10605 BigML Assignment 1(b):
Naive Bayes with Hadoop API

Due: Thursday, Sept. 14, 2017 23:59 EST via Autolab
November 27, 2017

Policy on Collaboration among Students

These policies are the same as were used in Dr. Rosenfeld’s previous version of 10601 from
2013. The purpose of student collaboration is to facilitate learning, not to circumvent it.
Studying the material in groups is strongly encouraged. It is also allowed to seek help
from other students in understanding the material needed to solve a particular homework
problem, provided no written notes are shared, or are taken at that time, and provided
learning is facilitated, not circumvented. The actual solution must be done by each student
alone, and the student should be ready to reproduce their solution upon request. The
presence or absence of any form of help or collaboration, whether given or received, must
be explicitly stated and disclosed in full by all involved, on the first page of their assignment.
Specifically, each assignment solution must start by answering the following questions in
the report:

e Did you receive any help whatsoever from anyone in solving this assignment? Yes /
No. If you answered ‘yes’, give full details: (e.g. “Jane explained
to me what is asked in Question 3.4”)

e Did you give any help whatsoever to anyone in solving this assignment? Yes / No. If
you answered ‘yes’, give full details: (e.g. “I pointed Joe to section
2.3 to help him with Question 2”.

Collaboration without full disclosure will be handled severely, in compliance with
CMU’s Policy on Cheating and Plagiarism. As a related point, some of the homework
assignments used in this class may have been used in prior versions of this class, or in
classes at other institutions. Avoiding the use of heavily tested assignments will detract
from the main purpose of these assignments, which is to reinforce the material and stim-
ulate thinking. Because some of these assignments may have been used before, solutions
to them may be (or may have been) available online, or from other people. It is explicitly
forbidden to use any such sources, or to consult people who have solved these problems

before. You must solve the homework assignments completely on your own. I will mostly
rely on your wisdom and honor to follow this rule, but if a violation is detected it will be
dealt with harshly. Collaboration with other students who are currently taking the class
is allowed, but only under the conditions stated below.

1 Important Note

This semester, you are expected to use Python for this assignment.

This assignment is worth 100 points. You will be able to reuse some of the code
from the previous Naive Bayes assignment. However, unlike homework la, in this assign-
ment, you will have to port your naive Bayes code to the real Hadoop environment, using
the Hadoop streaming APIs to train a naive Bayes classifier.

Ning Dong (ndongl@andrew.cmu.edu) and Chen Hu (chenhl@andrew.cmu.edu) are the
contact TAs for this assignment. Please post clarification questions to Piazza, and the
instructors can be reached at the following email address: 10605-Instructors@cs.cmu.edu.

2 Naive Bayes in Hadoop

There are two parts in this assignment. In the first part, you need to re-implement Naive
Bayes training in the Hadoop MapReduce framework. In the second part, you need to
implement Naive Bayes testing in the Hadoop MapReduce framework. The second part
counts for 20 bonus points.

2.1 Using AWS and elastic MapReduce (EMR)

Unlike homework 1a, in this part b, after setting up your EMR cluster on AWS, you will run
your job in the Hadoop Streaming API mode on A\Nﬂ To run your Python Hadoop jobs
on AWS, You can follow the instruction document released on Piazza. We will distribute
an AWS gift code to every registered student. If you don’t get one, let us know.

2.2 Python MapReduce Code

We will use the Hadoop Streaming API for passing data between our Map and Reduce
code via STDIN (standard input) and STDOUT (standard output). We will simply use
Pythons sys.stdin to read input data and print our own output to sys.stdout. Thats all we
need to do because Hadoop Streaming will take care of everything else.

'Note that Amazon will charge you a full hour for small jobs less than one hour.

2.3 Debugging in local machine

You should test your mapper and reducer scripts locally before using them in a real Hadoop
environment. Otherwise your jobs might successfully complete but there will be no job
result data at all or not the results you would have expected. You can simply use unix sort
to replace the hadoop streaming module. For example, your command on local machine
could run like this:

cat data.txt | python mapper.py | sort | python reducer.py

2.4 Debugging with the CMU Hadoop cluster

You have access to the OpenCloud cluster from the PDL team at CMU. You should be re-
ceiving an email soon with your login details. To login to the cluster, make sure you are on
a CMU network, or using the vpn, and then ssh into shell.stoat.pdl.local.cmu.edu.
Once there, you can run hadoop commands. Check https://wiki.pdl.cmu.edu/Stoat
for cluster usage.

