏
i f(yi|xi; θ). Note that we do not need to assume that thexi are independent

in order to justify the conditional likelihood being a product; we just need to as-
sume that theyi are independent when each is conditioned on its ownxi. For any
specific value ofx, θ̂ can then be used to predict values fory; we assume that we
never want to predict values ofx.
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Suppose thaty is a binary (Bernoulli) outcome and thatx is a real-valued
vector. We can assume that the distribution ofy is a fixed nonlinear function of a
linear function ofx. Specifically, we assume the conditional model

p(y|x; α, β) =
1

1 + exp−[α +
∑d

j=1 βjxj]
.

This model is called logistic regression. We usej to index over the feature values
x1 to xd of a single example of dimensionalityd, since we usei below to index
over training examples1 to n. If necessary, the notationxij means thejth feature
value of theith example. Be sure to understand the distinction between a feature
and a value of a feature. Essentially a feature is a random variable, while a value
of a feature is a possible outcome of the random variable. Features may also
be called attributes, predictors, or independent variables. The dependent random
variableY is sometimes called a dependent variable.

The logistic regression model is easier to understand in the form

log
p

1− p
= α +

d∑
j=1

βjxj

wherep is an abbreviation forp(y|x; α, β). The ratiop/(1− p) is called the odds
of the eventy givenx, andlog[p/(1 − p)] is called the log odds. Since probabil-
ities range between 0 and 1, odds range between 0 and+∞ and log odds range
unboundedly between−∞ and+∞. A linear expression of the formα+

∑
j βjxj

can also take unbounded values, so it is reasonable to use a linear expression as a
model for log odds, but not as a model for odds or for probabilities. Essentially,
logistic regression is the simplest reasonable model for a random yes/no outcome
that depends linearly on predictorsx1 to xd.

For each featurej, exp(βjxj) is a multiplicative scaling factor on the odds
p/(1 − p). If the predictorxj is binary, thenexp(βj) is the extra odds of having
the outcomey = 1 whenxj = 1, compared to whenxj = 0. If the predictorxj

is real-valued, thenexp(βj) is the extra odds of having the outcomey = 1 when
the value ofxj increases by one unit. A major limitation of the basic logistic
regression model is that the probabilityp must either increase monotonically, or
decrease monotonically, as a function of each predictorxj. The basic model does
not allow the probability to depend in a U-shaped way on anyxj.

Given the training set{〈x1, y1〉, . . . , 〈xn, yn〉}, we learn a logistic regression
classifier by maximizing the log joint conditional likelihood. This is the sum of
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the log conditional likelihood for each training example:

LCL =
n∑

i=1

log L(θ; yi|xi) =
n∑

i=1

log f(yi|xi; θ).

Given a single training example〈xi, yi〉, the log conditional likelihood islog pi if
the true labelyi = 1 andlog(1− pi) if yi = 0, wherepi = p(y = 1|xi; θ).

To simplify the following discussion, assume from now on thatα = β0 and
x0 = 1 for every examplex, so the parameter vectorθ is β ∈ Rd+1. By group-
ing together the positive and negative training examples, we can write the total
conditional log likelihood as

LCL =
∑

i:yi=1

log pi +
∑

i:yi=0

log(1− pi).

The partial derivative ofLCL with respect to parameterβj is∑
i:yi=1

∂

∂βj

log pi +
∑

i:yi=0

∂

∂βj

log(1− pi).

For an individual training example〈x, y〉, if its labely = 1 the partial derivative is

∂

∂βj

log p =
1

p

∂

∂βj

p

while if y = 0 it is

∂

∂βj

log(1− p) =
1

1− p

(
− ∂

∂βj

p
)
.

Let e = exp[−
∑d

j=0 βjxj] sop = 1/(1 + e) and1− p = (1 + e− 1)/(1 + e) =
e/(1 + e). With this notation we have

∂

∂βj

p = (−1)(1 + e)−2 ∂

∂βj

e

= (−1)(1 + e)−2(e)
∂

∂βj

[−
∑

j

βjxj]

= (−1)(1 + e)−2(e)(−xj)

=
1

1 + e

e

1 + e
xj

= p(1− p)xj.
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So
∂

∂βj

log p = (1− p)xj and
∂

∂βj

log(1− p) = −pxj.

For the entire training set the partial derivative of the log conditional likelihood
with respect toβj is

∂

∂βj

LCL =
∑

i:yi=1

(1− pi)xij +
∑

i:yi=0

−pixij =
∑

i

(yi − pi)xij

wherexij is the value of thejth feature of theith training example. Setting the
partial derivative to zero yields∑

i

yixij =
∑

i

pixij.

