
Automatic Reverse-Mode Differentiation for
Long Short Term Memory (LSTM)

TAs: Tao Lin (tao.lin@cs.cmu.edu),
Rose (rosecatherinek@cs.cmu.edu)

Out Nov 7, 2017
Due Nov 14, 2017 via Autolab

Prerequisite: Please ensure you have first read Prof Cohen’s notes on
Automatic Reverse Mode Differentiation1. You can also refer to the sample
code here2.

Guidelines for Answers: Please answer to the point. Please state any
additional assumptions you make while answering the questions. You need to
submit a tar file containing source files and a pdf version of report separately
to autolab. Please make sure you write the report legibly for grading.

Rules for Student Collaboration: The purpose of student collabo-
ration in solving assignments is to facilitate learning, not to circumvent it.
Studying the material in groups is strongly encouraged. It is allowed to seek
help from other students in understanding the material needed to solve a
homework problem, provided no written notes are taken or shared during
group discussions. The actual solutions must be written and implemented
by each student alone, and the student should be ready to reproduce their
solution upon request. You may ask clarifying questions on Piazza. However,
under no circumstances should you reveal any part of the answer publicly on
Piazza or any other public website. Any incidents of plagiarism or collabo-
ration without full disclosure will be handled severely.

Rules for External Help: Some of the homework assignments used in
this class may have been used in prior versions of this class, or in classes at
other institutions. Avoiding the use of heavily tested assignments detracts

1http://www.cs.cmu.edu/~wcohen/10-605/notes/autodiff.pdf
2http://www.cs.cmu.edu/~wcohen/10-605/code/sample-use-of-xman.py

1

http://www.cs.cmu.edu/~wcohen/10-605/notes/autodiff.pdf
http://www.cs.cmu.edu/~wcohen/10-605/code/sample-use-of-xman.py

from the main purpose of these assignments, which is to reinforce the material
and stimulate thinking. Because some of these assignments may have been
used before, solutions to them may be available online or from other people.
It is explicitly forbidden to use any such sources or to consult people who have
solved these problems before. You must solve the homework assignments
completely on your own. We will mostly rely on your wisdom and honor
to follow this rule. However, if a violation is detected, it will be dealt with
harshly.

• Did you receive any help whatsoever from anyone in solving this as-
signment? Yes/No

• If you answered yes, give full details:
(e.g. ”Jane explained to me what is asked in Question 3.4”)

• Did you give any help whatsoever to anyone in solving this assignment?
Yes/No

• If you answered yes, give full details:
(e.g. ”I pointed Joe to section 2.3 to help him with Question 2”)

2

1 Overview

In this assignment we will use the automatic differentiation system intro-
duced in HW4 to implement a Long Short Term Memory (LSTM) network
architecture for character level entity classification, using python and numpy.

Character level entity classification refers to determining the type of an
entity given the characters which appear in its name as features. For example,
given the name “Antonio Veciana” you might guess that it is a Person, and
given the name “Anomis esocampta” you might guess that it is a Species.
As in HW4, we will be classifying the following 5 DBPedia categories - Person,
Place, Organisation, Work, Species.

2 Long Short Term Memory

The MLP that you implemented in HW4 is a powerful model – with enough
hidden units it can approximate any function, but it is not the most appropri-
ate model when the input is a sequence. For sequences, the input size of the
MLP and consequently size of W (1), will increase linearly with the size of the
length of the sequence and might get prohibitively large. Instead, we would
like to have a model which can loop over the input sequence, and starting
from an initial state iteratively updates its output based on the input at that
time step. LSTMs are one example of such a model 3.

Lets say we have a sequence of inputs x1, x2, . . . , xM ∈ Rdin , an initial
cell state c0 = 0 ∈ Rdhid and an initial output h0 = 0 ∈ Rdhid . At time t the
LSTM does the following updates:

it = σ(xTt Wi + hTt−1Ui + bi)

ft = σ(xTt Wf + hTt−1Uf + bf)

ot = σ(xTt Wo + hTt−1Uo + bo)

c̃t = tanh(xTt Wc + hTt−1Uc + bc)

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

3An introduction to LSTMs can be found at http://colah.github.io/posts/

2015-08-Understanding-LSTMs/

3

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Here W∗ ∈ Rdin×dhid , U∗ ∈ Rdhid×dhid , b∗ ∈ Rdhid are parameters, � is an
element-wise product and σ is the sigmoid function (applied element-wise):

σ(x)i =
1

1 + e−xi
(1)

Note: The above equations are shown for single inputs x for clarity. In your
implementation you must use minibatches X of N examples at a time, the
same way as we did for the MLP. This amounts to replacing xTt with matrices
Xt of size N × din, and hTt , cTt with matrices Ht, Ct of size N × dhid.

Now we are ready to implement LSTM architecture. We will replace the
first layer of MLP of HW4 with an LSTM layer. Let LSTM(X1, X2, . . . , XM)
be a function which loops over the sequence X1, . . . , XM , performs the up-
dates described above, and returns the final output HM . Then, given inputs
X1, . . . , XM , and their associated targets T , the output P and loss are com-
puted as follows:

HM = LSTM(X1, X2, . . . , XM)

O(2) = relu(HMW
(2) + b(2))

P = softMax(O(2))

loss = mean(crossEnt(P, T))

2.1 Learning

As before, parameters of the above network can be trained using minibatch
SGD. Once the loss function is defined we can take its derivative wrt to any
parameter wij and update it as follows:

w
(k)
ij ← w

(k−1)
ij − λdloss

dwij

(2)

λ is the learning rate. In this assignment, you are not required to modify the
learning rate as the training proceeds.