To test your code, you can scp your Python scripts, the package hadoop-streaming. jar
and dataset to the cluster and run with the following command:

hadoop jar local/path/to/hadoop-streaming.jar \

-file local/path/to/mapper.py -mapper local/path/to/mapper.py \
-file local/path/to/reducer.py -reducer local/path/to/reducer.py \
-input hdfs/path/to/input -output hdfs/path/to/output \

-numReduceTasks num_reducers

You can download the package hadoop-streaming. jar here and rename it. Note that the

path to input and output is on HDFS, not the local machine. This will read input from

HDFS and store output on HDFS. The output path should be a non-existing folder in

HDEF'S. To upload your training set to HDFS, use “hadoop fs -put path/to/data.txt”.

To copy your output from HDFS, use “hdfs dfs -get hdfs/path/to/result.txt”. For

a more exhaustive list of commands, see
http://hortonworks.com/hadoop-tutorial/using-commandline-manage-files-hdfs/.

2.5 Additional Hadoop Tutorial

In case you want to study extra tutorials about Hadoop, your honorary TA Malcolm
Greaves has kindly put together a wiki page here:
http://curtis.ml.cmu.edu/w/courses/index.php/Guide_for_Happy_Hadoop_Hacking.

shell.stoat.pdl.local.cmu.edu
https://wiki.pdl.cmu.edu/Stoat
https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-streaming/2.6.0
http://hortonworks.com/hadoop-tutorial/using-commandline-manage-files-hdfs/
http://curtis.ml.cmu.edu/w/courses/index.php/Guide_for_Happy_Hadoop_Hacking

2.6 About the Python Version

The Python version is 2.7.3 on OpenCloud, and 2.7.5 on Autolab. So you can write your
code using Python 2.7 and submit the same copy of your code both to OpenCloud and
Autolab. As for AWS, the default Python version depends on the specific machine you
choose.

3 The Data

We are using a dataset extracted from DBpedia. The labels of the article are based on the
types of the document. There are in total 17 (16 + other) classes in the dataset, and they
are from the first level class in DBpedia ontology.

3.1 Data Format

The training data format is one document per line. Each line contains three columns which
are separated by a single tab:

e a document id
e a comma separated list of class labels
e document words

The testing data format is one document per line. Each line contains two columns which
are separated by a single tab:

e a document id
e document words

The documents are preprocessed so that there are no tabs in the body.

3.2 Obtaining the Data

The full dataset for assignment 1b is located at /afs/cs.cmu.edu/project/bigML/dbpedia_
17fall.You can also download data here https://console.aws.amazon.com/s3/buckets/
cmu-10605/7region=us-east-1 on S3. . For your convenience, the input path you need
to fill in when launching a streaming job on EMR is|s3://cmu-10605/data/. . .

Several smaller datasets are provided to you for debugging as usual. Please use the
tokenizer provided in homework 1a.

/afs/cs.cmu.edu/project/bigML/dbpedia_17fall
/afs/cs.cmu.edu/project/bigML/dbpedia_17fall
https://console.aws.amazon.com/s3/buckets/cmu-10605/?region=us-east-1
https://console.aws.amazon.com/s3/buckets/cmu-10605/?region=us-east-1
s3://cmu-10605/data/...

4 Tasks

4.1

Part 1: Naive Bayes Training on Hadoop (70 Points)

In part 1, you are supposed to re-implement Naive Bayes training in Hadoop Mapreduce,
and in streaming way. What you need to do can be summarized in the following steps:

Port the naive Bayes training code into Python MapReduce Code. Organize it into
mapper.py and reducer.py.

Run the Hadoop MapReduce job on AWS with the full dataset with elastic MapRe-
duce using the Streaming Program option. (Note: use only one reducer here.)

Download the output file. Write a script to get the top 10 words for each class with
most word counts. You should write your result into a file called top10.txt in the
following format:

Class<tab>Word<tab>Count
Download the controller and syslog text files.

Submit a tar ball via Autolab containing your source code and results. Check details
in Deliverables Section.

Hint: The controller and syslog files from AWS for the mapreduce job can be down-
loaded from the AWS console. Simply go to the Elastic Mapreduce tab. Select your job in
the list, click View details and expand Steps to see jobs and log files.