We have one equation of this type for each parameterβj. The equations can be
used to check the correctness of a trained model.

Informally, but not precisely, the expression
∑

i yixij is the average value over
the training set of theith feature, where each training example is weighted 1 if its
true label is positive, and 0 otherwise. The expression

∑
i pixij is the same aver-

age, except that each examplei is weighted according to its predicted probability
pi of being positive. When the logistic regression classifier is trained correctly,
then these two averages must be the same for every feature. The special case for
j = 0 gives

1

n

∑
i

yi =
1

n

∑
i

pi.

In words, the empirical base rate probability of being positive must equal the
average predicted probability of being positive.

4 Stochastic gradient training

There are several sophisticated ways of actually doing the maximization of the to-
tal conditional log likelihood, i.e. the conditional log likelihood summed over all
training examples〈xi, yi〉; for details see [Minka, 2007, Komarek and Moore, 2005].
However, here we consider a method called stochastic gradient ascent. This
method changes the parameter values to increase the log likelihood based on one

7



example at a time. It is called stochastic because the derivative based on a ran-
domly chosen single example is a random approximation to the true derivative
based on all the training data.

Consider a single training example〈x, y〉, where again we drop the subscripti
for convenience. Consider thejth parameter for0 ≤ j ≤ d. The partial derivative
of the log likelihood given this single example is

∂

∂βj

log L(β; x, y) = (y − p)xj

wherey = 1 or y = 0. For eachj, we increase the log likelihood incrementally
by doing the update

βj := βj + λ(y − p)xj.

Hereλ is a multiplier called the learning rate that controls the magnitude of the
changes to the parameters.

Stochastic gradient ascent (or descent, for a minimization problem) is a method
that is often useful in machine learning. Experience suggests some heuristics for
making it work well in practice.

• The training examples are sorted in random order, and the parameters are
updated for each example sequentially. One complete update for every ex-
ample is called an epoch. Typically, a small constant number of epochs is
used, perhaps 3 to 100 epochs.

• The learning rate is chosen by trial and error. It can be kept constant across
all epochs, e.g.λ = 0.1 or λ = 1, or it can be decreased gradually as a
function of the epoch number.

• Because the learning rate is the same for every parameter, it is useful to
scale the featuresxj so that their magnitudes are similar for allj. Given
that the featurex0 has constant value 1, it is reasonable to normalize every
other feature to have mean zero and variance 1, for example.

Stochastic gradient ascent (or descent) has some properties that are very useful in
practice. First, suppose thatxj = 0 for most featuresj of a training examplex.
Then updatingβj based onx can be skipped. This means that the time to do one
epoch isO(nfd) wheren is the number of training examples,d is the number of
features, andf is the average number of nonzero feature values per example. If
an examplex is the bag-of-words representation of document, thend is the size of
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the vocabulary (often over 30,000) butfd is the average number of words actually
used in a document (often under 300).

Second, suppose that the numbern of training examples is very large, as is the
case in many modern applications. Then, a stochastic gradient method may con-
verge to good parameter estimates in less than one epoch of training. In contrast,
a training method that computes the log likelihood of all data and uses this in the
same way regardless ofn will be inefficient in how it uses the data.

For each example, a stochastic gradient method updates all parameters once.
The dual idea is to update one parameter at a time, based on all examples. This
method is called coordinate ascent (or descent). For featurej the update rule is

βj := βj + λ
∑

i

(yi − pi)xij.

The update for the whole parameter vectorβ̄ is

β̄ := β̄ + λ(ȳ − p̄)T X

where the matrixX is the entire training set and the column vectorȳ consists of
the 0/1 labels for every training example. Often, coordinate ascent converges too
slowly to be useful. However, it can be useful to do one update ofβ̄ after all
epochs of stochastic gradient ascent.

Regardless of the method used to train a model, it is important to remember
that optimizing the model perfectly on the training data usually does not lead to
the best possible performance on test examples. There are several reasons for this:

• The model with best possible performance may not belong to the family of
models under consideration. This is an instance of the principle “you cannot
learn it if you cannot represent it.”

• The training data may not be representative of the test data, i.e. the training
and test data may be samples from different populations.

• Fitting the training data as closely as possible may simply be overfitting.

• The objective function for training, namely log likelihood or conditional log
likelihood, may not be the desired objective from an application perspective;
for example, the desired objective may be classification accuracy.
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5 Regularization

Consider learning a logistic regression classifier for categorizing documents. Sup-
pose that word numberj appears only in documents whose labels are positive. The
partial derivative of the log conditional likelihood with respect to the parameter
for this word is

∂

∂βj

LCL =
∑

i

(yi − pi)xij.