3 Autodiff Implementation

In the starter code, the following files are given -

• lstm.py – you need to implement the lstm here

4

• functions.py – you need to add additional function definitions and
their gradients here. Unit tests for new function definitions and their
gradients are included to help you debug your implementation faster.
You can run python functions.py to check your implementation.

Reuse the following files from the starter code of HW4:

• xman.py

• utils.py

• autograd.py

The steps needed to implement the LSTM model are similar to how you
implemented MLP. Follow the instructions in Sections 3.1, 3.2 and 3.3 of
HW4 to write your model.

4 Data

For this assignment, we will use the same dataset as HW4 (tiny for debug-
ging, and smaller for reporting results). And the task is also the same –
you need to predict the category label of a DBPedia entity based on its title.

As in HW4, we will encode entities for input to the networks by converting
characters to a one-hot representation. A string of characters will be encoded
to a matrix whose each row is a V -dimensional vector, where V is the total
number of characters in the dataset. We will fix the maximum length of
an entity to M , longer entities will be truncated to this length, and shorter
ones will be padded with white-space. We will use the DataPreprocessor

of utils.py to iterate over the data as before:

for (idxs,e,l) in mb_train:

idxs - ids of examples in minibatch

e - entities in one-hot format

l - corresponding output labels also in one-hot format

idxs has shape N , e has shape N ×M × V and l has shape N × C where
N is the batch size. Make sure that this makes sense to you. For input to
the LSTM, we will create a sequence of inputs X1, . . . , XM from e. Each of
these would be a N × V matrix holding the batch inputs from time-step 1
through M . Since we are using the final state of the LSTM for classification,

5

we must feed inputs to the network in reverse order so that the
useful characters appear at end.

As before, you should evaluate the loss function on the validation dataset
(*.valid files) after every epoch and store the parameters of the best model
in a separate dictionary. Then after training is completed, use these best
parameters to make predictions on the test set. Remember that you should
not do backpropagation on the validation dataset. For reporting the results,
use the test (*.test) files.

As before, you can get the data from

https://drive.google.com/open?id=0B58rr945j04BcGctanY1UHVFZVE

For the evaluation on Autolab we will run your code on a separate train,
validation and testing dataset autolab with a specific set of params as com-
mand line arguments.

5 Deliverables

You need to write the code for building, training and evaluating a LSTM in
lstm.py.

You need to write your function definitions and their derivatives in functions.py.
Make sure that you call the final predicted labels as outputs and the loss
function as loss in the XMan object. You should also remember to initialize
the default parameters and inputs. Otherwise you’d get zero score on our
gradient checking code.
You should run your code using the following defaults:

python lstm.py --max_len 10 --num_hid 50

--batch_size 64 --dataset small

--epochs 25 --init_lr 0.5

--output_file output

--train_loss_file train_loss

In autolab we will call the main function in lstm.py and pass a dictionary
of hyperparameter values. We will check your code for gradient correctness,
training loss trend, mean Loss on the test output, implementation of function
definitions and derivates, and speed compared to the benchmark code written
by us.

6

The training loss you obtain after each iteration on the batch sized data
(not epoch) should be stored in the file specified by --train loss file in
numpy format using np.save(). Your final output probabilities should be
stored in the file specified by –output-file in numpy format using np.save()
in the same row order as the input test file. Tar the following files for sub-
mission.

• lstm.py (This file would contain the LSTM class and the main class
with the default params)

• functions.py (This file would contain the function definitions and their
gradients)

• Any other helper files

Tar the files directly using the command below. Do NOT put the above files
in a folder and then tar the folder. You do not need to upload the saved
temporary files.

tar -cvf hw5.tar lstm.py functions.py

Also, please do not forget to submit your report hw5.pdf via the HW5:
Report link in Autolab.

6 Questions

1. Plot the average training time per epoch for LSTM for batch size N =
{16, 32, 64}, and default values of remaining hyperparameters. What
trends do you observe? Is it similar to the trend you observed for MLP
in HW4? Why or why not?

2. Plot the average training time per epoch for LSTM for maximum input
length M = {10, 15, 20}, and default values for remaining hyperparam-
eters. What trends do you observe? Is it similar to the trend you
observed for MLP in HW4? Why or why not?

3. Plot the total number of forward and backward steps in one update of
the LSTM for maximum input length M = {10, 15, 20}, and default
values for remaining parameters. Now repeat the plot for batch size
N = {16, 32, 64}. One forward step is defined as computing the output

7

of a primitive operation, and one backward step is defined as computing
the derivative of a primitive function wrt one of its inputs. Briefly
explain the trends that you observe.

Hint: You can count the forward and backward steps by placing coun-
ters in Autograd.eval and Autograd.bprop respectively.

7 Grading Scheme

• Code Correctness (gradient check)4 - 20 points

• Code Correctness (training loss check) - 10 points

• Code Correctness (unit tests on function implementation) - 10 points

• Code Accuracy (loss on held-out test set) - 15 points

• Code Speed - 15 points

• Report Questions - 30 points

4Reminder - You must name the loss register as “loss” for our gradient checking to
work

8

	Overview
	Long Short Term Memory
	Learning

	Autodiff Implementation
	Data
	Deliverables
	Questions
	Grading Scheme