4.2

Part 2: Naive Bayes Testing on Hadoop (20 EXTRA Points)

Warning from TAs (not from compiler, so better not ignore it) It’s wise to finish
other tasks before marching on the bonus. It usually takes you far more time than part
1. This bonus would not benefit you in grades, if you already got an A+ at the end of
semester. If you are still curious and interested to explore, go ahead!

In part 2, you are supposed to implement Naive Bayes testing in streaming way. You can
refer to slides and Professor Cohen’s notes(http://www.cs.cmu.edu/~wcohen/10-605/
notes/scalable-nb-notes.pdf). What you need to do is summarized as following:

Write a pipeline that accepts training set and test set filename as input. The output
should be your classification results for the original document in test set, where each
row contains two tab-separated fields - headline and predicted label.

Headline<tab>Label

http://www.cs.cmu.edu/~wcohen/10-605/notes/scalable-nb-notes.pdf
http://www.cs.cmu.edu/~wcohen/10-605/notes/scalable-nb-notes.pdf

The pipeline could consist of multiple mappers and reducers. For local/Autolab test
purpose, write a Makefile to automate the whole process. With running the following
command, your pipeline gets the path passed in arguments train, test as input, and
output the result to the output.

make run train=../data/train/abstract.tiny.train \
test=../data/test/abstract.tiny.test output=tiny_output

Below is a simple reference Makefile. It’s just for people who don’t have experience
writing Makefile, and is not what your Makefile should look like! You may have
different number of mappers and reducers in your pipeline.

run:
<tab>cat ${train} | python mapper_1.py | sort | python reducer_1.py > tmp_1;
<tab>cat ${test} | python mapper_2.py | sort | python reducer_2.py > tmp_2;
<tab>cat tmp_1 tmp_2 | do something... > ${outputl};

e Optionally run your code on the full dataset on AWS. You don’t need to submit any
result to Autolab.

e Grades in part 2 will be based on accuracy of your classification results. So feel free
to explore various tricks to improve the accuracy. For example, try removing stop
words, filtering rare words, adjusting smoothing parameters, etc.

e You are required to implement it in streaming way as it is in Part 1. That is, you
can only use constant memory.

4.3 Deliverables

In this homework, you will need to follow the exact naming of files.

For part 1, You must have the mapper.py and reducer.py. Your MapReduce program need
to execute the following commands successfully:

cat abstract.full.train | python mapper.py | sort | python reducer.py

Important: you should still use the tokenizer provided in homework la, and output in the
format of:

Y= 200

Y=Agent 100
Y=Agent,W=% 1000
Y=Agent,W=her 10
Y=Agent ,W=duck 5

For part 2, you could design your own MapReduce pipelines, but you should provide a
Makefile as specified in Section 4.2. What your pipeline writes into destination file would
be something like (XXX is your predicted label):

%C3%85selistraumen_Bridge XXX
%C5%81lupiny, _Masovian_Voivodeship XXX
191_Peachtree_Tower XXX
1950_Nebraska_Cornhuskers_football_team XXX
19562_Roller_Hockey_World_Cup XXX

To summarize, you should tar the following items into hwlb.tar and submit to the home-
work 1b assignment via Autolab:

e mapper.py

e reducer.py

e controller.txt

o syslog.txt

e topl0.txt

e Makefile and all Python MapReduce codes for part 2
Tar the files directly using

tar -cvf hwlb.tar *.py *.txt Makefile

Do NOT put the above files in a folder and then tar the folder. You do not need to upload
the saved temporary files. Remember also to submit the report to a separate Autolab link
(More in Submission Section).

4.4 Report (30 Points)
For this assignment, you need to submit a report, which answers the following questions:
1. Answer the questions in the collaboration policy on page 1.

2. For parallel computing, the optimal speedup gained through parallelization is linear
with respect to the number of jobs running in parallel. For example, with 5 reducers,
ideally we would expect parallel computing to take 1/5 wall clock time of single ma-
chine run. However, this optimal speedup is usually not achievable. In this question,
set the number of reducers to 2, 4, 6, 8, 10, and record the wall clock time. (The
wall clock time of reducers can be inferred from syslogs - use the time between first

log line with “map 100%” and “map 100% reduce 100%”). Plot a curve, where the
horizontal axis is the number of reducers, and the vertical axis is the wall time. Is the
wall time linear with respect to the number of reducers? Explain what you observed.
(10 points)

. In information retrieval, sometimes we need to know the most relevant documents
in a corpus given a search query. This can be done by calculating the relevance score
of each document to that query, and ranking the documents according to their scores.