This derivative will always be positive, as long as the predicted probabilitypi

is not perfectly one for all these documents. Therefore, following the gradient
will sendβj to infinity. Then, every test document containing this word will be
predicted to be positive with certainty, regardless of all other words in the test
document. This over-confident generalization is an example of overfitting.

There is a standard method for solving this overfitting problem that is quite
simple, but quite successful. The solution is called regularization. The idea is to
impose a penalty on the magnitude of the parameter values. This penalty should
be minimized, in a trade-off with maximizing likelihood. Mathematically, the
optimization problem to be solved is

β̂ = argmaxβ LCL− µ||β||2

where||β||2 is theL2 norm of the parameter vector, and the constantµ quantifies
the trade-off between maximizing likelihood and minimizing parameter values.

This type of regularization is called quadratic or Tikhonov regularization. A
major reason why it is popular is that it can be derived from several different points
of view. In particular, it arises as a consequence of assuming a Gaussian prior
on parameters. It also arises from theorems on minimizing generalization error,
i.e. error on independent test sets drawn from the same distribution as the training
set. And, it arises from robust classification: assuming that each training point lies
in an unknown location inside a sphere centered on its measured location.

Stochastic gradient following is easily extended to include regularization. We
simply include the penalty term when calculating the gradient for each example.
Consider

∂

∂βj

[log p(y|x; β)− µ
d∑

j=0

β2
j ] = [

∂

∂βj

log p(y|x; β)]− µ2βj.

Remember that for logistic regression the partial derivative of the log conditional
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likelihood for one example is

∂

∂βj

log p(y|x; β) = (y − p)xj

so the update rule with regularization is

βj := βj + λ[(y − p)xj − 2µβj]

whereλ is the learning rate. Update rules like the one above are often called
“weight decay” rules, since the weightβj is made smaller at each update unless
y − p has the same sign asxj.

Straightforward stochastic gradient ascent for training a regularized logistic
regression model loses the desirable sparsity property described above, because
the value of every parameterβj must be decayed for every training example. How
to overcome this computational inefficiency is described in [Carpenter, 2008].

Writing the regularized optimization problem as a minimization gives

β̂ = argminβ

n∑
i=1

− log p(yi|xi; β) + µ
d∑

j=0

β2
j .

The expression− log p(yi|xi; β) is called the “loss” for training examplei. If the
predicted probability, usingβ, of the true labelyi is close to 1, then the loss is
small. But if the predicted probability ofyi is close to 0, then the loss is large.
Losses are always non-negative; we want to minimize them. We also want to
minimize the numerical magnitude of the trained parameters.
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CSE 250B Quiz 3, January 21, 2010

Write your name:

Let fθ(x; θ) wherex ∈ R be the probability density function (pdf) of the uniform
distribution over the range 0 toθ. Precisely,fθ(x; θ) = 1/θ if 0 ≤ x ≤ θ while
fθ(x; θ) = 0 otherwise.

Let x1 to xn be an independent identically distributed (iid) sample fromfθ for
some unknown true parameter valueθ > 0. The maximum likelihood estimator
(MLE) of θ is θ̂ = maxi xi.

[3 points] In one or two sentences, explain intuitively the reason why this is the
MLE. You do not need to use any equations.

Note: The MLE above is an example of overfitting, since the true value ofθ is
almost certainly larger than the MLE.



CSE 250B Quiz 4, January 27, 2011

Write your name:

Assume that winning or losing a basketball game is similar to flipping a biased
coin. Suppose that San Diego State University (SDSU) has won all six games that
it has played.

(a) The maximum likelihood estimate (MLE) of the probability that SDSU will
win its next game is 1.0. Explain why this is the MLE. (Using equations is not
required.)

(b) This MLE can be viewed as overfitting. Explain why.



CSE 250B Quiz 4, January 28, 2010

The objective function to be minimized when training anL2-regularized linear
regression model is

E =
n∑

i=1

(f(xi; w)− yi)
2 + µ

d∑
j=0

w2
j

where the model is

f(xi; w) =
d∑

j=0

wjxij.

All notation above is the same as in the class lecture notes.

[3 points] Work out the partial derivative of the objective function with respect to
weightwj.

Answer. Let fi be an abbreviation forf(xi; w) and letdi be an abbreviation for
∂

∂wj
fi. Note thatdi = xij. The expanded objective function is

E = [
n∑

i=1

f 2
i − 2fiyi + y2

i ] + µ
d∑

j=0

w2
j .

The partial derivative is

∂

∂wj

E = [
n∑

i=1

[2fidi − 2yidi + 0] + 2µwj

which is
∂

∂wj

E = 2[µwj +
n∑

i=1

(fi − yi)xij].

Additional note. Because the goal is to minimizeE, we do gradient descent, not
ascent, with the update rule

wj := wj − λ
∂

∂wj

E.

The update rule says that if the average over all training examplesi of (fi− yi)xij

is positive, thenwj must be decreased. Assume thatxij is non-negative; this
update rule is reasonable because thenfi is too big on average, and decreasingwj

will make fi decrease. The update rule also says that, because of regularization,
wj must always be decreased even more, by2λµ times its current value.



CSE 250B Quiz 4, January 27, 2011

Write your name:

Assume that winning or losing a basketball game is similar to flipping a biased
coin. Suppose that San Diego State University (SDSU) has won all six games that
it has played.

(a) The maximum likelihood estimate (MLE) of the probability that SDSU will
win its next game is 1.0. Explain why this is the MLE. (Using equations is not
required.)

(b) This MLE can be viewed as overfitting. Explain why.



CSE 250B Quiz, February 3, 2011

Your name:

Suppose you are doing stochastic gradient descent to minimize the following error
function on a single training example:

E = e(f(x; w)− y))

Work out the stochastic gradient update rule as specifically as possible, when
the error function is absolute error:e(z) = |z|.

Hint: Use the notatione′(z) for the derivative ofe(z).
Answer: For each componentwj of the parameter vectorw, the update rule is

wj := wj − α
∂

∂wj

E

whereα is the learning rate. We can work out

∂

∂wj

E = e′(f(x; w)− y)
∂

∂wj

f

If e(z) = |z| thene′(z) = sign(z) so

wj := wj − α sign(f(x; w)− y)
∂

∂wj

f.

Intuitively, if f(x; w) is too large, and increasingwj makesf increase, thenwj

should be decreased.



Project assignment 2

For this assignment you may work in a team of two with one partner, or in a team
of three. For multiple reasons, working alone or in a larger team is not appropriate.
The joint report for your team must be submitted in hard copy at the start of class
on Thursday, February 3, 2011.

This project uses data published by Kevin Hillstrom, a well-known data min-
ing consultant. You can find the data athttp://cseweb.ucsd.edu/users/
elkan/250B/HillstromData.csv . A paper by Nicholas Radcliffe avail-
able athttp://www.stochasticsolutions.com/etailPaper.html
is a good previous analysis of this dataset. Sections 1 through 5.2 are readable and
useful, while Sections 5.3 and later are harder to follow and less relevant.

You should build three separate models: one for customers who are not sent
any email promotion, one for customers who are sent the “men’s clothing” email,
and one for customers who are sent the “women’s clothing” email. Each model
consists of two regularized logistic regression classifiers and one regression func-
tion. The three submodels are part of the overall model

E[spend|x, treatment] = E[spend|purchase, x, treatment] ·
p(purchase|visit, x, treatment) · p(visit|x, treatment).

In your report, explain the equation above carefully. Note that

• x is the vector of attribute values describing a customer,

• “women’s clothing” email, “men’s clothing” email, and no email are the
three possible values of the random variable “treatment,”

• “visit” and “purchase” are binary random variables that have a certain prob-
ability of being true or false for each customer, and

• “spend” is a real-valued random variable for each customer.

You should implement your own Matlab code for training logistic regression
with regularization. The optimization method should be stochastic gradient de-
scent (SGD). Your implementation should handle discrete features as well as
real-valued features, and up to 30,000 training examples with up to 20 features.
One difficulty with SGD is choosing the learning rateλ. You can find advice at
http://leon.bottou.org/projects/sgd .

For the real-valued regression part of your model, you may use regularized
linear regression or any standard Matlab function such asnlinfit . Anywhere



that you apply regularization, use cross-validation to select a good value for its
strength. In your report, analyze experimentally and theoretically the big-O time
and space complexity of your implementation. Explain any non-trivial obstacles
that you did or did not overcome in trying to achieve good time complexity.

You must think carefully about how to do experiments that are conceptually
sound. Your report should contain three separate sections that explain the design
of your experiments, the results of the experiments, and conclusions drawn from
the experiments. In the concluding section, provide a well-founded quantitative
estimate of the benefit achievable by sending each different email to an optimal
subset of future customers. Also estimate the benefit of doing data mining com-
pared to a no-learning strategy. Make the concluding section understandable and
useful for a manager who is not interested in technical questions.

You may want to use a scripting language to turn the raw data into a numerical
dataset for input into Matlab. Describe any preprocessing and feature selection
that you do in your report.