Okapi BM25 is a function used to calculate relevance scores of a given query and a
set of documents in a corpus. Given a query @, containing keywords qi, ..., gy, the
BM25 score of a document D is:

TF(q;, D) - (k1 + 1)

TF(qi, D)+ k- (1 —b+b- 120

score(D, Q) = ZIDF(%’) :
i=1

where TF(¢;, D) is ¢;’s term frequency in the document D, |D] is the length of the
document D, and avgdl is the average document length in the corpus. k; and b
are free parameters, which can be treated as constants here. IDF(g;) is the inverse
document frequency weight of the query term ¢;. It can be computed as:

N —n(¢)+0.5

IDF(q;) =lo)
(ai) & n(¢;) + 0.5

where N is the total number of documents in the collection, and n(g;) is the number
of documents containing ¢;.

Assume you are given a query (), containing keywords q, . . ., ¢, and a corpus like the
one below. (With two columns separated by tab, of which the first is the document
id, and the second is the content. You may assume there is no tab in the content, all
words are in lower case and any one of the documents can fit in memory)

dl \t russian police raid rights group memorial and other...
d2 \t the us embassy in russia has asked the russian government...

Outline how can you employ the stream and sort pattern to calculate the BM25 score
of each document. The output should look like below (you don’t have to sort the
documents according to the scores):

(d1, score(dl, Q)
(d2, score(d2, Q)

0.08)
0.09)

Try to implement an algorithm with 3 mapreduces. You should write down the out-
put of each mapper or reducer. (20 points)

Hint: think of how you can get the BM25 score of each document w.r.t each keyword
in the query (because the score of each document w.r.t. the query can be calculated
by adding up all the scores of that document w.r.t each keyword in the query). For
example, if you have:

(q1, 41, score(dl, q1) = 7)
(q1, d2, score(d2, q1) = 7)
(q1, 43, score(d3, ql) = 7)

(g2, di, score(dl, g2) = ?7)
(g2, d2, score(d2, g2) = 7)
(g2, d3, score(d3, gq2) = 7)

it will be much easier to get the final result.

5 Submission

You must submit your homework through Autolab. There are 3 entries in Autolab -
Validation, Submission and Report.

e HW1h:Validation - You will be notified by Autolab if you can successfully finish your
job on the Autolab virtual machines. Note that this is not the place you should debug
or develop your algorithm. This is basically a Autolab debug mode. There will be
NO feedback on your performance in this mode. You have unlimited amount of
submissions here. To avoid Autolab queues on the submission day, the validation
link will be closed 24 hours prior to the official deadline. If you have received a score
of 1000 with no errors, this means that you code has passed the validation.

¢ HW1b:Hadoop Naive Bayes - This is where you should submit your tar ball. You
have a total of 10 possible submissions. Your score will be reported, and feedback
will be provided immediately.

e HW1b:Report - This is where you should submit your tar ball. You have a total of 10
possible submissions. Your score will be reported, and feedback will be provided
immediately.

6 Grading

e Part 1 counts up to 70 points. If you are able to successfully run the job on full
dataset with AWS EMR and get correct statistics, you will receive 40 points. The
successful run of your AWS job should be reflected in your submitted log files (20
points) and correct topl0.txt result (20 points).

We will also test your Python MapReduce code on Autolab. You will receive another
30 points if all the counts that your MapReduce program generates for the Naive
Bayes model are same as reference .Do not submit someone else’s files or codes in-
cluding that of past students of the course. Autolab runs a cheat checker, and we
have zero tolerance for any cheating in the course.

e Part 2 counts up to 20 points as bonus. You will be graded based on your accuracy
in test set.

e The report will be graded manually and its questions are worth 30 points.

10

	Important Note
	Naive Bayes in Hadoop
	Using AWS and elastic MapReduce (EMR)
	Python MapReduce Code
	Debugging in local machine
	Debugging with the CMU Hadoop cluster
	Additional Hadoop Tutorial
	About the Python Version

	The Data
	Data Format
	Obtaining the Data

	Tasks
	Part 1: Naive Bayes Training on Hadoop (70 Points)
	Part 2: Naive Bayes Testing on Hadoop (20 EXTRA Points)
	Deliverables
	Report (30 Points)

	Submission
	Grading

